References
1. Zhong NS, Zheng BJ, Li YM et al. Epidemiology and cause of severe
acute respiratory syndrome (SARS) in Guangdong, People’s Republic of
China, in February, 2003. Lancet 2003; 362 : 1353-8.
2. Xu RH, He JF, Evans MR et al. Epidemiologic clues to SARS origin in
China. Emerg Infect Dis 2004; 10 : 1030-7.
3. Al-Omari A, Rabaan AA, Salih S et al. MERS coronavirus outbreak:
Implications for emerging viral infections. Diagn Microbiol Infect
Dis 2019; 93 : 265-85.
4. Mackay IM, Arden KE. MERS coronavirus: diagnostics, epidemiology and
transmission. Virol J 2015; 12 : 222.
5. Chatterjee P, Nagi N, Agarwal A et al. The 2019 novel coronavirus
disease (COVID-19) pandemic: A review of the current evidence.Indian J Med Res 2020.
6. Chen X, Yu B. First two months of the 2019 Coronavirus Disease
(COVID-19) epidemic in China: real-time surveillance and evaluation with
a second derivative model. Glob Health Res Policy 2020;5 : 7.
7. Zheng J. SARS-CoV-2: an Emerging Coronavirus that Causes a Global
Threat. Int J Biol Sci 2020; 16 : 1678-85.
8. Li Q, Guan X, Wu P et al. Early Transmission Dynamics in Wuhan,
China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med2020; 382 : 1199-207.
9. Center JHCR. Available at: https://coronavirus.jhu.edu/map.html. Last
accessed May 17, 2020 2020.
10. Dyall J, Gross R, Kindrachuk J et al. Middle East Respiratory
Syndrome and Severe Acute Respiratory Syndrome: Current Therapeutic
Options and Potential Targets for Novel Therapies. Drugs 2017;77 : 1935-66.
11. Sarma P, Prajapat M, Avti P et al. Therapeutic options for the
treatment of 2019-novel coronavirus: An evidence-based approach.Indian J Pharmacol 2020; 52 : 1-5.
12. Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the
antiviral effects of chloroquine against coronavirus: what to expect for
COVID-19? Int J Antimicrob Agents 2020: 105938.
13. Dyall J, Coleman CM, Hart BJ et al. Repurposing of clinically
developed drugs for treatment of Middle East respiratory syndrome
coronavirus infection. Antimicrob Agents Chemother 2014;58 : 4885-93.
14. Wrapp D, Wang N, Corbett KS et al. Cryo-EM structure of the
2019-nCoV spike in the prefusion conformation. Science 2020;367 : 1260-3.
15. Ou X, Liu Y, Lei X et al. Characterization of spike glycoprotein of
SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV.Nat Commun 2020; 11 : 1620.
16. Du L, Yang Y, Zhou Y et al. MERS-CoV spike protein: a key target for
antivirals. Expert Opin Ther Targets 2017; 21 : 131-43.
17. Millet JK, Whittaker GR. Host cell proteases: Critical determinants
of coronavirus tropism and pathogenesis. Virus Res 2015;202 : 120-34.
18. Walls AC, Park YJ, Tortorici MA et al. Structure, Function, and
Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020;181 : 281-92.e6.
19. Coutard B, Valle C, de Lamballerie X et al. The spike glycoprotein
of the new coronavirus 2019-nCoV contains a furin-like cleavage site
absent in CoV of the same clade. Antiviral Res 2020;176 : 104742.
20. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link
between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern
Med 2020.
21. Zhang H, Penninger JM, Li Y et al. Angiotensin-converting enzyme 2
(ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential
therapeutic target. Intensive Care Med 2020; 46 : 586-90.
22. Hoffmann M, Kleine-Weber H, Schroeder S et al. SARS-CoV-2 Cell Entry
Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven
Protease Inhibitor. Cell 2020; 181 : 271-80.e8.
23. Chan JF, Kok KH, Zhu Z et al. Genomic characterization of the 2019
novel human-pathogenic coronavirus isolated from a patient with atypical
pneumonia after visiting Wuhan. Emerg Microbes Infect 2020;9 : 221-36.
24. Stefanelli P, Faggioni G, Lo Presti A et al. Whole genome and
phylogenetic analysis of two SARS-CoV-2 strains isolated in Italy in
January and February 2020: additional clues on multiple introductions
and further circulation in Europe. Euro Surveill 2020;25 .
25. Koyama T, Weeraratne D, Snowdon JL, Parida L. Emergence of Drift
Variants That May Affect COVID-19 Vaccine Development and Antibody
Treatment. Pathogens 2020; 9 .
26. Becerra-Flores M, Cardozo T. SARS-CoV-2 viral spike G614 mutation
exhibits higher case fatality rate. Int J Clin Pract 2020.
27. Wan Y, Shang J, Sun S et al. Molecular Mechanism for
Antibody-Dependent Enhancement of Coronavirus Entry. J Virol2020; 94 .
28. Tirado SM, Yoon KJ. Antibody-dependent enhancement of virus
infection and disease. Viral Immunol 2003; 16 : 69-86.
29. Wang SF, Tseng SP, Yen CH et al. Antibody-dependent SARS coronavirus
infection is mediated by antibodies against spike proteins.Biochem Biophys Res Commun 2014; 451 : 208-14.
30. Katzelnick LC, Gresh L, Halloran ME et al. Antibody-dependent
enhancement of severe dengue disease in humans. Science 2017;358 : 929-32.
31. Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue. Lancet2019; 393 : 350-63.
32. Takano T, Yamada S, Doki T, Hohdatsu T. Pathogenesis of oral type I
feline infectious peritonitis virus (FIPV) infection: Antibody-dependent
enhancement infection of cats with type I FIPV via the oral route.J Vet Med Sci 2019; 81 : 911-5.
33. Kuzmina NA, Younan P, Gilchuk P et al. Antibody-Dependent
Enhancement of Ebola Virus Infection by Human Antibodies Isolated from
Survivors. Cell Rep 2018; 24 : 1802-15.e5.
34. Beck Z, Prohászka Z, Füst G. Traitors of the immune system-enhancing
antibodies in HIV infection: their possible implication in HIV vaccine
development. Vaccine 2008; 26 : 3078-85.
35. Hadfield J, Megill C, Bell SM et al. Nextstrain: real-time tracking
of pathogen evolution. Bioinformatics 2018; 34 : 4121-3.
36. Pachetti M, Marini B, Benedetti F et al. Emerging SARS-CoV-2
mutation hot spots include a novel RNA-dependent-RNA polymerase variant.J Transl Med 2020; 18 : 179.