Iris Chang

and 9 more

Title : Distinct and mutually exclusive Ca++ flux- and adenyl cyclase-inducing gene expression profiles of G-Protein-Coupled Receptors on human antigen-specific B cellsAuthors : Iris Chang1,2†, Abhinav Kaushik, PhD1,2†, Pattraporn Satitsuksanoa PhD1, Minglin Yang1, Laura Buergi Msc1, Stephan R. Schneider Msc1, Cezmi A. Akdis, MD1, Kari Nadeau MD, PhD2, Willem van de Veen, PhD1, Mübeccel Akdis, MD, PhD1*1 Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.2 Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, CA, USA.† Contributed equally* Corresponding authorB cells play an essential role in allergies by producing allergen-specific IgE, which is a prerequisite for allergen-induced degranulation of mast cells (MCs) and basophils. MCs, basophils, dendritic cells and bacteria are capable of releasing inflammatory mediators including histamine. Histamine is a bioactive amine that exerts its function through binding to histamine receptors (HRs), which are 7-transmembrane G-protein-coupled receptors (GPCRs). There are four types of HRs (HR1-4), wherein HR1 ligation triggers Ca2+ mobilization, HR2 stimulates and increases cAMP concentrations, and HR3 and HR4 inhibit cAMP accumulation1. In the presence of histamine in the environment, high affinity HR1is triggered causing cellular activation, followed by expression of 10 times lower affinity HR2 to regulate the over-inflammatory events. These HRs trigger different intracellular events upon activation, with HR1 as a Ca2+ flux-inducing activating receptor and HR2 as an adenyl cyclase-stimulating suppressive receptor 1,2. Therefore, to explore the response of B-cells in allergic diseases, we analyzed the expression profile of HRs and other GPCRs in B cell clones. We hypothesized that the expression profile of HRs (HR1+ vs HR2+ B cell clones) is associated with significant changes in the expression profile of other GPCRs that govern the downstream cascade of pathways associated with cAMP signaling or Ca2+ mobilization.A total of 27 IgG1 and IgG4 expressing B cell clones were isolated for gene expression analysis under BCR stimulated and unstimulated conditions (Figure 1A and Online Supplementary Methods) . Interestingly, we observed B-cell clones with mutually exclusive expression profile of HRH1 and HRH2 genes (Figure 1B), with more HRH1+ B-cell clones in BCR-stimulated samples than unstimulated samples. The subsequentHRH1+ vs HRH2+ differential gene expression analysis (Figure 1C ), reveal 27 differentially expressed (DE) GPCRs in unstimulated samples, with up-regulated P2RY13  and C5AR1genes  in HRH2 + B-cell clones (Figure 2A) , which are associated with the cAMP signaling and suppressive pathway3,4. To further prioritize the DE GPCRs specifically associated with Ca2+ and cAMP signaling pathways, we reconstructed the co-expression networks and performed the weighted degree analysis across HRH1+ vs HRH2+ clones. The analysis reveals that the purinergic receptor family of GPCRs (i.e. P2RY1 , P2RY13 )  and complement component 5a receptor family of genes (i.e. C5AR1  and C5AR2 ) share highest degree of interactions. These genes are up-regulated inHRH2+ samples and are well-known to affect cAMP signaling pathway3,4 (Figure S1A ). Intriguingly, we also observed upregulation of GPR35  in HRH2 + B cells, which is associated in maintaining a low baseline Ca2+ level5. Similarly, we also observed up-regulation of GPR68 and GPR171 in HRH1 + B cells; both are known to stimulate Ca2+ flux (Online Supplementary Discussion) .Similarly, 28 GPCRs were differentially expressed in BCR-stimulated samples (Figure 2B ), including higher expression of serotonin receptor type 1A (HTR1A ) and HCAR1  (or GPR81 ) inHRH2+ samples, with a cAMP-linked suppressive function. In addition, we also observed upregulation of complement component 5a receptor family of genes (i.e., C5AR1  and C5AR2 ) and GPR35 , in agreement with the trend observed in unstimulatedHRH2 + B-cell clones. Surprisingly, we observed a higher expression of prostaglandin E2 receptor subtype EP4 (PTGER4)  and adenosine A2A receptor (ADORA2A ) in HRH2+ samples3,6, which are known to be associated with activation of cAMP production and share the highest strength of interactions with the cAMP signaling sub-network (Figure S1B ). Among the up-regulated genes in HRH1 + samples, we found three Ca2+ mobilizing genes, i.e., GPR34 ,P2RY10  and PTAFR .The results reported in this study provides data for a novel hypothesis suggesting investigation of co-expressed genes that may play important synergistic or antagonistic regulatory roles in B-cell function.

Judit Rovira Rubió

and 13 more

Background: From early life, respiratory viruses are implicated in the development, exacerbation and persistence of respiratory conditions such as asthma. Complex dynamics between microbial communities and host immune responses, shape immune maturation and homeostasis, influencing health outcomes. We evaluated the hypothesis that the respiratory virome is linked to systemic immune responses, using peripheral blood and nasopharyngeal swab samples from preschool-age children in the PreDicta cohort. Methods: Peripheral blood mononuclear cells from 51 children (32 asthmatics, 19 healthy controls), participating in the 2-year multinational PreDicta cohort were cultured with bacterial (Bacterial-DNA, LPS) or viral (R848, Poly:IC, RV) stimuli. Supernatants were analyzed by Luminex for the presence of 22 relevant cytokines. Virome composition was obtained using untargeted high troughput sequencing of nasopharyngeal samples. The metagenomic data were used for the characterization of virome profiles and the presence of key viral families (Picornaviridae, Anelloviridae, Siphoviridae). These were correlated to cytokine secretion patterns, identified through hierarchical clustering and principal component analysis. Results: High spontaneous cytokine release was associated with increased presence of Prokaryotic virome profiles and reduced presence of Eukaryotic and Anellovirus profiles. Antibacterial responses did not correlate with specific viral families or virome profile, however, low antiviral responders had more Prokaryotic and less Eukaryotic virome profiles. Anelloviruses and Anellovirus-dominated profiles were equally distributed amongst immune response clusters. The presence of Picornaviridae and Siphoviridae was associated with low interferon-λ responses. Asthma or allergy did not modify these correlations. Conclusions: Antiviral cytokines responses at a systemic level reflect the upper airway virome composition. Individuals with low innate interferon responses have higher abundance of Picornaviruses (mostly Rhinoviruses) and bacteriophages. Bacteriophages, particularly Siphoviridae appear to be sensitive sensors of host antimicrobial capacity, while Anelloviruses are not affected by TLR-induced immune responses.

Ozge Ardicli

and 16 more

Background: Although avian coronavirus infectious bronchitis virus (IBV) and SARS-CoV-2 belong to different genera of the Coronaviridae family, exposure to IBV may result in the development of cross-reactive antibodies to SARS-CoV-2 due to homologous epitopes. We aimed to investigate whether antibody responses to IBV cross-react with SARS-CoV-2 in poultry farm personnel who are occupationally exposed to aerosolized IBV vaccines. Methods: We analyzed sera from poultry farm personnel, COVID-19 patients, and pre-pandemic controls. IgG levels against the SARS-CoV-2 antigens S1, RBD, S2, and N and peptides corresponding to the SARS-CoV-2 ORF3a, N, and S proteins as well as whole virus antigens of the four major S1-genotypes 4/91, IS/1494/06, M41, and D274 of IBV were investigated by in-house ELISAs. Moreover, live-virus neutralization test (VNT) was performed. Results: A subgroup of poultry farm personnel showed elevated levels of specific IgG for all tested SARS-CoV-2 antigens compared to pre-pandemic controls. Moreover, poultry farm personnel, COVID-19 patients, and pre-pandemic controls showed specific IgG antibodies against IBV strains. These antibody titers were higher in long-term vaccine implementers. We observed a strong correlation between IBV-specific IgG and SARS-CoV-2 S1-, RBD-, S2-, and N-specific IgG in poultry farm personnel compared to pre-pandemic controls and COVID-19 patients. However, no neutralization was observed for these cross-reactive antibodies from poultry farm personnel using the VNT. Conclusion: We report here for the first time the detection of cross-reactive IgG antibodies against SARS-CoV-2 antigens in humans exposed to IBV vaccines. These findings have implications for future vaccination strategies and possibly cross-reactive T cell immunity.

Marek Jutel

and 68 more

Ismail Ogulur

and 27 more

Allergic diseases include asthma, atopic-dermatitis, allergic-rhinitis, drug hypersensitivity and food-allergy. During the past years, there has been a global outbreak of allergic diseases, presenting a considerable medical and socioeconomical-burden. A large fraction of allergic diseases is characterized by a type-2 immune response involving Th2 cells, type-2 innate lymphoid cells, eosinophils, mast cells, and M2 macrophages. Biomarkers are valuable parameters for precision medicine as they provide information on the disease endotypes, clusters, precision diagnoses, identification of therapeutic targets, and monitoring of treatment efficacies. The availability of powerful omics technologies, together with integrated data analysis and network-based approaches can help the identification of clinically useful biomarkers. These biomarkers need to be accurately quantified using robust and reproducible methods, such as reliable and point-of-care systems. Ideally, samples should be collected using quick, cost-efficient and non-invasive methods. In recent years, a plethora of research has been directed towards finding novel biomarkers of allergic diseases. Promising biomarkers of type-2 allergic diseases include sputum eosinophils, serum periostin and exhaled nitric-oxide. Several other biomarkers, such as pro-inflammatory mediators, miRNAs, eicosanoid molecules, epithelial barrier integrity, and microbiota changes are useful for diagnosis and monitoring of allergic diseases and can be quantified in serum, body-fluids and exhaled-air. Herein, we review recent studies on biomarkers for the diagnosis and treatment of asthma, chronic-urticaria, atopic-dermatitis, allergic-rhinitis, chronic-rhinosinusitis, food-allergies, anaphylaxis, drug hypersensitivity and allergen-immunotherapy. In addition, we discuss COVID-19 and allergic diseases within the perspective of biomarkers and recommendations on the management of allergic and asthmatic patients during the COVID-19 pandemic.

Kirstin Jansen

and 12 more

T regulatory cells from people with asthma show a Th2-like phenotypeKirstin Jansen1, Oliver F. Wirz1, Willem van de Veen1,2, Ge Tan1,3, Milena Sokolowska1, Simon D. Message4, Tatiana Kebadze4, Nicholas Glanville4, Patrick Mallia4, Cezmi A. Akdis1,2, Sebastian L. Johnston4, Kari Nadeau5 and Mübeccel Akdis1*1 Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland.2 Christine Kühne – Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.3 Functional Genomics Center Zürich, ETH Zürich/University of Zürich, Zürich, Switzerland.4 National Heart and Lung Institute, Imperial College London, United Kingdom.5 Sean N. Parker Center for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, CA, USA.* Corresponding author:Mübeccel Akdis, MD, PhD.Swiss Institute of Allergy and Asthma Research (SIAF)Herman-Burchard-Strasse 9CH-7265 Davos-Wolfgang, SwitzerlandE-mail: akdism@siaf.uzh.chTel.: +41 81 410 08 48Declaration of fundingM. Akdis has received research support from the Swiss National Science Foundation No. 320030-159870/310030-179428 and PREDICTA (No: 260895) and the Sean N Parker Center for Allergy and Asthma Research at Stanford University. C.A. Akdis is employed by the Swiss Institute of Allergy and Asthma Research, University of Zurich; the Swiss National Science Foundation No. 310030-156823, and the Christine Kühne – Center for Allergy Research and Education (CK-CARE). M. Sokolowska received research grant from the Swiss National Science Foundation No. 310030_189334/1 and from the GSK. The experimental infection study was supported by a Medical Research Council Clinical Research Fellowship (to S.D.M.), a British Medical Association H.C. Roscoe Fellowship (to S.D.M.), British Lung Foundation/Severin Wunderman Family Foundation Lung Research Program Grant P00/2, Asthma UK Grants 02/027 and 05/067, Welcome Trust Grants 063717 and 083567/Z/07/Z for the Centre for Respiratory Infection, Imperial College, and the National Institute for Health Research (NIHR) Biomedical Research Center funding scheme. S. L. Johnston is the Asthma UK Clinical Professor (grant CH11SJ), is an NIHR Emeritus Senior Investigator and was supported by MRC Centre Grant G1000758, Asthma UK Centre Grant AUK-BC-2015-01 and European Research Council Advanced Grant 788575. K.C. Nadeau is supported by NIH grant U19 AI104209 (Asthma and Allergic Diseases Cooperative Research Center), U01 AI140498 and R01 AI140134 and the Naddisy Foundation.To the editor,Asthma is the most common chronic inflammatory disease of the lung, characterised by wheezing, shortness of breath and variable airflow obstruction. It is a heterogeneous disease that can be classified into different endotypes of which T2-high - allergic asthma is one of the most common forms, especially in children. Allergic asthma is characterised by increased IgE and type-2 cytokines, including IL-5, IL-4 and IL-131.Thus far, it is not completely understood why these type-2 responses are poorly controlled in asthma. T regulatory cells (Treg cells) are key mediators in controlling type 2 responses. However, under certain conditions, Treg cells can display a pathogenic and proinflammatory phenotype and contribute to disease pathogenesis2. Treg cells of food allergic children showed a T helper 2 (Th2)-like phenotype. Whether this Th2-like phenotype of Treg cells is also present in asthmatic individuals is unknown.Therefore, in this exploratory study, we compared the gene-expression profile of Tregs from people with stable allergic-asthma to non-allergic controls without asthma. We isolated PBMCs from 5 people with asthma and 4 controls (Table S1) and sorted Treg cells with flow cytometry (CD3+CD4+D25hiCD127low). Then, we isolated RNA from the sorted Treg cells and performed RNA-seq (See Supplemental information for detailed methods). In total, 369 genes were differentially expressed between Treg cells from asthmatic individuals and controls (P<0.01) (Supplemental Figure 1). We clustered the genes into different groups: Treg cell markers, cytokine receptors, virus related, transcription factors, cytokines and others (Figure 1A). Interestingly, we found that the expression of FOXP3was reduced in Treg cells from asthmatic individuals (Figure 1B). This is in line with a previous study that observed a lower expression ofFOXP3 in Treg cells from individuals with asthma3. Interestingly FOXP3 expression inversely correlated with the IgE levels found in the serum (Figure 2A), supporting the finding that Treg cells can suppress IgE production4.In addition, we found a significant upregulation of IL13 mRNA expression and a trend to increased expression of IL4 andIL5 mRNAs in Tregs in asthma, indicating a Th2-like phenotype as was reported in Tregs from children with food allergies2. Furthermore, we found an upregulation of the prostaglandin D2 receptor (PTGDR2 ) or CRTH2, in line with a previous study that reported an increased amount of CRTH2+ Tregs in asthma5.Interestingly, several cytokine receptors were differentially expressed between Tregs from asthmatic individuals compared to controls. The IL-4 receptor alpha transcript IL4RA was significantly reduced in asthma. The expression of IL4RA also strongly correlated with the levels of IgE in the serum (Figure 2A). Previously, it was shown in mice that IL-4 receptor signalling is essential in controlling Th2 responses and airway inflammation6. Our data suggest a similar role of IL4RA in humans. Likewise, we observed a downregulation of TNF receptor superfamily member 25 (TNFRSF25 ), which was shown to contribute to preventing allergic lung inflammation7 and downregulation of OX40 (TNFRSF4 ).Additionally, we observed a difference in virus/type-I interferon(IFN)-related genes in asthma, which was also observed in single-cell transcriptomic data of allergen-specific Tregs from individuals with asthma8. Curiously, the expression of the type 1 IFN receptors IFNAR1/2 were lower expressed in asthma, which could indicate a deficiency against respiratory viruses and chronicity.Lastly, we performed an enrichment analysis to see up or downregulation of pathway maps, process networks and go processes with MetaCore (Table 1). The pathway maps and process networks included upregulation of pathways related to immune functions already described. However, the affected GO processes were mostly related to epigenetic mechanisms including nucleosome organisation, nucleosome assembly and chromatin organisation. With the tool STRING, we performed a pathway analysis that showed a cluster of histone genes (Figure 2B). So far, there is no data reporting the function of histone genes in Tregs or related to asthma, but perhaps this finding could be related to changes in epigenetics. It was reported that in asthma Tregs have increased CpG methylation of theFOPX3 locus compared to individuals without asathma3.In conclusion, Tregs from individuals with asthma show reduced expression of several molecules related to Treg suppressive functionality, while having increased expression of Th2-like characteristics that could lead to their reduced control of allergic airway inflammation. Further studies are needed to confirm these findings in a larger population and investigate their contribution to disease pathology.References1. Kuruvilla, M. E., Lee, F. E. H. & Lee, G. B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clinical Reviews in Allergy and Immunology (2019). doi:10.1007/s12016-018-8712-12. Noval Rivas, M. & Chatila, T. A. Regulatory T cells in allergic diseases. Journal of Allergy and Clinical Immunology138 , 639–652 (2016).3. Runyon, R. S. et al. Asthma Discordance in Twins Is Linked to Epigenetic Modifications of T Cells. PLoS One (2012). doi:10.1371/journal.pone.00487964. Meiler, F., Klunker, S., Zimmermann, M., Akdis, C. A. & Akdis, M. Distinct regulation of IgE, IgG4 and IgA by T regulatory cells and toll-like receptors. Allergy Eur. J. Allergy Clin. Immunol.(2008). doi:10.1111/j.1398-9995.2008.01774.x5. Boonpiyathad, T. et al. Impact of high-altitude therapy on type-2 immune responses in asthma patients. Allergy Eur. J. Allergy Clin. Immunol. 75 , 84–94 (2020).6. Khumalo, J., Kirstein, F., Hadebe, S. & Brombacher, F. IL-4Rα signaling in CD4+CD25+FoxP3+ T regulatory cells restrains airway inflammation via limiting local tissue IL-33. JCI Insight (2020). doi:10.1172/jci.insight.1362067. Schreiber, T. H. et al. Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J. Clin. Invest.(2010). doi:10.1172/JCI429338. Seumois, G. et al. Single-cell transcriptomic analysis of allergen-specific T cells in allergy and asthma. Sci. Immunol.(2020). doi:10.1126/SCIIMMUNOL.ABA60879. Message, S. D. et al. Rhinovirus-induced lower respiratory illness is increased in asthma and related to virus load and Th1/2 cytokine and IL-10 production. Proc Natl Acad Sci U S A105 , 13562–13567 (2008).10. Dobin, A. et al. STAR: Ultrafast universal RNA-seq aligner.Bioinformatics 29 , 15–21 (2013).11. Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41 , e108 (2013).12. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 , 139–140 (2009).13. Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45 , D362-d368 (2017).Figure 1: Tregs from asthmatic individuals show a distinct phenotype compared to controls. (A) Genes that are significantly changed in Tregs cells from asthmatic individuals compared to controls (log 2 ratio)– clustered in the groups: Treg markers, cytokine receptors, virus related, transcription factors, cytokines and others. (B) Fragments per kilo base per million mapped reads (FPKM) values of genes of interest (FOXP3, IL13, IL5, IL4, IL4R, PTGDR2, TNFRSF25, TNFRSF4, IFNAR1, IFNAR2) of all donors. N = 4 (healthy), 5 (asthma). *** p<0.001 , ** p<0.01, * p<0.05Figure 2: Phenotype of Tregs might be associated to Treg function . (A) Correlation between expression of FOXP3 (left) and IL4RA (right) with IgE serum levels. (B) Satellite plot showing a cluster of known interactions related to nucleosome assembly. Genes higher expressed in asthmatic individuals are shown in red, and lower expression in blue.

Ioana Agache

and 29 more

Ludger Klimek

and 16 more

Coronavirus disease 2019 (COVID-19) vaccine BNT162b2 received approval and within the first few days of public vaccination several severe anaphylaxis cases occurred. An investigation is taking place to understand the cases and their triggers. The vaccine will be administered to a large number of individuals worldwide and concerns raised for severe adverse events might occur. With the current information, the European Academy of Allergy and Clinical Immunology (EAACI) states its position for the following preliminary recommendations that are to be revised as soon as more data emerges. To minimize the risk of severe allergic reactions in vaccinated individuals, it is urgently required to understand the specific nature of the reported severe allergic reactions, including the background medical history of the individuals affected and the mechanisms involved. To achieve this goal all clinical and laboratory information should be collected and reported. Mild and moderate allergic patients should not be excluded from the vaccine as the exclusion of all these patients from vaccination may have a significant impact on reaching the goal of population immunity. Health care practitioners vaccinating against COVID-19 are required to be sufficiently prepared to recognise and treat anaphylaxis properly with the ability to administer adrenaline. A mandatory observation period after vaccine administration of at least 15 minutes for all individuals should be followed. The current guidelines, which exclude patients with severe allergies from vaccination with BNT162b2, should be re-evaluated after more information and experience with the new vaccine develops.

Ya-dong Gao

and 19 more

The coronavirus disease 2019 pandemic (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an unprecedented global social and economic impact, and numerous deaths. Many risk factors have been identified in the progression of COVID-19 into a severe and critical stage, including old age, male gender, underlying comorbidities such as hypertension, diabetes, obesity, chronic lung disease, heart, liver and kidney diseases, tumors, clinically apparent immunodeficiencies, local immunodeficiencies, such as early type-I interferon secretion capacity, and pregnancy. Possible complications include acute respiratory distress syndrome, shock, disseminated coagulopathy, acute kidney injury, pulmonary embolism, and secondary bacterial pneumonia. The development of lymphopenia and eosinopenia are laboratory indicators of COVID-19. Laboratory parameters to monitor disease progression include lactate dehydrogenase, procalcitonin, high-sensitivity C-reactive protein, proinflammatory cytokines such as interleukin (IL)-6, IL-1, Krebs von den Lungen-6 (KL-6) and ferritin. The development of a cytokine storm and extensive chest computed tomography imaging patterns are indicators of a severe disease. In addition, socioeconomic status, diet, lifestyle, geographical differences, ethnicity, exposed viral load, day of initiation of treatment, and quality of health care have been reported to influence individual outcomes. In this review, we highlight the scientific evidence on the risk factors of COVID-19.

Lacin Cevhertas

and 21 more