References
Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary
identification of potential vaccine targets for the COVID-19 coronavirus
(SARS-CoV-2) based on SARS-CoV immunological studies. Viruses,
12 (3), 254.
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z.,
Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic acids
research, 25 (17), 3389-3402.
Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R.
F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine ,
1-3.
Boni, M. F. (2008). Vaccination and antigenic drift in influenza.Vaccine, 26 , C8-C14.
Both, G. W., Sleigh, M., Cox, N., & Kendal, A. (1983). Antigenic drift
in influenza virus H3 hemagglutinin from 1968 to 1980: multiple
evolutionary pathways and sequential amino acid changes at key antigenic
sites. Journal of virology, 48 (1), 52-60.
Carrat, F., & Flahault, A. (2007). Influenza vaccine: the challenge of
antigenic drift. Vaccine, 25 (39-40), 6852-6862.
Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., .
. . Poon, R. W.-S. (2020). A familial cluster of pneumonia associated
with the 2019 novel coronavirus indicating person-to-person
transmission: a study of a family cluster. The Lancet,
395 (10223), 514-523.
Coronavirus disease 2019 ( COVID-19): situation report, 64(64). (2020). Retrieved from
Elena, S. F., & Sanjuán, R. (2005). Adaptive value of high mutation
rates of RNA viruses: separating causes from consequences. Journal
of virology, 79 (18), 11555-11558.
Hensley, S. E., Das, S. R., Bailey, A. L., Schmidt, L. M., Hickman, H.
D., Jayaraman, A., . . . Bennink, J. R. (2009). Hemagglutinin receptor
binding avidity drives influenza A virus antigenic drift. Science,
326 (5953), 734-736.
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T.,
Erichsen, S., . . . Nitsche, A. (2020). SARS-CoV-2 cell entry depends on
ACE2 and TMPRSS2 and is blocked by a clinically proven protease
inhibitor. Cell .
Hofmann, H., Pyrc, K., van der Hoek, L., Geier, M., Berkhout, B., &
Pöhlmann, S. (2005). Human coronavirus NL63 employs the severe acute
respiratory syndrome coronavirus receptor for cellular entry.Proceedings of the National Academy of Sciences, 102 (22),
7988-7993.
Huynh, J., Li, S., Yount, B., Smith, A., Sturges, L., Olsen, J. C., . .
. Gates, J. E. (2012). Evidence supporting a zoonotic origin of human
coronavirus strain NL63. Journal of virology, 86 (23),
12816-12825.
Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., . . . Deng, W.
(2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS
coronavirus–induced lung injury. Nature Medicine, 11 (8),
875-879.
Lai, A., Bergna, A., Acciarri, C., Galli, M., & Zehender, G. (2020).
Early phylogenetic estimate of the effective reproduction number of
SARS‐CoV‐2. Journal of medical virology .
Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N.,
. . . Finn, R. D. (2019). The EMBL-EBI search and sequence analysis
tools APIs in 2019. Nucleic acids research, 47 (W1), W636-W641.
Siddell, S. G. (1995). The coronaviridae. In The coronaviridae(pp. 1-10): Springer.
Tai, W., He, L., Zhang, X., Pu, J., Voronin, D., Jiang, S., . . . Du, L.
(2020). Characterization of the receptor-binding domain (RBD) of 2019
novel coronavirus: implication for development of RBD protein as a viral
attachment inhibitor and vaccine. Cellular & Molecular
Immunology , 1-8.
Tang, X., Wu, C., Li, X., Song, Y., Yao, X., Wu, X., . . . Qian, Z.
(2020). On the origin and continuing evolution of SARS-CoV-2.National Science Review .
Taubenberger, J. (2005). The virulence of the 1918 pandemic influenza
virus: unraveling the enigma. In Infectious Diseases from Nature:
Mechanisms of Viral Emergence and Persistence (pp. 101-115): Springer.
Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., . . . Pei,
Y.-Y. (2020). A new coronavirus associated with human respiratory
disease in China. Nature, 579 (7798), 265-269.
Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020).
Structural basis for the recognition of the SARS-CoV-2 by full-length
human ACE2. Science , eabb2762. doi:10.1126/science.abb2762