References:
  1. Liu Y, Ning Z, Chen Y et al. Aerodynamic Characteristics and RNA Concentration of SARS-CoV-2 Aerosol in Wuhan Hospitals during COVID-19 Outbreak. bioRxiv.org preprint. Published Online First: 5 March 2020 . doi: https://doi.org/10.1101/2020.03.08.982637
  2. Lee S, Hwang D, Li H et al. Particle Size-Selective Assessment of Protection of European Standard FFP Respirators and Surgical Masks against Particles-Tested with Human Subjects. Journal of Healthcare Engineering 2016: pp. 1-12. doi: https://doi.org/10.1155/2016/8572493
  3. Han ZY, Weng WG, Huang QY. 2013 Characterizations of particle size distribution of the droplets exhaled by sneeze. J R Soc Interface 2013;10: 20130560. doi: https://doi.org/10.1098/rsif.2013.0560
  4. Sahu S, Tiwari M. Bhangare R et al. Particle Size Distribution of Mainstream and Exhaled Cigarette Smoke and Predictive Deposition in Human Respiratory Tract. Aerosol Air Qual. Res . 2013;13: 324-332. doi: http://www.aaqr.org/doi/10.4209/aaqr.2012.02.0041
  5. Duguid JP. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei Epidemiology and Infection, 1946:44(6), pp. 471-479. doi: https://doi.org/10.1017/S0022172400019288
  6. Oh M. Viral Load Kinetics of MERS Coronavirus Infection New England Journal of Medicine, 2016: 29 (375) pp.1303-1305. doi: 10.1056/NEJMc1511695
  7. Nikitin N, Petrova E, Trifonova E et al. Influenza Virus Aerosols in the Air and Their Infectiousness. Advances in Virology 2014: 859090. doi: 10.1155/2014/859090.
  8. Ali M, Mahmud T, Heggs PJ et al. Modelling drying and crystallisation in a single droplet. EuroDrying 2017, 19-21 June, Liege, Belgium.
  9. Bourouiba L. Turbulent Gas Clouds and Respiratory Pathogen Emissions, JAMA Published Online First: 20 March 2020. doi : https://doi:10.1001/jama.2020.4756