Literature cited
Baker, D., Sultan Sonia E., Lopez-Ichikawa Maya & Waterman Robin. 2019.
Transgenerational effects of parental light environment on progeny
competitive performance and lifetime fitness. Philosophical
Transactions of the Royal Society B: Biological Sciences 374 :
20180182.
Bonduriansky, R., Crean, A.J. & Day, T. 2012. The implications of
nongenetic inheritance for evolution in changing environments.Evol Appl 5 : 192–201.
Bozinovic, F., Bastías, D.A., Boher, F., Clavijo-Baquet, S., Estay, S.A.
& Angilletta, M.J. 2011. The Mean and Variance of Environmental
Temperature Interact to Determine Physiological Tolerance and Fitness.Physiological and Biochemical Zoology 84 : 543–552.
Bozinovic, F., Medina, N.R., Alruiz, J.M., Cavieres, G. & Sabat, P.
2016. Thermal tolerance and survival responses to scenarios of
experimental climatic change: changing thermal variability reduces the
heat and cold tolerance in a fly. Journal of Comparative
Physiology B 186 : 581–587.
Burdick, A.B. 1955. Drosophila Experiments for High School Biology.The American Biology Teacher 17 : 155–159.
Burggren, W.W. 2014. Epigenetics as a source of variation in comparative
animal physiology - or - Lamarck is lookin’ pretty good these days.The Journal of experimental biology 217 : 682–9.
Burnham, K.P. & Anderson, D.R. 2002. Model selection and
multimodel inference: a practical information-theoretic approach .
Springer Science & Business Media.
Carey, J.R. 2001. Insect biodemography. Annu. Rev. Entomol.46 : 79–110.
Cavieres, G., Alruiz, J.M., Medina, N.R., Bogdanovich, J.M. &
Bozinovic, F. 2019. Transgenerational and within‐generation plasticity
shape thermal performance curves. Ecology and Evolution9 : 2072–2082.
Cavieres, G., Bogdanovich, J.M. & Bozinovic, F. 2016. Ontogenetic
thermal tolerance and performance of ectotherms at variable
temperatures. Journal of Evolutionary Biology 29 :
1462–1468.
Cavieres, G., Bogdanovich, J.M., Toledo, P. & Bozinovic, F. 2018.
Fluctuating thermal environments and time-dependent effects on fruit fly
egg-hatching performance. Ecology and Evolution 8 :
6849–6851.
Chidawanyika, F., Nyamukondiwa, C., Strathie, L. & Fischer, K. 2017.
Effects of Thermal Regimes, Starvation and Age on Heat Tolerance of the
Parthenium Beetle Zygogramma bicolorata (Coleoptera: Chrysomelidae)
following Dynamic and Static Protocols. PLoS ONE 12 :
e0169371.
Clavijo-Baquet, S., Boher, F., Ziegler, L., Martel, S.I., Estay, S.A. &
Bozinovic, F. 2014. Differential responses to thermal variation between
fitness metrics. Scientific reports 4 : 5349–5349.
Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C. & Mace, G.M.
2011. Beyond Predictions: Biodiversity Conservation in a Changing
Climate. Science 332 : 53–58.
Donelson, J., Salinas, S., L. Munday, P. & Shama, L. 2017.
Transgenerational plasticity and climate change experiments: Where do we
go from here? Global Change Biology , doi: 10.1111/gcb.13903.
Donelson, J.M., Munday, P.L., McCormick, M.I. & Pitcher, C.R. 2012.
Rapid transgenerational acclimation of a tropical reef fish to climate
change. Nature Clim. Change 2 : 30–32.
Donelson, J.M., Wong, M., Booth, D.J. & Munday, P.L. 2016.
Transgenerational plasticity of reproduction depends on rate of warming
across generations. Evol Appl 9 : 1072–1081.
Estay, S.A., Clavijo-Baquet, S., Lima, M. & Bozinovic, F. 2011. Beyond
average: an experimental test of temperature variability on the
population dynamics of Tribolium confusum. Popul Ecol53 : 53–58.
Ezard, T.H., Prizak, R. & Hoyle, R.B. 2014. The fitness costs of
adaptation via phenotypic plasticity and maternal effects.Functional Ecology 28 : 693–701.
Folguera, G., Bastías, D.A. & Bozinovic, F. 2009. Impact of
experimental thermal amplitude on ectotherm performance: Adaptation to
climate change variability? Comparative Biochemistry and
Physiology Part A: Molecular & Integrative Physiology 154 :
389–393.
Ghalambor, C.K., McKay, J.K., Carroll, S.P. & Reznick, D.N. 2007.
Adaptive versus non-adaptive phenotypic plasticity and the potential for
contemporary adaptation in new environments. Functional Ecology21 : 394–407.
Gitay, A., Suárez, A., Watson, R. & Dokken, J. 2002. Climate
Change and Biodiversity . Tech. Rep. IPCC, Geneva, Switzerland.
Gustafsson, S., Rengefors, K. & Hansson, L.-A. 2005. Increased Consumer
Fitness Following Transfer of Toxin Tolerance to Offspring Via Maternal
Effects. Ecology 86 : 2561–2567.
Ho, D.H. & Burggren, W.W. 2010. Epigenetics and transgenerational
transfer: a physiological perspective. The Journal of experimental
biology 213 : 3–16.
Hochachka, P.W. & Somero, G.N. 2002. Biochemical Adaptation :
Mechanism and Process in Physiological Evolution (Oxford University
Press. Inc., ed). New York, NY.
Hoffmann, A.A. 2010. Physiological climatic limits in Drosophila:
patterns and implications. The Journal of experimental biology213 : 870–880.
Jensen, N., Allen, R.M. & Marshall, D.J. 2014. Adaptive maternal and
paternal effects: gamete plasticity in response to parental stress.Functional Ecology 28 : 724–733.
Koussoroplis, A.-M., Pincebourde, S. & Wacker, A. 2017. Understanding
and predicting physiological performance of organisms in fluctuating and
multifactorial environments. Ecological Monographs 87 :
178–197.
Krebs, R.A. & Feder, M.E. 1998. Experimental manipulation of the cost
of thermal acclimation in Drosophila melanogaster. Biol J Linn
Soc 63 : 593–601.
Krebs, R.A. & Feder, M.E. 1997. Tissue-specific variation in Hsp70
expression and thermal damage in Drosophila melanogaster larvae.Journal of Experimental Biology 200 : 2007–2015.
Krebs, R.A. & Loeschcke, V. 1994. Costs and Benefits of Activation of
the Heat-Shock Response in Drosophila melanogaster. Functional
Ecology 8 : 730–737.
Le Roy, A., Loughland, I. & Seebacher, F. 2017. Differential effects of
developmental thermal plasticity across three generations of guppies
(Poecilia reticulata): Canalization and anticipatory matching.Scientific reports 7 : 4313.
Leroi, A.M., Bennett, A.F. & Lenski, R.E. 1994. Temperature acclimation
and competitive fitness: an experimental test of the beneficial
acclimation assumption. Proc. Natl. Acad. Sci. U.S.A.91 : 1917–1921.
Meehl, G.A. & Tebaldi, C. 2004. More Intense, More Frequent, and Longer
Lasting Heat Waves in the 21st Century. Science 305 :
994–997.
Norouzitallab, P., Baruah, K., Vandegehuchte, M., Van Stappen, G.,
Catania, F., Vanden Bussche, J., et al. 2014. Environmental heat
stress induces epigenetic transgenerational inheritance of robustness in
parthenogenetic Artemia model. The FASEB Journal 28 :
3552–3563.
Nyamukondiwa, C., Chidawanyika, F., Machekano, H., Mutamiswa, R., Sands,
B., Mgidiswa, N., et al. 2018. Climate variability differentially
impacts thermal fitness traits in three coprophagic beetle species.PloS one 13 : e0198610.
Oster, G. & Alberch, P. 1982. Evolution and Bifurcation of
Developmental Programs. Evolution 36 : 444–459.
Pasztor, L., Meszéna, G. & Kisdi, E. 1996. R0 or r: A matter of taste?Journal of Evolutionary Biology 9 : 511–516.
Pigliucci, M. 2001. Phenotypic Plasticity: Beyond Nature and
Nurture . JHU Press, Baltimore, Maryland.
Ragland, G.J. & Kingsolver, J.G. 2008. The effect of fluctuating
temperatures on ectotherm life-history traits: comparisons among
geographic populations of Wyeomyia smithii. Evol Ecol Res10 : 29–44.
Rahmstorf, S. & Coumou, D. 2011. Increase of extreme events in a
warming world. PNAS 108 : 17905–17909.
Rando, O.J. & Verstrepen, K.J. 2007. Timescales of genetic and
epigenetic inheritance. Cell 128 : 655–668.
Rezende, E.L., Castañeda, L.E. & Santos, M. 2014. Tolerance landscapes
in thermal ecology. Functional Ecology 28 : 799–809.
Rodríguez-Romero, A., Jarrold, M.D., Massamba-N’Siala, G., Spicer, J.I.
& Calosi, P. 2016. Multi-generational responses of a marine polychaete
to a rapid change in seawater pCO2. Evol Appl 9 :
1082–1095.
Roitberg, B.D. & Mangel, M. 2016. Cold snaps, heatwaves, and arthropod
growth. Ecol Entomol 41 : 653–659.
Royama, T. 1992. Analytical population dynamics . Chapman & Hall,
London, United Kingdom.
Royama, T. 2012. Analytical population dynamics . Springer Science
& Business Media.
Salachan, P.V. & Sørensen, J.G. 2017. Critical thermal limits affected
differently by developmental and adult thermal fluctuations.Journal of Experimental Biology 220 : 4471–4478.
Salinas, S., Brown, S.C., Mangel, M. & Munch, S.B. 2013. Non-genetic
inheritance and changing environments. Non-Genetic Inheritance1 : 38–50.
Salinas, S., Irvine, S.E., Schertzing, C.L., Golden, S.Q. & Munch, S.B.
2019. Trait variation in extreme thermal environments under constant and
fluctuating temperatures. Philos. Trans. R. Soc. Lond., B, Biol.
Sci. 374 : 20180177.
Santos, M., Matos, M., Wang, S.P. & Althoff, D.M. 2019. Selection on
structural allelic variation biases plasticity estimates.Evolution 73 : 1057–1062.
Seebacher, F., Beaman, J. & Little, A.G. 2014. Regulation of thermal
acclimation varies between generations of the short‐lived mosquitofish
that developed in different environmental conditions. Functional
ecology 28 : 137–148.
Shuker, J.D., Simpkins, C.A. & Hero, J.-M. 2016. Determining
environmental limits of threatened species: the example of the wallum
sedgefrog Litoria olongburensis. Ecosphere 7 : n/a-n/a.
Sørensen, J.G., Schou, M.F., Kristensen, T.N. & Loeschcke, V. 2016.
Thermal fluctuations affect the transcriptome through mechanisms
independent of average temperature. Scientific Reports6 : 30975.
Terblanche, J.S., Deere, J.A., Clusella-Trullas, S., Janion, C. &
Chown, S.L. 2007. Critical thermal limits depend on methodological
context. Proceedings of the Royal Society of London B: Biological
Sciences 274 : 2935–2943.
Terblanche, J.S., Nyamukondiwa, C. & Kleynhans, E. 2010. Thermal
variability alters climatic stress resistance and plastic responses in a
globally invasive pest, the Mediterranean fruit fly (Ceratitis
capitata). Entomologia Experimentalis et Applicata 137 :
304–315.
Thor, P. & Dupont, S. 2015. Transgenerational effects alleviate severe
fecundity loss during ocean acidification in a ubiquitous planktonic
copepod. Global change biology 21 : 2261–2271.
Utida, S. 1941. Studies on experimental population of the azuki bean
weevil, Callosobruchus chinensis (L.) I. The effect of population
density on the progeny populations. Memoirs of the College of
Agriculture, Kyoto Imperial University 48 : 1–30.
Vázquez, D.P., Gianoli, E., Morris, W.F. & Bozinovic, F. 2017.
Ecological and evolutionary impacts of changing climatic variability.Biol Rev 92 : 22–42.
Wood, S.N. 2017. Generalized additive models: an introduction with
R . Chapman and Hall/CRC.
Table 1 Coefficients of the linear mixed model fitted to data
for Critical thermal maximum and minimum (CTmaxand CTmin ) in Drosophila melanogaster.Significant differences are indicated in bold (p <
0.05). Multiple comparisons in Supplementary Figure S1.