Literature cited
Baker, D., Sultan Sonia E., Lopez-Ichikawa Maya & Waterman Robin. 2019. Transgenerational effects of parental light environment on progeny competitive performance and lifetime fitness. Philosophical Transactions of the Royal Society B: Biological Sciences 374 : 20180182.
Bonduriansky, R., Crean, A.J. & Day, T. 2012. The implications of nongenetic inheritance for evolution in changing environments.Evol Appl 5 : 192–201.
Bozinovic, F., Bastías, D.A., Boher, F., Clavijo-Baquet, S., Estay, S.A. & Angilletta, M.J. 2011. The Mean and Variance of Environmental Temperature Interact to Determine Physiological Tolerance and Fitness.Physiological and Biochemical Zoology 84 : 543–552.
Bozinovic, F., Medina, N.R., Alruiz, J.M., Cavieres, G. & Sabat, P. 2016. Thermal tolerance and survival responses to scenarios of experimental climatic change: changing thermal variability reduces the heat and cold tolerance in a fly. Journal of Comparative Physiology B 186 : 581–587.
Burdick, A.B. 1955. Drosophila Experiments for High School Biology.The American Biology Teacher 17 : 155–159.
Burggren, W.W. 2014. Epigenetics as a source of variation in comparative animal physiology - or - Lamarck is lookin’ pretty good these days.The Journal of experimental biology 217 : 682–9.
Burnham, K.P. & Anderson, D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach . Springer Science & Business Media.
Carey, J.R. 2001. Insect biodemography. Annu. Rev. Entomol.46 : 79–110.
Cavieres, G., Alruiz, J.M., Medina, N.R., Bogdanovich, J.M. & Bozinovic, F. 2019. Transgenerational and within‐generation plasticity shape thermal performance curves. Ecology and Evolution9 : 2072–2082.
Cavieres, G., Bogdanovich, J.M. & Bozinovic, F. 2016. Ontogenetic thermal tolerance and performance of ectotherms at variable temperatures. Journal of Evolutionary Biology 29 : 1462–1468.
Cavieres, G., Bogdanovich, J.M., Toledo, P. & Bozinovic, F. 2018. Fluctuating thermal environments and time-dependent effects on fruit fly egg-hatching performance. Ecology and Evolution 8 : 6849–6851.
Chidawanyika, F., Nyamukondiwa, C., Strathie, L. & Fischer, K. 2017. Effects of Thermal Regimes, Starvation and Age on Heat Tolerance of the Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae) following Dynamic and Static Protocols. PLoS ONE 12 : e0169371.
Clavijo-Baquet, S., Boher, F., Ziegler, L., Martel, S.I., Estay, S.A. & Bozinovic, F. 2014. Differential responses to thermal variation between fitness metrics. Scientific reports 4 : 5349–5349.
Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C. & Mace, G.M. 2011. Beyond Predictions: Biodiversity Conservation in a Changing Climate. Science 332 : 53–58.
Donelson, J., Salinas, S., L. Munday, P. & Shama, L. 2017. Transgenerational plasticity and climate change experiments: Where do we go from here? Global Change Biology , doi: 10.1111/gcb.13903.
Donelson, J.M., Munday, P.L., McCormick, M.I. & Pitcher, C.R. 2012. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nature Clim. Change 2 : 30–32.
Donelson, J.M., Wong, M., Booth, D.J. & Munday, P.L. 2016. Transgenerational plasticity of reproduction depends on rate of warming across generations. Evol Appl 9 : 1072–1081.
Estay, S.A., Clavijo-Baquet, S., Lima, M. & Bozinovic, F. 2011. Beyond average: an experimental test of temperature variability on the population dynamics of Tribolium confusum. Popul Ecol53 : 53–58.
Ezard, T.H., Prizak, R. & Hoyle, R.B. 2014. The fitness costs of adaptation via phenotypic plasticity and maternal effects.Functional Ecology 28 : 693–701.
Folguera, G., Bastías, D.A. & Bozinovic, F. 2009. Impact of experimental thermal amplitude on ectotherm performance: Adaptation to climate change variability? Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 154 : 389–393.
Ghalambor, C.K., McKay, J.K., Carroll, S.P. & Reznick, D.N. 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Functional Ecology21 : 394–407.
Gitay, A., Suárez, A., Watson, R. & Dokken, J. 2002. Climate Change and Biodiversity . Tech. Rep. IPCC, Geneva, Switzerland.
Gustafsson, S., Rengefors, K. & Hansson, L.-A. 2005. Increased Consumer Fitness Following Transfer of Toxin Tolerance to Offspring Via Maternal Effects. Ecology 86 : 2561–2567.
Ho, D.H. & Burggren, W.W. 2010. Epigenetics and transgenerational transfer: a physiological perspective. The Journal of experimental biology 213 : 3–16.
Hochachka, P.W. & Somero, G.N. 2002. Biochemical Adaptation : Mechanism and Process in Physiological Evolution (Oxford University Press. Inc., ed). New York, NY.
Hoffmann, A.A. 2010. Physiological climatic limits in Drosophila: patterns and implications. The Journal of experimental biology213 : 870–880.
Jensen, N., Allen, R.M. & Marshall, D.J. 2014. Adaptive maternal and paternal effects: gamete plasticity in response to parental stress.Functional Ecology 28 : 724–733.
Koussoroplis, A.-M., Pincebourde, S. & Wacker, A. 2017. Understanding and predicting physiological performance of organisms in fluctuating and multifactorial environments. Ecological Monographs 87 : 178–197.
Krebs, R.A. & Feder, M.E. 1998. Experimental manipulation of the cost of thermal acclimation in Drosophila melanogaster. Biol J Linn Soc 63 : 593–601.
Krebs, R.A. & Feder, M.E. 1997. Tissue-specific variation in Hsp70 expression and thermal damage in Drosophila melanogaster larvae.Journal of Experimental Biology 200 : 2007–2015.
Krebs, R.A. & Loeschcke, V. 1994. Costs and Benefits of Activation of the Heat-Shock Response in Drosophila melanogaster. Functional Ecology 8 : 730–737.
Le Roy, A., Loughland, I. & Seebacher, F. 2017. Differential effects of developmental thermal plasticity across three generations of guppies (Poecilia reticulata): Canalization and anticipatory matching.Scientific reports 7 : 4313.
Leroi, A.M., Bennett, A.F. & Lenski, R.E. 1994. Temperature acclimation and competitive fitness: an experimental test of the beneficial acclimation assumption. Proc. Natl. Acad. Sci. U.S.A.91 : 1917–1921.
Meehl, G.A. & Tebaldi, C. 2004. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 305 : 994–997.
Norouzitallab, P., Baruah, K., Vandegehuchte, M., Van Stappen, G., Catania, F., Vanden Bussche, J., et al. 2014. Environmental heat stress induces epigenetic transgenerational inheritance of robustness in parthenogenetic Artemia model. The FASEB Journal 28 : 3552–3563.
Nyamukondiwa, C., Chidawanyika, F., Machekano, H., Mutamiswa, R., Sands, B., Mgidiswa, N., et al. 2018. Climate variability differentially impacts thermal fitness traits in three coprophagic beetle species.PloS one 13 : e0198610.
Oster, G. & Alberch, P. 1982. Evolution and Bifurcation of Developmental Programs. Evolution 36 : 444–459.
Pasztor, L., Meszéna, G. & Kisdi, E. 1996. R0 or r: A matter of taste?Journal of Evolutionary Biology 9 : 511–516.
Pigliucci, M. 2001. Phenotypic Plasticity: Beyond Nature and Nurture . JHU Press, Baltimore, Maryland.
Ragland, G.J. & Kingsolver, J.G. 2008. The effect of fluctuating temperatures on ectotherm life-history traits: comparisons among geographic populations of Wyeomyia smithii. Evol Ecol Res10 : 29–44.
Rahmstorf, S. & Coumou, D. 2011. Increase of extreme events in a warming world. PNAS 108 : 17905–17909.
Rando, O.J. & Verstrepen, K.J. 2007. Timescales of genetic and epigenetic inheritance. Cell 128 : 655–668.
Rezende, E.L., Castañeda, L.E. & Santos, M. 2014. Tolerance landscapes in thermal ecology. Functional Ecology 28 : 799–809.
Rodríguez-Romero, A., Jarrold, M.D., Massamba-N’Siala, G., Spicer, J.I. & Calosi, P. 2016. Multi-generational responses of a marine polychaete to a rapid change in seawater pCO2. Evol Appl 9 : 1082–1095.
Roitberg, B.D. & Mangel, M. 2016. Cold snaps, heatwaves, and arthropod growth. Ecol Entomol 41 : 653–659.
Royama, T. 1992. Analytical population dynamics . Chapman & Hall, London, United Kingdom.
Royama, T. 2012. Analytical population dynamics . Springer Science & Business Media.
Salachan, P.V. & Sørensen, J.G. 2017. Critical thermal limits affected differently by developmental and adult thermal fluctuations.Journal of Experimental Biology 220 : 4471–4478.
Salinas, S., Brown, S.C., Mangel, M. & Munch, S.B. 2013. Non-genetic inheritance and changing environments. Non-Genetic Inheritance1 : 38–50.
Salinas, S., Irvine, S.E., Schertzing, C.L., Golden, S.Q. & Munch, S.B. 2019. Trait variation in extreme thermal environments under constant and fluctuating temperatures. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 374 : 20180177.
Santos, M., Matos, M., Wang, S.P. & Althoff, D.M. 2019. Selection on structural allelic variation biases plasticity estimates.Evolution 73 : 1057–1062.
Seebacher, F., Beaman, J. & Little, A.G. 2014. Regulation of thermal acclimation varies between generations of the short‐lived mosquitofish that developed in different environmental conditions. Functional ecology 28 : 137–148.
Shuker, J.D., Simpkins, C.A. & Hero, J.-M. 2016. Determining environmental limits of threatened species: the example of the wallum sedgefrog Litoria olongburensis. Ecosphere 7 : n/a-n/a.
Sørensen, J.G., Schou, M.F., Kristensen, T.N. & Loeschcke, V. 2016. Thermal fluctuations affect the transcriptome through mechanisms independent of average temperature. Scientific Reports6 : 30975.
Terblanche, J.S., Deere, J.A., Clusella-Trullas, S., Janion, C. & Chown, S.L. 2007. Critical thermal limits depend on methodological context. Proceedings of the Royal Society of London B: Biological Sciences 274 : 2935–2943.
Terblanche, J.S., Nyamukondiwa, C. & Kleynhans, E. 2010. Thermal variability alters climatic stress resistance and plastic responses in a globally invasive pest, the Mediterranean fruit fly (Ceratitis capitata). Entomologia Experimentalis et Applicata 137 : 304–315.
Thor, P. & Dupont, S. 2015. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Global change biology 21 : 2261–2271.
Utida, S. 1941. Studies on experimental population of the azuki bean weevil, Callosobruchus chinensis (L.) I. The effect of population density on the progeny populations. Memoirs of the College of Agriculture, Kyoto Imperial University 48 : 1–30.
Vázquez, D.P., Gianoli, E., Morris, W.F. & Bozinovic, F. 2017. Ecological and evolutionary impacts of changing climatic variability.Biol Rev 92 : 22–42.
Wood, S.N. 2017. Generalized additive models: an introduction with R . Chapman and Hall/CRC.
Table 1 Coefficients of the linear mixed model fitted to data for Critical thermal maximum and minimum (CTmaxand CTmin ) in Drosophila melanogaster.Significant differences are indicated in bold (p < 0.05). Multiple comparisons in Supplementary Figure S1.