References
  1. Michael Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B Betacoronaviruses. Nat Microbiol 2020;5:562-9.
  2. Wang K, Gheblawi M, Oudit GY. Angiotensin Converting Enzyme 2: a double-edged sword. Circulation. 2020. doi: 10.1161/CIRCULATIONAHA.120.047049
  3. Cheng H, Wang Y, Wang GQ. Organ‐protective effect of angiotensin‐converting enzyme and its effect on the prognosis of COVID-19. J Med Virol 2020;1-5. https://doi.org/10.1002/jmv.25785.
  4. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2 mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin Matrch 2020. doi.org/10.1007/s12250-020-00207-4.
  5. Guignabert C, de Man F, Lombès M. ACE2 as therapy for pulmonary arterial hypertension: the good outweighs the bad. Eur Respir J 2018;51:1800848.
  6. Zhang H, Penninger JM, LiY, Zhong N, Slutsky AS. Angiotensin‑converting enzyme 2(ACE2) as a SARS‑CoV‑2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020;46:586-90.
  7. Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China [version 2; peer review: 2 approved] F1000 Research 2020; 9:72.
  8. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 2020;63:364-74. doi.org/10.1007/s11427-020-1643-8.
  9. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020. pii: S0092-8674(20)30399-8. doi: 10.1016/j.cell.2020.04.004.
  10. Hussain M, Jabeen N, Raza F, Shabbir S, Baig AA, Amanullah A, et al. Structural variations in human ACE2 may influence its binding with SARS‐CoV‐2 spike protein. J Med Virol 2020;1-7. doi.org/10.1002/jmv.25832.