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Abstract

Large-scale patterns of biodiversity and the underlying mechanisms that regulate these patterns are

central topics in biogeography and macroecology. The Qinghai-Tibetan Plateau (QTP) is a natural

laboratory for studying these issues. However, most previous studies have focused on the entire

QTP, and the independent physical geographical subunits in the region are not well understood.

We  studied  the  current  plant  diversity  on  the  Kunlun  Mountains,  an  independent  physical

geographical subunit located in northwest China, on the northern edge of the QTP. We integrated

measures  of  species  distribution,  geological  history,  and  phylogeography,  and  analyzed  the

taxonomic richness, origin time, and community phylogenetic structure of the plants present in the

area. The distribution patterns of 1,911 seed plants highlighted that species were located mainly in

the eastern regions of the Kunlun Mountains. Chinese endemic species of seed plants accounted

for 29.8% of the total  species on the Kunlun Mountains.  The biodiversity  patterns and mean

divergence times (MDT) indicated that the eastern region of the Kunlun Mountains was the center

for  biodiversity  conservation,  particularly  in  the  southeastern  region,  which  has  served  as  a

museum for plant diversity on the Kunlun Mountains. According to the MDT, the origin time of

the Kunlun Mountains' flora (KMF) was early Miocene (19.40 Ma), and the KMF is ancient. The

biogeographical roles of the Kunlun Mountains were corridor and sink, and the corresponding key

processes  were  species  immigration  and  extinction.  The  extant  biodiversity  on  the  Kunlun

Mountains has occurred through species recolonization after climatic fluctuations and glaciations

during the Quaternary. The Kunlun Mountains also formed a barrier,  representing a boundary

among  multiple  floras,  and  converted  the  QTP into  a  closed  physical  geographical  unit.  The

nearest  taxon  index  indicated  that  habitat  filtering  may  have  played  an  important  role  in

biodiversity patterns.
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1 | INTRODUCTION

Understanding  biodiversity  patterns  at  the  regional  scale  has  long  been  a  major  interest  in

macroecology and biogeography (Grierson et al., 2011; Ma, 2017; Patino et al., 2017). Numerous

hypotheses  have  been  proposed  to  explain  these  patterns.  Some  studies  have  suggested  that

contemporary  environmental  factors,  such  as  climate  and  habitat  heterogeneity,  dominate  the

mechanisms  currently  mediating  biodiversity  (Kerr  &  Packer,  1997;  Brown,  Gillooly,  Allen,

Savage,  &  West,  2004;  Currie  et  al.,  2004;  Wang,  Brown,  Tang,  &  Fang,  2009).  Another

hypothesis is that historical processes, such as speciation, extinction, and dispersal, predominantly

influence biodiversity (Zobel, 1997; Ricklefs, 2005; Mittelbach et al., 2007). Notably, there is no

universal theory that integrates the relative influences of contemporary environmental factors and

historical processes on biodiversity  patterns.  However, numerous researchers consider that  the
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abiotic environment,  contemporary biotic interactions,  and evolutionary history simultaneously

contribute  to  biodiversity  patterns  (Hawkins  & Porter,  2003;  Svenning  & Skov,  2005,  2007;

Montoya, Rodríguez, Zavala, & Hawkins, 2007; Wang, Fang, Tang, & Lin, 2012). Furthermore, it

is difficult to distinguish the effects of collinearity between historical processes and contemporary

environments.

Ecologists  have  proposed  numerous  hypotheses  to  explain  species  composition.  The

biodiversity patterns within a geographical region are the result of multiple processes, including

speciation, extinction, migration, and ongoing species interactions (Lu et al., 2018). Moreover, the

niche theory (Silvertown, 2004), neutral theory (Hubbell, 2005), and contemporary coexistence

theory (Chu, Wang, Liu, Jiang, & He, 2017) have been used to reveal community assembly. The

niche theory argues that species have different niches and that habitat filtering and competitive

exclusion  are  the  principal  community  assembly  rules;  this  theory  can  be  used  to  explore

ecological  and  evolutionary  processes  at  the  regional  scale  (Mittelbach  &  Schemske,  2015;

Baares De Dios et al.,  2020).  Regarding the neutral theory,  it  proposes that  different species‐ ‐

within an ecological community can have equivalent ecological functions, and models the process

of community assembly as random (Hubbell, 2001). In recent years, ecologists have increasingly

recognized that niche and neutral processes are not diametrically opposed and that both determine

community assembly (Tilman, 2004; Chase, 2005; Gravel, Canham, Beaudet, & Messier, 2006;

Leibold & McPeek, 2006). Regarding the contemporary coexistence theory, it assumes that inter-

species  differences  are  divided  into  two  categories:  niche  differences  and  average  fitness

differences.  The  former  are  considered  as  stabilizing  mechanisms  that  facilitate  species

coexistence, whereas the latter are regarded as equalizing mechanisms that promote competitive

exclusion (Chu,  Wang, Liu,  Jiang,  & He,  2017).  Notably,  the  theory is  yet  to  be assessed  in

communities at the regional scale.

Numerous studies have indicated that the abiotic environment, contemporary biotic interactions,

and evolutionary history simultaneously contribute to the phylogenetic community structure at

different scales (Webb, Ackerly, McPeek, & Donoghue, 2002; Kraft, Cornwell, Webb, & Ackerly,

2007). Therefore, the phylogenetic community structure could help explain biodiversity patterns.

In addition, the analysis of the community phylogenetic structure can facilitate the determination

of the ecological and evolutionary processes that regulate biodiversity patterns at different scales.

Evolutionary  processes  such  as  rapid  in  situ  speciation,  niche  conservatism,  and  dispersal

limitation  can  lead  to  phylogenetic  clustering  (Lu  et  al.,  2018).  In  comparison,  evolutionary

processes  such  as  niche  evolution,  convergent  evolution,  and  colonization  may  lead  to

phylogenetic overdispersion within communities (Allen & Gillooly, 2006). Regarding ecological

processes,  habitat  filtering  and  competitive  exclusion  can  result  in  non-random  community

phylogenetic structures (Webb, Ackerly, McPeek, & Donoghue, 2002; Kraft, Cornwell, Webb, &

Ackerly, 2007). Habitat filtering, which can lead to phylogenetic clustering, refers to the selection

of certain species traits in a community (Wiens & Graham, 2005), whereas competitive exclusion

might result in phylogenetic dispersion (Burns & Strauss, 2011).

Mountains  are  topographically  complex  regions  that  affect  biodiversity  and  neighboring

lowland ecosystem processes by facilitating biotic interchange, influencing regional climate, and

nutrient runoff (Rahbek et al., 2019a). Notably, mountains reportedly disproportionately influence

the  global  terrestrial  biodiversity,  particularly  in  the  tropics,  where  they  host  hotspots  with

extraordinary levels of species richness. In the arctic and temperate regions, however, mountains
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host few endemic species and typically have low species diversity, which barely exceed those of

the adjacent lowlands (Rahbek et al., 2019b). Consequently, mountains offer natural laboratories

for studying the mechanisms that govern biodiversity patterns at different scales. 

The high mountains of China are mainly distributed on the Qinghai-Tibetan Plateau (QTP) and

in adjacent regions (Wang, Wang, & Fang, 2004). The QTP refers to the plateau itself, which is the

highest and most expansive plateau on the globe, occupying an area of 2.5 million km 2 with an

average elevation of  over 4,000 m (Zhang, Li,  & Zheng, 2002).  Extensive research has been

conducted on the QTP, and the datasets thereby accumulated offer opportunities to investigate the

biodiversity patterns and plant communities in such regions (Favre et al., 2015). Several studies

have assessed the geographical distribution of species in the QTP (e.g., Wu, 2008; APG , 2016),Ⅳ

but the complex environment of the QTP suggests that species richness would vary considerably

across  the  region  (Tang,  Wang,  Zheng,  & Fang,  2006;  Yang,  Ma,  & Kreft,  2013).  Since  the

climatic  fluctuations  and  glaciations  of  the  Quaternary,  the  QTP has  experienced  four  major

glacial events (Shi, Li, & Li, 1998; Zhang, Li, & Zheng, 2002; Yi, Cui, & Xiong, 2005; Owen,

Caffee, Finkel, & Seong, 2008; Owen & Dortch, 2014). These geological processes have driven

radiation and species diversification in various groups of plants (Wen, Zhang, Nie, Zhong, & Sun,

2014). However, these climatic fluctuations and glaciations have also led to mass extinction events

in some areas of the QTP. According to the data from published monographs and literature, the

QTP harbors ~10,000 species of vascular plants (Wu, 2008; APG , 2016), of which ~20% areⅣ

endemic to the region (Wu, 2008; Yan, Yang, & Tang, 2013; Yu, Zhang, Liu, Chen, & Qi, 2018);

the southern regions have especially high species richness (Mao et al., 2013).

Owing to major advancements in phylogeographic studies and tools, the evolutionary histories

and underlying adaptations of plants in the QTP, including Saussurea (Wang, Susanna, Von Raab-

Straube, Milne, & Liu, 2009), Rheum (Sun, Wang, Wan, Wang, & Liu, 2012), Gentiana (Favre et

al., 2016), Rhodiola (Zhang, Meng, Allen, Wen, & Rao, 2014), Saxifraga (Ebersbach, Schnitzler,

Favre,  & Muellner-Riehl,  2017),  and  Syncalathium (Zhang,  Nie,  Wen,  & Sun,  2011),  among

others (Qiu, Fu, & Comes, 2011; Liu, Luo, Li, & Gao, 2017), have become increasingly clear

(Liu, Duan, Hao, Ge, & Sun, 2014). In addition, numerous researchers have integrated principles

from  different  disciplines,  including  taxonomy,  phylogeny,  ecology,  biogeography,

phylogeography,  and  paleontology,  to  provide  an  insightful  perspective  to  explore  the

regionalization of  floristic  assemblages  (Li,  Qian & Sun,  2018).  Rapid speciation and habitat

filtering have been reported to dominate the biodiversity and community assembly processes on

the QTP, and the phylogenetic structure of vascular species is clustered in most regions of the QTP

(Yan, Yang, & Tang, 2013). Recent studies have reported that the main phylogeographic patterns

of  seed  plant  species  are  contraction/recolonization,  platform  refugia/local  expansion,  and

microrefugia in the Tibeto-Himalayan region (Muellner-Riehl, 2019). Numerous studies have also

indicated that different  floras each have their  evolutionary history (e.g.,  Crisp & Cook, 2013;

Baldwin, 2014; Linder & Verboom, 2015; Chen, Deng, Zhuo, & Sun, 2018; Lu et al., 2018). For

example,  the  origin  time  of  the  Amazonian  flora  is  8.30  Ma  (Hoorn,  Wesselingh,  Steege,  &

Bermudez, 2010), while the origin time of the Andes flora is 6.40 Ma (Särkinen, Pennington.,

Lavin,  Simon,  &  Hughes,  2012).  Therefore,  datasets  from  different  regions  provide  the

opportunity to explore the formation and maintenance mechanisms of biodiversity in these areas.

That is, these datasets may contribute to our understanding of the plant diversity in the QTP. 

Most previous studies have focused on the entire QTP, and there has been little research on the
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independent  physical  geographical  subunits  in  the  region.  The  Kunlun  Mountains  are  an

independent physical geographical subunit with a relatively clear geographical range and plant

distribution data; however, they are not classed as a biodiversity hotspot (Su, 1998; Zheng, 1999;

Pan, 2000; Zachos & Habel, 2011; Wu, 2012–2015; Sun et al., 2015). In the present study, we

used datasets from the region of the Kunlun Mountains to explore the evolutionary history of the

plant diversity to: 1) estimate the origin time of the Kunlun Mountains’ flora (KMF); 2) clarify

when the extant plant diversity on the Kunlun Mountains emerged; and 3) reveal the phylogenetic

structural patterns of seed plants in the region. An additional consequence among different regions

of the Kunlun Mountains could help explore biodiversity conservation target.

2 | MATERIALS AND METHODS

2.1 | Study area

The Kunlun Mountains are an independent physical geographical subunit, located in northwest

China, on the northern edge of the QTP. Geographically, they border the Pamirs Plateau to the

west, southeast Qinghai to the east, the Qaidam and Tarim Basins to the north, and the northwest

Tibet Autonomous Region to the south. The Kunlun Mountain range is oriented east–west and is

located across 34°N–40°N and 75°E–100°E. The range extends for a total length of ~2,500 km

and a width of 130–200 km. The mountain range is narrower in the west than in the east and

covers a total area of over 500,000 km2 (Wu, 2012–2015; Figure 1). The elevation of the mountain

range increases from the east to the west, and ranges between 3,000 m and 7,719 m, with an

average altitude of approximately 4,000 m.

The area has an annual precipitation that varies from ~100 to 500 mm and an average annual

temperature below 0 . The annual precipitation is characterized by a decrease from the east to℃

the west. The climate on the slopes of the mountain range varies greatly and the steep climate

gradient results in a dramatic change in vegetation cover. From east to west, the vegetation types

are alpine scrub, alpine meadow, and alpine steppe. In addition, there are a few coniferous forests

in the east and west of the Kunlun Mountains (Zheng, 1999; Wu, 2012–2015).

To accurately reveal the current plant diversity, the study region was divided into 28 county-

level geographical units according to the county area and vegetation type. Geographically, the

Kunlun  Mountains  are  divided  into  three  regions:  east,  west,  and  center.  The  western  region

consists of six counties, the central region is composed of fourteen counties, with six counties on

the southern slope and eight counties on the northern slope, and the eastern region comprises eight

counties (Figure 2; Table 1).

2.2 | Distribution data

The basic distribution data were obtained from Flora Kunlunica, published in four volumes, by

Wu and his  colleagues (Wu, 2012–2015), with references to published monographs and other

literature, including  Flora of Xinjiang (Shen, 1993–2011), Flora of Qinghai (Liu, 1996–1999),

Flora  of  Tibet  Autonomous  Region (Wu,  1983–1987),  The  Vascular  Plants  and  Their  Eco-

geographical Distribution of the Qinghai-Tibet Plateau  (Wu, 2008), and the National Specimen

Information Infrastructure (http://nsii.org.cn/2017/home.php).  Based on these data sources, and

using the order of families from the Angiosperm Phylogeny Group  (APG , 2016), the generaⅣ Ⅳ

were classified into families according to A Dictionary of the Families and Genera of Chinese

Vascular Plants (Li et al., 2018). All the species names were standardized following the Catalogue
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of  Life  Checklist  (http://www.catalogueoflife.org/annual-checklist/2019/) and  The  Plant  List

(  http://www.theplantlist.org  ). When species names differed between these two databases,  these

names were standardized following  The Plant List. Species that were not native to the Kunlun

Mountains were excluded, and infraspecific taxa were preserved. Overall, the information that was

collected presented a comprehensive checklist of the seed plant species on the Kunlun Mountains.

To analyze spatial patterns, each species was assigned to a county-level geographical unit based on

species distribution data.

2.3 | Origin and divergence time of floras

To obtain datasets pertinent to the ages of the KMF, we collected data from published molecular

phylogenetic and biogeographical studies, following two principles of data collection: genera from

the KMF had to  be included  and  the ages  and the ancestral  areas of  these  genera  had to  be

available. On the basis of the corresponding data, mean divergence times (MDT) were calculated

as: 

MDT=
( AGE1×S1 )+ (AGE2×S2 )+( AGE3×S3 )+…+(AGEn×Sn )

S1+S2+S3+…+Sn

where AGEi is the age of the genus i (i = 1, …, n) in a sample, and Si is the species number of

the genus i in the sample.

The standardized effect  size  of the mean divergence time (SES-MDT) of the genera in the

sample was calculated as: 

SES ‐MDT=
MDT observed−MDT random
s . d . (MDT random )

where  MDTobserved represents  observed  MDT,  MDTrandom represents  the  expected  MDT  of  the

randomized assemblages (n=999), and s.d. (MDTrandom) is the standard deviation of the MDT for

the randomized assemblages. For the youngest quartile, samples with values of SES-MDT below -

1.96 were confirmed as significantly young floras, whereas, for the oldest quartile, samples with

SES-MDT values above 1.96 were confirmed as significantly ancient floras (Lu et al., 2018).

To accurately reveal the evolutionary history of KMF, we calculated the origin and divergence

time of plants in county-level geographical units and different regions.

2.4 | Phylogenetic structure

We  calculated  the  nearest  taxon  index  (NTI),  at  the  species  level,  in  each  county.  The

corresponding  NTI  were  calculated  to  analyze  the  community  phylogenetic  structure  (i.e.,

clustering  or  overdispersion),  and  to  examine  possible  ecological  and  evolutionary  processes

within communities (Webb, Ackerly, McPeek, & Donoghue, 2002). Each NTI was based on the

mean nearest taxon distance (MNTD), which is an estimate of the mean phylogenetic relatedness

between each pair of taxa in a sample and its nearest relative in a phylogeny. The NTI reflects the

structure in the shallower parts of a phylogeny (Webb, Ackerly, McPeek, & Donoghue, 2002). At

the  community  level,  positive  NTI  values  indicate  phylogenetic  clustering,  whereas  negative

values indicate phylogenetic dispersion. The NTI values were calculated as follows:
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NTI=−1×
MNTDobserved−MNTDrandom

s . d . (MNTDrandom )

where  MNTDobserved represents  the  observed  MNTD values,  MNTDrandom represents  the  mean

values of the expected MNTD in the randomized assemblages (n = 999), and s.d. (MNTDrandom) is

the  standard  deviations  of  the  MNTDrandom values  in  the  randomized  assemblages.  The  null

distributions of MNTD were created by randomly selecting the observed number of taxa in each

sample 999 times, with all the taxa in the phylogeny serving as the sampling pool. 

Phylogenetic  analyses require  a  phylogenetic  tree of  seed plants,  the phylogenetic  tree was

constructed using Phylomatic (http://phylodiversity.net/phylomatic/) with the stored tree data from

Zanne et al. (2014). Ecological index was calculated using R version 3.3.3 (R Core Team, 2017)

and picante packages (Kembel et al., 2010).

3 | RESULTS

3.1 | Taxa richness

A total  of 1,911 seed plants, including subspecies and varieties, have been recorded on the

Kunlun Mountains, and they belonged to 397 genera, 75 families, and 32 orders. Gymnosperms

accounted for only 26 of these seed plant species, which were further classified into 5 genera, 3

families, and 3 orders (Figure 3c). The remaining seed plants were all angiosperms.

The seed plants  of  the KMF comprised 226 woody species and 1,685 herbaceous species

(Figure 3a). Specifically, the woody species consisted in 22 tree species, 197 shrub species, and 7

liana species.  The herbaceous species were represented by 9 herbaceous climber species,  224

annual herb species, and 1,452 perennial herb species. There were 570 species endemic to China,

corresponding to 29.83% of the total and including 81 woody species and 489 herbaceous species.

The KMF seed plants were divided into 39 woody genera, 347 herbaceous genera, and 11 genera

that  include  both  woody and herbaceous  species  (Figure  3b).  Overall,  7  of  these  genera  (all

herbaceous genera) were endemic to China, and six were only distributed in the eastern region of

the Kunlun Mountains.  Approximately a third of  the plant  species were distributed across 15

genera, with more than 20 species in each genus. Conversely, there were 155 genera that contained

only one species each. At the genus level, there were 336, 248, and 245 seed plant genera in the

eastern, central, and western regions of the Kunlun Mountains, respectively. In addition, 198 and

192  genera  were  encountered on  the  northern  and  southern  slopes  of  the  Middle  Kunlun

Mountains, respectively.

Overall, the KMF biodiversity varied spatially (Table 1), with the eastern region of the Kunlun

Mountains showing higher biodiversity than the western and central regions (Table 1). Similar

results also characterized the genera richness on the Kunlun Mountains, and genera richness was

higher in the southeastern regions. The distribution patterns of seed plants indicated that species

and genera were distributed mainly in the eastern region, especially the southeastern region (Table

1; Supplementary Tables).

3.2 | Origin and divergence time of floras

In this study, 126 clades of seed plants (species or genus level) were collected, accounting for

126  genera,  55  families,  and  30  orders  of  seed  plants.  Notably,  there  were  5  clades  of

gymnosperms and 121 clades of angiosperms. The 5 clades represent all gymnosperm species,
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while the 121 clades of angiosperms represent 61% of the species, 31% of the genera, 72% of the

families, and 93% of the orders in angiosperms, and the mean divergence time of these clades

could thus represent the origin time of the KMF.

 The origin time of the KMF is early Miocene (19.40 Ma). The MDT in the eastern, central, and

western  regions  of  the  Kunlun  Mountains  was  of  20.07 Ma,  17.55 Ma,  and  18.09 Ma,

respectively. In addition, the MDT was 17.60 Ma and 17.18 Ma on the northern and southern

slopes  of  the  Middle  Kunlun  Mountains,  respectively.  Across  the  different  county-level

geographical units, the maximum MDT was 22.77 Ma, in Banma, and the minimum MDT was

17.28 Ma, in Minfeng. Four of the SES-MDT, namely in Banma, Maqin, Qumalai, and Wuqia,

showed significant differences (P < 0.05; Table 2). These significant SES-MDT revealed that the

flora lineages were more ancient in Banma and Maqin (P < 0.05) and more recent in Qumalai and

Wuqia (P < 0.05; Table 2). Overall, MDT values were greater in both ends of the areas, and the

eastern flora  was older than the western flora  (Table 2).  However,  the origin times of  the 24

counties did not show significant differences.

3.3 | Phylogenetic structure

The  NTI  indicated  that  the  counties  had  different  phylogenetic  structures  (Figure  4). The

respective NTI values of 27 county-level communities were positive, and the 22 of these NTI

values were statistically  significant  (P < 0.05).  Furthermore,  only the Banma community was

negative NTI and showed significant differences (P < 0.05; Figure 4). Five additional counties,

namely Jiuzhi, Minfeng, Yutian, Zhiduo, and Bange, had negative NTI values but these were not

statistically  significant.  Notably,  Jiuzhi  is  located  in  the  southeastern  region,  while  the  other

counties belong to the central regions and Minfeng and Yutian are adjacent to the Tarim Basins

(Figure 2). 

4 | DISCUSSION

4.1 | Biodiversity patterns on the Kunlun Mountains

These gymnosperms were Pinaceae, Ephedraceae, and Cupressaceae. The Pinaceae consisted of

3 genera, while the Ephedraceae and Cupressaceae were represented by 1 genus each. Notably, 2

genera that belonged to the Pinaceae, namely  Abies and  Larix, were only distributed in Banma,

which is located in the southeastern region of the Kunlun Mountains. At the species level, there

were 18, 8, and 9 gymnosperm species in the eastern, central, and western regions of the Kunlun

Mountains, respectively. In addition, there were 7 and 4 gymnosperm species on the northern and

southern slopes of the Middle Kunlun Mountains, respectively. At the genus level, gymnosperms

were present in the eastern region of the Kunlun Mountains with 3 families, accounting for 5

genera, while there were 3 genera, belonging to 3 families, in the central and western regions.

Moreover, there were 3 and 2 gymnosperm genera on the north and south slopes of the Middle

Kunlun Mountains, respectively. Therefore, the eastern region is higher biodiversity in the Kunlun

Mountains,  particularly  in  the  southeastern  region.  Similar  results  also  characterized  the

angiosperms on the Kunlun Mountains.

Some studies have suggested that the diversity hotspots of Chinese endemic seed flora are on

the Qinling Mountains and further south, or on the Hengduan Mountains and in eastern China

(Huang et al., 2016). Similar patterns have been identified for the hotspots of endemic woody seed

plants in China (Huang et al., 2012). That is, the Kunlun Mountains have not been identified as a

7

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

13
14



hotspot  for  Chinese  endemic  seed  flora  or  a  center  of  diversification  for  extant  plants.

Approximately 20% of the total species are endemic to the QTP (Wu, 2008; Yan, Yang, & Tang,

2013; Yu, Zhang, Liu, Chen, & Qi, 2018), and 32.4% of the total species are endemic to the

Hengduan Mountains (Zhang, Boufford, Ree, & Sun, 2009). Consequently, the Chinese endemic

species  found  on  the  Kunlun  Mountains  that  were  reported  in  the  present  study  may  have

dispersed from other areas that  served as speciation centers.  The species richness and genera

richness of the KMF highlighted that the eastern region of the Kunlun Mountains represents a

center for biodiversity conservation, particularly in the southeastern region, which we consider as

an important conservation target. 

4.2 | Evolutionary history of plant diversity on the Kunlun Mountains

Our results indicated that the KMF is ancient (i.e., origin time: of 19.40 Ma) compared with

other floras of the Northern Hemisphere (Baldwin, 2014; Chen, Deng, Zhuo, & Sun, 2018). For

instance, the origin time of the Californian flora was 10.60 Ma (Baldwin, 2014). Moreover, the

KMF is older than the Australian flora (18.80 Ma; Crisp & Cook, 2013), the South African flora

(18.70 Ma; Linder & Verboom, 2015), the flora of western China (15.29–18.86 Ma; Lu et al.,

2018), and East Asian flora (15.10 Ma; Chen, Deng, Zhuo, & Sun, 2018). In addition, the origin

time of the KMF in the eastern region was greater than that in the central and western regions;

therefore, the eastern region of KMF is the most ancient.

In county-level geographical units, the origin time of floras was divided into four categories:

MDT > 22 Ma, 22 Ma > MDT > 20 Ma, 20 Ma > MDT > 18 Ma, and MDT < 18 Ma. Only one

county-level flora was older than 22 Ma, namely Banma, and the SES-MDT of Banma was 4.21.

Therefore, the Banma flora was the most ancient (22.53 Ma), and should thus be an important

conservation target. Furthermore, there were 4 county-level floras that originated between 20 Ma

and 22 Ma, namely  Jiuzhi, Maqin, Zhiduo, and Yecheng, while 21 county-level floras had an

origin time between 18 Ma and 20 Ma. Finally, the floras of Qiemo and Minfeng were less than 18

Ma, and they were located on the northern slope of the Middle Kunlun Mountains. The Minfeng

flora was the youngest, with an origin time of 17.28 Ma. In addition, four SES-MDT, namely the

Banma, Maqin, Qumalai, and Wuqia floras, showed significant differences (P < 0.05). The origin

time of the floras in Qumalai and in Wuqia was 18.34 Ma and 18.11 Ma, respectively. These floras

had more recent lineages (P < 0.05) and thus were young. 

The geological history and uplifts of the QTP are still being debated because the QTP consists

of multiple physical geographical subunits, which have experienced different geological histories

and uplifts (Sun and Zheng, 1998; Spicer et al., 2003; Renner, 2016; Deng et al., 2017; Spicer et

al., 2020). Spicer et al. (2020) reported that the formation of the QTP only occurred in the late

Neogene. Moreover, recent studies have indicated that the formation of the Asian monsoon system

also  began  in  the  Neogene  (Li  et  al.,  2021;  Xie  et  al.,  2021).  Other  studies  have  recently

demonstrated that the current QTP ecosystem began in the early Miocene (Deng, Wu, Wang, Su,

& Zhou, 2019), and that the Kunlun Mountains have reached their present height over the last 17

million years (Pan, 2000; Sun et al., 2015). In addition, the arid climate of Central Asia appeared

in the late Miocene, with an origin time of 5.3 Ma (i.e.,  5.23–5.38 Ma), and multiple climate

fluctuations have occurred since the early Pliocene,  especially  the Quaternary (Zhang & Sun,

2011; Zhang,  Li,  Wang,  &  Zhang,  2021).  After  the  early  Pliocene,  the  Kunlun  Mountains

experienced the Kunhuang movement (1.1 Ma; Cui et al., 1998) and numerous glacial events (Su,
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1998). Hence, the extant biodiversity patterns of the KMF might begin in the early Pliocene (5.3

Ma).

Since  the  Quaternary,  the  Kunlun  Mountains  have  also  experienced  dramatic  climatic

fluctuations (Deng, Wu, Wang, Su, & Zhou, 2019) and numerous glacial events (Su, 1998; Owen,

Caffee,  Finkel,  & Seong,  2008; Owen & Dortch,  2014; Renner,  2016),  including  the  Largest

Glaciation (1.2–0.6 Ma) and the Last Glacial Maximum (Shi, Zheng, & Yao, 1997; Liu, Duan,

Hao, Ge, & Sun, 2014). These numerous glaciations have led to mass extinction events on the

Kunlun Mountains. A recent study has highlighted that the main phylogeographical patterns of

seed plant species in the Tibeto-Himalayan region are contraction/recolonization, platform refugia/

local expansion, and microrefugia (Muellner-Riehl, 2019). However, studies have also indicated

that  there  are  no Chinese endemic species in  the platform refugia  and microrefugia,  and few

species are present in these refugia (López-Pujol, Zhang, Sun, Ying, & Ge, 2011; Muellner-Riehl,

2019). In addition, another study has suggested that there are no platform refugia on the Kunlun

Mountains  (Yu  et  al.,  2018).  Consequently,  after  the  abovementioned  glacial  events,  the

biodiversity  patterns  might  have  dispersed from  refugia  adjacent  to  the  Kunlun  Mountains.

Notably,  we  speculate  that  the  extant  biodiversity  patterns  were  primarily  formed  during  the

Quaternary (2.6 Ma).

Overall, the origin time of the KMF (19.40 Ma) was found to be much greater than 5.3 Ma. In

addition, the Kunlun Mountains were not identified as a hotspot of Chinese endemic seed flora nor

a center of diversification for extant plants (Huang et al., 2012; Huang et al., 2016). According to

the phytogeographical regions of the Chinese flora, the Kunlun Mountains are in the transition

zone between the Tethyan region and the QTP (Ye et al., 2019; Ye, Liu, & Chen, 2020). Therefore,

the  extant  biodiversity  on  the  Kunlun  Mountains  has  likely  occurred  through  species

recolonization  after  the  climatic  fluctuations  and  glaciations  of  the  Quaternary.  The

biogeographical roles of the Kunlun Mountains were corridor and sink, and the corresponding key

processes  were  species  immigration  and  extinction.  In  addition,  the  Kunlun  Mountains  also

represented a barrier and a boundary among the Tethyan region, the QTP, and East Asia.

4.3 | Patterns of phylogenetic structure on the Kunlun Mountains

The evolutionary history of taxa has an impact, particularly on the net relatedness index (Webb,

Ackerly, McPeek, & Donoghue, 2002). The extant biodiversity on the Kunlun Mountains occurred

by species  recolonization,  and  complex  species  recolonization  was  likely  the  most  important

evolutionary process affecting the deeper phylogenetic community structure. NTI analyses can

help reveal the phylogenetic structure in a community, and the NTI primarily reflect the structure

in the shallower parts of a phylogeny. The complex sources of species colonization had little effect

on NTIs. Therefore, only the NTI was calculated. When the NTI values were not significantly

different, the community assembly tended to be random. Similarly, when the NTI was closer to 0,

the community assembly tended to be more random. Conversely, the niche theory may reveal the

community assembly.

Ecologists have indicated that the abiotic environment, contemporary biotic interactions, and

evolutionary  history  simultaneously  contribute  to  the  community  phylogenetic  structure  at

different scales (Webb, Ackerly, McPeek, & Donoghue, 2002; Kraft, Cornwell, Webb, & Ackerly,

2007). Previous studies have revealed that abiotic determinism tends to increase with spatial scale,

while  biotic  determinism tends to  decrease with spatial  scale.  Notably,  abiotic  determinism is
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more important than biotic interactions in biodiversity maintenance mechanisms at the regional

scale (Charles et al., 2010; Cardillo, 2011; Niu, Wang, Lian, Ye, & Shen, 2011; Villalobos, Rangel,

& Diniz-Filho,  2013; Yang et  al.,  2014). Therefore,  the abiotic  environment and evolutionary

history of biodiversity patterns greatly influence the community phylogenetic structure in county-

level geographical units.

On  the  Kunlun  Mountains,  only  one  NTI,  namely  Banma,  indicated  that  the  community

phylogenetic  structure  was  dispersed.  The  other  NTI  values  revealed  that  the  community

phylogenetic structures were clustered in the other counties. In the western region of the Kunlun

Mountains, the community phylogenetic structure was clustered, as highlighted by the NTI values.

Similarly, in the central region of the Kunlun Mountains, all the NTI values revealed clustered

community  phylogenetic  structures.  Notably,  the  four  positive  NTI  values,  namely  Minfeng,

Yutian, Zhiduo, and Bange, were greater than 1.5, although they were not significantly different.

Finally, in the eastern region of the Kunlun Mountains, seven NTI values were positive, six of the

NTIs showed significant differences (P < 0.05). Only one positive NTI was 0.46, and did not show

significant, namely Jiuzhi. Only one NTI was negative, and showed significant differences (P <

0.05).

The  positive  NTI  values  indicated  that  habitat  filtering  determined  the  corresponding

community  assemblies.  Based  on  the  vegetation  type,  forests  were  concentrated  in  Banma,

whereas Jiuzhi was dominated by alpine scrubs. The MDT of the floras in Banma and Jiuzhi were

greater than 20 Ma, which highlights these are ancient floras, and these two counties have served

as museums for plant diversity on the Kunlun Mountains. Notably, the combination of species

from  multiple  floras  and  adequate  hydrothermal  conditions may  explain  the  community

phylogenetic structures in Banma and Jiuzhi.

5 | CONCLUSIONS

The biodiversity  patterns  and  MDT values  indicated  that  the  eastern  region  of  the  Kunlun

Mountains is a center for biodiversity conservation, particularly in the southeastern region, which

has served as a museum for plant diversity on the Kunlun Mountains. However, compared with

the flora in the southeastern part of the QTP, the KMF has a relatively low conservation value on

the QTP, which is consistent with the findings of previous studies (Mao et al., 2013; Yan, Yang, &

Tang, 2013; Lu et al., 2018).

The origin time of the KMF was early Miocene (19.40 Ma). The KMF was ancient, although

the extant biodiversity on the Kunlun Mountains has occurred through species recolonization after

the  climatic  fluctuations  and  glaciations  of  the  Quaternary. The  biogeographical  roles  of  the

Kunlun Mountains were those of corridor and sink, and the related key processes were species

immigration  and  extinction.  In  addition,  the  Kunlun  Mountains  also  functioned  as  a  barrier,

representing  a  boundary  among  the  Tethyan  region,  the  QTP,  and  East  Asia.  The  Kunlun

Mountains have converted the QTP into a closed physical geographical unit. 

In the QTP, the responses of species diversity to climate obviously depend on the biotype. The

diversity  of  woody plants  was  more  strongly  associated  with climate  than  that  of  herbaceous

plants. Energy and water availability jointly rule the diversity of woody plants, whereas water

availability predominantly regulates the diversity of herbaceous plants (Yan, Yang, & Tang, 2013).

On the Kunlun Mountains, the dominant vegetation type consists of herbaceous plants, although

there are a few coniferous forests in the eastern and western regions of the Kunlun Mountains.
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Furthermore, the annual precipitation notably decreases from the east to the west (Zheng, 1999;

Wu, 2012–2015), while there are abundant rivers in the west and east (Figure 2). Notably, the NTI

values  indicated  that  habitat  filtering  determined  these  community  assemblies.  Therefore,  we

conclude that species recolonization and habitat filtering may have contributed to the present plant

diversity of the Kunlun Mountains via ecological and evolutionary processes, and habitat filtering

may play an important role in ecological processes, particularly in terms of water availability.
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TABLE 1 The plant diversity of 28 counties on the Kunlun Mountains.

East Kunlun Mountains (EK) North slope of Middle Kunlun Mountains (NMK)

Counties Families genera Species Counties Families genera Species 

Banma (BM) 58 182 391 Dulan (DL) 37 108 243

Jiuzhi (JZ) 53 193 536 Geermu (GRM) 37 122 281

Dari (DR) 43 119 288 Ruoqiang (RQ) 37 124 294

Gande (GD) 32 73 153 Qiemo (QM) 31 81 157

Chenduo (CD) 47 179 490 Minfeng (MF) 24 51 69

Maduo (MD) 43 140 471 Yutian (YT) 32 72 120

Maqin (MQ) 60 234 749 Cele (CL) 36 109 198

Xinghai (XH) 58 236 731 Hetian (HT) 37 93 177

Total 73 337 1299 Total 53 198 639

South slope of Middle Kunlun Mountains (SMK) West Kunlun Mountains (WK)

Counties Families genera Species Counties Families genera Species 

Qumalai (QML) 41 143 360 Pishan (PS) 36 98 173

Zhiduo (ZD) 31 76 162 Yecheng (YC) 48 160 388

Bange (BG) 34 70 129 Shache (SC) 34 79 115

Nima (NM) 23 50 109 Taxian (TX) 50 177 492

Gaize (GZ) 27 68 114 Aketao (AKT) 49 151 340

Ritu (RT) 37 127 263 Wuqia (WQ) 42 160 318

Total 45 192 602 Total 59 245 813

TABLE 2 The mean divergence times (MDTs) of 28 counties on the Kunlun Mountains.

East Kunlun Mountains (EK) North slope of Middle Kunlun Mountains (NMK)

Counties MDTs

(Ma)

SES-

MDTs

P-value Counties MDTs

(Ma)

SES-

MDTs

P-value

Banma (BM) 22.53 4.21 0.002 Dulan (DL) 18.21 -1.67 0.049

Jiuzhi (JZ) 20.61 1.67 0.042 Geermu

(GRM)

18.57 -1.36 0.084

Dari (DR) 19.61 -0.06 0.465 Ruoqiang (RQ) 18.79 -1.13 0.134

Gande (GD) 18.81 0.16 0.422 Qiemo (QM) 17.74 -1.69 0.044

Chenduo (CD) 19.74 0.20 0.414 Minfeng (MF) 17.28 -1.37 0.087

Maduo (MD) 19.44 -0.42 0.356 Yutian (YT) 18.88 -1.46 0.065

Maqin (MQ) 20.97 2.87 0.004 Cele (CL) 18.25 -1.29 0.096

Xinghai (XH) 18.87 0.46 0.322 Hetian (HT) 19.39 -0.28 0.401

South  slope  of  Middle  Kunlun  Mountains

(SMK)

West Kunlun Mountains (WK)

Counties MDTs

(Ma)

SES-

MDTs

P-value Counties MDTs

(Ma)

SES-

MDTs

P-value

Qumalai (QML) 18.34 -1.99 0.023 Pishan (PS) 18.84 -0.81 0.222

Zhiduo (ZD) 20.75 1.13 0.135 Yecheng (YC) 20.13 0.72 0.245

Bange (BG) 19.29 -0.34 0.356 Shache (SC) 19.94 0.21 0.401

Nima (NM) 18.50 -1.08 0.148 Taxian (TX) 18.79 -1.44 0.076
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Gaize (GZ) 18.98 -0.51 0.295 Aketao (AKT) 19.49 -0.21 0.430

Ritu (RT) 19.20 -0.56 0.288 Wuqia (WQ) 18.11 -1.76 0.033

Figure legends

FIGURE 1 Geographical location of the Kunlun Mountains, China (outlined in red).
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FIGURE 2 The county-level geographical units of the Kunlun Mountains, China.

FIGURE 3  Taxonomic richness in the Kunlun Mountains. (a) Species richness of woody and

herbaceous plants, (b) genera richness of woody and herbaceous plants, and (c)  gymnosperms and

angiosperms of seed plants.

FIGURE 4 Patterns of nearest taxon index (NTI) at the county-level geographical units of the

Kunlun Mountains.
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