References
Alberti, A., Pirino, S., Pintore, F., Addis, M.F., Chessa, B.,
Cacciotto, C., Cubeddu, T., Anfossi, A., Benenati, G., Coradduzza, E.,
Lecis, R., Antuofermo, E., Carcangiu, L., Pittau, M. (2010). Ovis aries
papillomavirus 3: a prototype of a novel genus in the family
Papillomaviridae associated with ovine squamous cell carcinoma. Virology
407, 352-359, doi: 10.1016/j.virol.2010.08.034.
Biron, V.L., Kostiuk, M., Isaac, A., Puttagunta, L., O’Connell, D.A.,
Harris, J., Côté, D.W., Seikaly, H. (2016). Detection of human
papillomavirus type 16 in oropharyngeal squamous cell carcinoma using
droplet digital polymerase chain reaction. Cancer 122, 1544-1551, doi:
10.1002/cncr.29976.
Campo, M.S., Jarrett, W.F.H., Barron, R.J., O’Neil, B.W., Smith, K.T.
(1992). Association of bovine papillomavirus type 2 and bracken fern
with bladder cancer in cattle. Cancer Research 52, 6898–6904.
Carow, K., Read, C., Häfner, N., Runnebaum, I.B., Corner, A., Dürst, M.
(2017). A comparative study of digital PCR and real-time qPCR for the
detection and quantification of HPV mRNA in sentinel lymph nodes of
cervical cancer patients. BMC Research Notes 10, 532, doi:
10.1186/s13104-017-2846-8.
Cheung, T.H., Yim, S.F., Yu, M.Y., Worley Jr, M.J., Fiascone, S.J.,
Chiu, R.W.K., Lo, K.W.K., Siu, N.S.S., Wong, M.C.S., Yeung, A.C.M.,
Wong, R.R.Y., Chen, Z.G., Elias, K.M., Chung, T.K.H., Berkowitz, R.S.,
Wong, Y.F., Chan, P.K.S. (2019). Liquid biopsy of HPV DNA in cervical
cancer. Journal of Clinical Virology 114, 32-36, doi:
10.1016/j.jcv.2019.03.005.
Cutarelli, A., De Falco, F., Uleri, V., Buonavoglia, C., Roperto, S.
(2021). The diagnostic value of the droplet digital PCR for the
detection of bovine Deltapapillomavirus in goats by liquid biopsy.
Transboundary Emerging Diseases, doi: 10.1111/tbed.13971.
De Falco, F., Corrado, F., Cutarelli, A., Leonardi, L., Roperto, S.
(2021). Digital droplet PCR for the detection and quantification of
circulating bovine Deltapapillomavirus. Transboundary Emerging Diseases
68, 1345-1352, doi: 10.1111/tbed.13795.
De Villiers, E.T., Fauquet, C., Broker, T.R., Bernard, H.U., zur Hausen,
H. (2004). Classification of papillomaviruses. Virology 124, 17-27, doi:
10.1016/j.virol.2004.03.033.
Del Río-Ospina, L., Soto-De León, S.C., Camargo, M., Moreno-Pérez, D.A.,
Sánchez, R., Pérez-Prados, A., Patarroyo, M.E., Patarroyo, M.A. (2015).
BMC Cancer 15, 100, doi: 10.1186/s12885-015-1126-z.
Gallina, L., Savini, F., Casà, G., Bertoletti, I., Bianchi, A., Gibelli,
L.R., Lelli, D., Lavazza, A., Scagliarini, A. (2020). Epitheliotropic
infections in wildlife ruminants from the Central Alps and Stelvio
National Park. Frontiers in Veterinary Science 7, 229, doi:
10.3389/fvets.2020.00229.
Gibbs, E.P., Smale, C.J., Lawman, M.J. (1975). Warts in sheep.
Identification of a papillomavirus and transmission of infection to
sheep. Journal of Comparative Pathology 85, 327-334, doi:
10.1016/0021-9975(75)90075-4.
Hayward, M.L., Baird, P.J., Meischke, H.R. (1993). Filiform viral
squamous papillomas on sheep. The Veterinary Record 132, 86-88, doi:
10.1136/vr.132.4.86.
https://eu.idtdna.com/scitools/Applications/RealTimePCR/
[Accessed September: 10, 2021]
Kaliff, M., Bohr Mordhorst, L., Helenius, G., Karlsson, G.M.,
Lillsunde-Larsson, G. (2021). Optimization of droplet digital PCR assays
for the type-specific detection and quantification of five HPV
genotypes, including additional data on viral loads of nine different
HPV genotypes in cervical carcinomas. Journal of Virological Methods
294, 114193, doi:10.1016/j.jviromet.2021.114193.
Kanagal-Shamanna, R. (2016). Digital PCR: principles and applications.
Methods in Molecular Biology 1392, 43-50, doi:
10.1007/978-1-4939-3360-0_5.
Li, H., Bai, R., Zhao, Z., Tao, L., Ma, M., Ji, Z., Jian, M., Ding, Z.,
Dai, X., Bao, F., Liu, A. (2018). Application of droplet digital PCR to
detect the pathogens of infectious diseases. Bioscience Reports 38,
BSR20181170, doi: 10.1042/BSR20181170.
Lillsunde Larsson, G., & Helenius, G. (2017). Digital droplet PCR
(ddPCR) for the detection and quantification of HPV 16, 18, 33 and 45 –
a short report. Cellular Oncology (Dordrecht), 40, 521-527. doi:
10.1007/s13402-017-0331-y.
Munday, J.S., Fairley, R., Lowery, I. (2020). Detection of Ovis aries
papillomavirus type 2 DNA sequences in a sarcoid-like mass in the mouth
of a pig. Veterinary Microbiology 248, 108801, doi:
10.1016/j.vetmic.2020.108801.
Papillomavirus Episteme (PAVE) - http://pave.niaid.nih.gov/ -
[Accessed September: 20, 2021]
Pinheiro, L.B., Coleman, V.A., Hindson, C.M., Herrmann. J., Hindson,
B.J., Bhat, S., Emslie, K.R. (2012). Evaluation of a droplet digital
polymerase chain reaction format for DNA copy number quantification.
Analytical Chemistry 84, 1003-1011, doi: 10.1021/ac202578x.
Roperto, S., Cutarelli, A., Corrado, F., De Falco, F., Buonavoglia, C.
(2021). Detection and quantification of bovine papillomavirus DNA by
digital droplet PCR in sheep blood. Scientific Reports 11, 10292, doi:
10.1038/s41598-021-89782-4.
Roperto, S., Russo, V., Leonardi, L., Martano, M., Corrado, F.,
Riccardi, M.G., Roperto, F. (2016). Bovine papillomavirus type 13
expression in the urothelial bladder tumours of cattle. Transboundary
Emerging Diseases 63, 628-634, doi: 10.1111/tbed.12322.
Roperto, S., Russo, V., Ozkul, A., Sepici-Dincel, A., Maiolino, P.,
Borzacchiello, G., Marcus, I., Esposito, I., Riccardi, M.G., Roperto, F.
(2013). Bovine papillomavirus type 2 infects the urinary bladder of
water buffalo (Bubalus bubalis) and plays a crucial role in bubaline
urothelial carcinogenesis. Journal of General Virology 94, 403-408, doi:
10.1099/vir.0.047662-0.
Savini, F., Dal Molin, E., Gallina, L., Casà, G., Scagliarini, A.
(2016). Papillomavirus in healthy skin and mucosa of wild ruminants in
the Italian Alps. Journal of Wildlife Diseases 52, 82-87, doi:
10.7589/2015-03-065.
Sykora, S., Jindra, C., Hofer, M., Steinborn, R., Brandt, S. (2017).
Equine papillomavirus type 2: An equine equivalent to human
papillomavirus 16? The Veterinary Journal 225, 3-8, doi:
10.1016/j.tvjl.2017.04.014.
Tastanova, A., Stoffel, C.I., Dzung, A., Cheng, P.F., Bellini, E.,
Johansen, P., Duda, A., Nobbe, S., Lienhard, R., Bosshard, P.P.,
Levesque, M.P. (2021). A comparative study of real-time RT-PCR-based
SARS-CoV-2 detection methods and its application to human-derived and
surface swabbed material. The Journal of Molecular Diagnostics 23,
796-804, doi: 10.1016/j.jmoldx.2021.04.009.
Tilbrook, P.A., Sterrett, G., Kulski, J.K. (1992). Detection of
papillomaviral-like DNA sequences in premalignant and malignant perineal
lesions of sheep. Veterinary Microbiology 31, 327-341, doi:
10.1016/0378-1135(92)90125-d.
Tore, G., Cacciotto, C., Anfossi, A.G., Dore, G.M., Antuofermo, E.,
Scagliarini, A., Burrai, G.P., Pau, S., Zedda, M.D., Masala, G., Pittau,
M., Alberti, A. (2017). Host cell tropism, genome characterization, and
evolutionary features of OaPV4, a novel Deltapapillomavirus identified
in sheep fibropapilloma. Veterinary Microbiology 204, 151-158, doi:
10.1016/j.vetmic.2017.04.024.
Tore, G., Dore, G.M., Cacciotto, C., Accardi, R., Anfossi, A.G.,
Bogliolo, L., Pittau, M., Pirino, S., Cubeddu, T., Tommasino, M.,
Alberti, A. (2019). Transforming properties of ovine papillomaviruses E6
and E7 oncogenes. Veterinary Microbiology. 230, 14-22, doi:
10.1016/j.vetmic.2019.01.010.
Trenfield, K., Spradbrow, P.B., Vanselow, B.A. (1990). Detection of
papillomavirus DNA in precancerous lesions of the ears of sheep.
Veterinary Microbiology 25, 103-116, doi: 10.1016/0378-1135(90)90070-c.
Uzal, F.A., Latorraca, A., Ghoddusi, M., Horn, M., Adamson, M., Kelly,
W.R., Schenkel, R. (2000). An apparent outbreak of cutaneous
papillomatosis in merino sheep in Patagonia, Argentina. Veterinary
Research Communications 24, 197-202, doi:10.1023a:1006460432270.
Van der Weele, P., van Logchem, E., Wolffs, P., van der Broek, I.,
Feltkamp, M., de Melker, E., Meijer, C.J.L.M., Boot, H., King, A.J.
(2016). Correlation between viral load, multiplicity of infection, and
persistence of HPV16 and HPV18 infection in a Dutch cohort of young
women. Journal of Clinical Virology 83, 6-11, doi:
10.1016/j.jcv.2016.07.020.
Van Doorslaer, K., Rector, A., Vos P, Van Ranst, M. (2006). Genetic
characterization of the Capra hircus papillomavirus: a novel
close-to-root artiodactyl papillomavirus. Virus Research 118, 164–169,
doi: 10.1016/j.virusres.2005.12.007.
Vanselow, B.A., Spradbrow, P.B., Jackson, A.R.B. (1982).
Papillomaviruses, papillomas and squamous cell carcinomas in sheep. The
Veterinary Record 110, 561-562, doi: 10.1136/vr.110.24.561.
Vitiello, V., Burrai, G.P., Agus, M., Anfossi, A.G., Alberti, A.,
Antuofermo, E., Rocca, S., Cubeddu, T., Pirino, S. (2017). Ovis aries
papillomavirus 3 in ovine cutaneous squamous cell carcinoma. Veterinary
Pathology 54, 775-782, doi: 10.1177/0300985817705171.
Willemsen, A., van der Boom, A., Dietz, J., Dagalp, S.B., Dogan, F.,
Bravo, I.C., Ehrhardt, A., Ehrke-Schulz, E. (2020). Genomic and
phylogenetic characterization of ChPV2, a novel goat closely related to
the Xi-PV1 species infecting bovines. Virology Journal 17, 167,
doi: 10.1186/s12985-020-01440-9.
Figure legends
Figure 1. Percentages of positive samples containing OaPV DNA
detected via ddPCR and qPCR methods.
Figure 2 . qPCR curves (A) and the relative rain plots of the
ddPCR (B) for the four OaPVs. For all OaPVs one positive sample, the
positive control, and one negative sample are shown.
Figure 3 . Graphical representation of single and multiple OaPV
infections, as detected by ddPCR and qPCR.
Figure 4. Detection rates of single OaPV DNA found in 70
samples positive for a single infection.