Abram, P.K., Brodeur, J., Burte, V. & Boivin, G. (2016).
Parasitoid-induced host egg abortion: An underappreciated component of
biological control services provided by egg parasitoids. Biol.
Control , 98, 52–60.
Abram, P.K., Brodeur, J., Urbaneja, A. & Tena, A. (2019).
Nonreproductive Effects of Insect Parasitoids on Their Hosts.Annu. Rev. Entomol. , 64, 259–276.
Abrams, P.A. (2008). Measuring the population-level consequences of
predator-induced prey movement. Evol. Ecol. Res. , 10, 333–350.
Abrams, P.A. & Matsuda, H. (1997). Prey Adaptation as a Cause of
Predator-Prey Cycles. Evolution , 51, 10.
Abrams, P.A., Menge, B.A., Mittelbach, G.G., Spiller, D.A. & Yodzis, P.
(1996). The role of indirect effects in food webs. In: Food webs .
Springer, pp. 371–395.
Agarwala, B.K., Yasuda, H. & Kajita, Y. (2003). Effect of conspecific
and heterospecific feces on foraging and oviposition of two predatory
ladybirds: role of fecal cues in predator avoidance. J. Chem.
Ecol. , 29, 357–376.
Angelon, K.I.M.A. & Petranka, J.W. (2002). Chemicals of predatory
mosquitofish (Gambusia affinis) influence selection of oviposition sites
by Culex mosquitoes, 28, 797–807.
Bailey, S.M., Irwin, M.E., Kampmeier, G.E., Eastman, C.E. & Hewings,
A.D. (1995). Physical and biological perturbations: their effect on the
movement of apterous Rhopalosiphum padi (Homoptera: Aphididae) and
localized spread of barley yellow dwarf virus. Environ. Entomol. ,
24, 24–33.
Bannerman, J.A., Gillespie, D.R. & Roitberg, B.D. (2011). The impacts
of extreme and fluctuating temperatures on trait-mediated indirect
aphid-parasitoid interactions. Ecol. Entomol. , 36, 490–498.
Barratt, B.I.P., Howarth, F.G., Withers, T.M., Kean, J.M. & Ridley,
G.S. (2010). Progress in risk assessment for classical biological
control. Biol. Control , 52, 245–254.
Bedoya-Perez, M.A., Smith, K.L., Kevin, R.C., Luo, J.L., Crowther, M.S.
& McGregor, I.S. (2019). Parameters that affect fear responses in
rodents and how to use them for management. Front. Ecol. Evol. ,
7, 136.
Bellamy, S.K. & Alto, B.W. (2018). Mosquito responses to trait- and
density-mediated interactions of predation. Oecologia , 187,
233–243.
Belliure, B., Amorós-Jiménez, R., Fereres, A. & Marcos-García, M.Á.
(2011). Antipredator behaviour of Myzus persicae affects transmission
efficiency of Broad bean wilt virus 1. Virus Res. , 159, 206–214.
Benard, M.F. (2004). Predator-Induced Phenotypic Plasticity in Organisms
with Complex Life Histories. Annu. Rev. Ecol. Evol. Syst. , 35,
651–673.
Bianchi, F.J.J. a, Booij, C.J.H. & Tscharntke, T. (2006). Sustainable
pest regulation in agricultural landscapes: a review on landscape
composition, biodiversity and natural pest control. Proc. Biol.
Sci. , 273, 1715–1727.
Bigler, F., Babendreier, D. & Kuhlmann, U. (2006). Environmental
impact of invertebrates for biological control of arthropods: methods
and risk assessment . CABI.
Bilu, E. & Coll, M. (2007). The importance of intraguild interactions
to the combined effect of a parasitoid and a predator on aphid
population suppression. BioControl , 52, 753–763.
Blaustein, L., Blaustein, J. & Chase, J. (2005). Chemical detection of
the predator Notonecta irrorata by ovipositing Culex mosquitoes.J. Vector Ecol. , 30, 3.
Blossey, B. & Notzold, R. (1995). Evolution of Increased Competitive
Ability in Invasive Nonindigenous Plants: A Hypothesis. J. Ecol. ,
83, 887.
Blumstein, D.T. (2006). The Multipredator Hypothesis and the
Evolutionary Persistence of Antipredator Behavior. Ethology , 112,
209–217.
Boonstra, R., Hik, D., Singleton, G.R. & Tinnikov, A. (1998). The
impact of predator-induced stress on the snowshoe hare cycle.Ecol. Monogr. , 68, 371–394.
Bourdeau, P.E. & Johansson, F. (2012). Predator-induced morphological
defences as by-products of prey behaviour: A review and prospectus.Oikos , 121, 1175–1190.
Brown, J.S. & Kotler, B.P. (2004). Hazardous duty pay and the foraging
cost of predation. Ecol. Lett. , 7, 999–1014.
Buchanan, A.L., Hermann, S.L., Lund, M. & Szendrei, Z. (2017). A
meta-analysis of non-consumptive predator effects in arthropods : the
infl uence of organismal and environmental characteristics, 1–8.
Bucher, R., Binz, H., Menzel, F. & Entling, M.H. (2014). Effects of
spider chemotactile cues on arthropod behavior. J. Insect Behav. ,
27, 567–580.
Bulgarella, M., Quiroga, M.A., Boulton, R.A., Ramírez, I.E., Moon, R.D.,
Causton, C.E., et al. (2017). Life cycle and host specificity of
the parasitoid Conura annulifera (Hymenoptera: Chalcididae), a potential
biological control agent of Philornis downsi (Diptera: Muscidae) in the
Galápagos Islands. Ann. Entomol. Soc. Am. , 110, 317–328.
Calcaterra, L.A., Delgado, A. & Tsutsui, N.D. (2008). Activity patterns
and parasitism rates of fire ant-decapitating flies (Diptera: Phoridae:
Pseudacteon spp.) in their native Argentina. Ann. Entomol. Soc.
Am. , 101, 539–550.
Calvet, É.C., Lima, D.B., Melo, J.W.S. & Gondim, M.G.C. (2018).
Chemosensory cues of predators and competitors influence search for
refuge in fruit by the coconut mite Aceria guerreronis. Exp. Appl.
Acarol. , 74, 249–259.
Carpenter, S.R., Kitchell, J.F., Hodgson, J.R., Cochran, P.A., Elser,
J.J., Elser, M.M., et al. (1987). Regulation of Lake Primary
Productivity by Food Web Structure. Ecology , 68, 1863–1876.
Carrière, Y., Fabrick, J.A. & Tabashnik, B.E. (2016). Can pyramids and
seed mixtures delay resistance to Bt crops? Trends Biotechnol. ,
34, 291–302.
Carroll, M.W., Head, G. & Caprio, M. (2012). When and where a seed mix
refuge makes sense for managing insect resistance to Bt plants.Crop Prot. , 38, 74–79.
Carthey, A.J. & Blumstein, D.T. (2018). Predicting predator recognition
in a changing world. Trends Ecol. Evol. , 33, 106–115.
Carthey, A.J.R. & Banks, P.B. (2014). Na ï vet ´ e in novel ecological
interactions : lessons from theory and experimental evidence, 89,
932–949.
Castellanos, I. & Barbosa, P. (2006). Evaluation of predation risk by a
caterpillar using substrate-borne vibrations. Anim. Behav. , 72,
461–469.
Castellanos, I., Barbosa, P., Zuria, I., Tammaru, T. & Christman, M.C.
(2011). Contact with caterpillar hairs triggers predator-specific
defensive responses. Behav. Ecol. , 22, 1020–1025.
Chen, L. & Fadamiro, H.Y. (2018). Pseudacteon phorid flies: Host
specificity and impacts on solenopsis fire ants. Annu. Rev.
Entomol. , 63, 47–67.
Choh, Y., Sabelis, M.W. & Janssen, A. (2015). Distribution and
oviposition site selection by predatory mites in the presence of
intraguild predators. Exp. Appl. Acarol. , 67, 477–491.
Choh, Y., Takabayashi, J., Sabelis, M.W. & Janssen, A. (2014).
Witnessing predation can affect strength of counterattack in phytoseiids
with ontogenetic predator–prey role reversal. Anim. Behav. , 93,
9–13.
Clark, C.W. (1994). Antipredator behavior and the asset-protection
principle. Behav. Ecol. , 5, 159–170.
Clark, R.E., Basu, S., Lee, B.W. & Crowder, D.W. (2019). Tri‐trophic
interactions mediate the spread of a vector‐borne plant pathogen.Ecology , 100.
Clinchy, M., Sheriff, M.J. & Zanette, L.Y. (2013). Predator-induced
stress and the ecology of fear. Funct. Ecol. , 27, 56–65.
Cloutier, C. & Bauduin, F. (1995). Biological Control Of The Colorado
Potato Beetle Leptinotarsa Decemlineata (Coleoptera: Chrysomelidae) In
Quebec By Augmentative Releases Of The Two-spotted Stinkbug Perillus
Bioculatus (Hemiptera: Pentatomidae). Can. Entomol. , 127,
195–212.
Coll, M. (1996). Feeding and ovipositing on plants by an omnivorous
insect predator. Oecologia , 105, 214–220.
Collier, T. & Van Steenwyk, R. (2004). A critical evaluation of
augmentative biological control. Biol. Control , 31, 245–256.
Cook, S.M., Khan, Z.R. & Pickett, J. a. (2007). The use of push-pull
strategies in integrated pest management. Annu. Rev. Entomol. ,
52, 375–400.
Cotes, B., Rännbäck, L.-M., Björkman, M., Norli, H.R., Meyling, N.V.,
Rämert, B., et al. (2015). Habitat selection of a parasitoid
mediated by volatiles informing on host and intraguild predator
densities. Oecologia , 179, 151–162.
Cox, J.G. & Lima, S.L. (2006). Naiveté and an aquatic–terrestrial
dichotomy in the effects of introduced predators. Trends Ecol.
Evol. , 21, 674–680.
Creel, S. & Christianson, D. (2008). Relationships between direct
predation and risk effects. Trends Ecol. Evol. , 23, 194–201.
Crowder, D.W., Li, J., Borer, E.T., Finke, D.L., Sharon, R., Pattemore,
D.E., et al. (2019). Species interactions affect the spread of
vector‐borne plant pathogens independent of transmission mode.Ecology , 100.
Dáder, B., Moreno, A., Viñuela, E. & Fereres, A. (2012).
Spatio-temporal dynamics of viruses are differentially affected by
parasitoids depending on the mode of transmission. Viruses , 4,
3069–3089.
Deas, J.B. & Hunter, M.S. (2013). Delay, avoidance and protection in
oviposition behaviour in response to fine-scale variation in egg
parasitism risk. Anim. Behav. , 86, 933–940.
Denno, R.F. & Peterson, M.A. (1995). Density-dependent dispersal and
its consequences for population dynamics. Popul. Dyn. New
Approaches Synth. , 113–130.
Dicke, M. & Grostal, P. (2001). Chemical Detection of Natural Enemies
by Arthropods: An Ecological Perspective. Annu. Rev. Ecol. Syst. ,
32, 1–23.
Duffy, M.A., Housley, J.M., Penczykowski, R.M., Caceres, C.E. & Hall,
S.R. (2011). Unhealthy herds: indirect effects of predators enhance two
drivers of disease spread. Funct. Ecol. , 25, 945–953.
Dumont, F., Lucas, E. & Brodeur, J. (2015). Do furtive predators
benefit from a selfish herd effect by living within their prey colony?Behav. Ecol. Sociobiol. , 69, 971–976.
Ehlman, S.M., Trimmer, P.C. & Sih, A. (2019). Prey Responses to Exotic
Predators: Effects of Old Risks and New Cues. Am. Nat. , 193,
575–587.
Eilenberg, J., Hajek, A. & Lomer, C. (2001). Suggestions for unifying
the terminology in biological control. BioControl , 46, 387–400.
Elliott, K.H., Betini, G.S., Dworkin, I. & Norris, D.R. (2016).
Experimental evidence for within- and cross-seasonal effects of fear on
survival and reproduction. J. Anim. Ecol. , 85, 507–515.
Feener, D.H. (1981). Competition between ant species: outcome controlled
by parasitic flies. Science , 214, 815–817.
Feener Jr., D.H. & Brown, B.V. (1992). Reduced foraging of Solenopsis
geminata (Hymenoptera: Formicidae) in the presence of parasitic
Pseudacteon spp. (Diptera: Phoridae). Ann. Entomol. Soc. Am. , 85,
80–84.
Ferrari, M.C., Wisenden, B.D. & Chivers, D.P. (2010). Chemical ecology
of predator–prey interactions in aquatic ecosystems: a review and
prospectus. Can. J. Zool. , 88, 698–724.
Ferrari, M.C.O., McCormick, M.I., Meekan, M.G. & Chivers, D.P. (2015).
Background level of risk and the survival of predator-naive prey: can
neophobia compensate for predator naivety in juvenile coral reef fishes?Proc. R. Soc. B Biol. Sci. , 282, 20142197.
Fievet, V., Lhomme, P. & Outreman, Y. (2008). Predation risk cues
associated with killed conspecifics affect the behavior and reproduction
of prey animals. Oikos , 117, 1380–1385.
Fill, A., Long, E.Y. & Finke, D.L. (2012). Non-consumptive effects of a
natural enemy on a non-prey herbivore population. Ecol. Entomol. ,
37, 43–50.
Finke, D.L. (2012). Contrasting the consumptive and non-consumptive
cascading effects of natural enemies on vector-borne pathogens.Entomol. Exp. Appl. , 144, 45–55.
Finke, D.L. & Snyder, W.E. (2008). Niche partitioning increases
resource exploitation by diverse communities. Science , 321,
1488–1490.
Folgarait, P.J. & Gilber, L.E. (1999). Phorid parasitoids affect
foraging activity of Solenopsis richteri under different availability of
food in Argentina. Ecol. Ent , 24, 163–173.
Fouzai, N., Opdal, A.F., Jørgensen, C. & Fiksen, Ø. (2019). Dying from
the lesser of three evils: facilitation and non-consumptive effects
emerge in a model with multiple predators. Oikos , 128,
1307–1317.
Frago, E. (2016). Interactions between parasitoids and higher order
natural enemies: intraguild predation and hyperparasitoids. Curr.
Opin. Insect Sci. , 14, 81–86.
Frago, E. & Godfray, H.C.J. (2014). Avoidance of intraguild predation
leads to a long-term positive trait-mediated indirect effect in an
insect community. Oecologia , 174, 943–952.
Fraker, M.E. & Luttbeg, B. (2012). Predator–prey space use and the
spatial distribution of predation events. Behaviour , 149,
555–574.
Furlong, M.J. (2015). Knowing your enemies: integrating molecular and
ecological methods to assess the impact of arthropod predators on crop
pests. Insect Sci. , 22, 6–19.
Garcia, A.G., Ferreira, C.P., Cônsoli, F.L. & Godoy, W.A. (2016).
Predicting evolution of insect resistance to transgenic crops in
within-field refuge configurations, based on larval movement.Ecol. Complex. , 28, 94–103.
Gish, M., Dafni, A. & Inbar, M. (2011). Avoiding incidental predation
by mammalian herbivores: accurate detection and efficient response in
aphids. Naturwissenschaften , 98, 731–738.
Godfray, H.C.J. & Waage, J.K. (1991). Predictive Modelling in
Biological Control: The Mango Mealy Bug (Rastrococcus invadens) and Its
Parasitoids. J. Appl. Ecol. , 28, 434.
Gonçalves-Souza, T., Omena, P.M., Souza, J.C. & Romero, G.Q. (2008).
Trait-mediated effects on flowers: artificial spiders deceive
pollinators and decrease plant fitness. Ecology , 89, 2407–2413.
Goodale, E. & Nieh, J.C. (2012). Public use of olfactory information
associated with predation in two species of social bees. Anim.
Behav. , 84, 919–924.
Griffin, C.A.M. & Thaler, J.S. (2006). Insect predators affect plant
resistance via density- and trait-mediated indirect interactions.Ecol. Lett. , 9, 335–343.
Gruner, D.S. (2005). Biotic resistance to an invasive spider conferred
by generalist insectivorous birds on Hawai’i Island. Biol.
Invasions , 7, 541–546.
Gyuris, E., Szép, E., Kontschán, J., Hettyey, A. & Tóth, Z. (2017).
Behavioural responses of two-spotted spider mites induced by
predator-borne and prey-borne cues. Behav. Processes , 144,
100–106.
Hajek, A.E., Hurley, B.P., Kenis, M., Garnas, J.R., Bush, S.J.,
Wingfield, M.J., et al. (2016). Exotic biological control agents:
a solution or contribution to arthropod invasions? Biol.
Invasions , 18, 953–969.
Hamburg, H.V. & Hassell, M.P. (1984). Density dependence and the
augmentative release of egg parasitoids against graminaceous stalk
borers. Ecol. Entomol. , 9, 101–108.
Hammill, E., Fitzjohn, R.G. & Srivastava, D.S. (2015). Conspecific
density modulates the effect of predation on dispersal rates.Oecologia , 178, 1149–1158.
Havel, J.E. & Dodson, S.I. (1984). Chaoborus predation on typical and
spined morphs of Daphnia pulex: Behavioral observations. Limnol.
Oceanogr. , 29, 487–494.
Hawkins, B.A. & Cornell, H.V. (1994). Maximum parasitism rates and
successful biological control. Science , 266, 1886–1887.
Hawkins, B.A., Thomas, M.B. & Hochberg, M.E. (1993). Refuge theory and
biological control. Science , 262, 1429–1432.
Hawlena, D. & Schmitz, O.J. (2010). Physiological stress as a
fundamental mechanism linking predation to ecosystem functioning.Am. Nat. , 176, 537–556.
Head, G., Campbell, L.A., Carroll, M., Clark, T., Galvan, T., Hendrix,
W.M., et al. (2014). Movement and survival of corn rootworm in
seed mixtures of SmartStax® insect-protected corn. Crop Prot. ,
58, 14–24.
Heimpel, G.E. & Mills, N.J. (2017). Biological Control: Ecology
and Applications . Cambridge University Press.
Henry, L.M., Bannerman, J.A., Gillespie, D.R. & Roitberg, B.D. (2010).
Predator identity and the nature and strength of food web interactions.J. Anim. Ecol. , 79, 1164–1171.
Hentley, W.T., Vanbergen, A.J., Beckerman, A.P., Brien, M.N., Hails,
R.S., Jones, T.H., et al. (2016). Antagonistic interactions
between an invasive alien and a native coccinellid species may promote
coexistence. J. Anim. Ecol. , 85, 1087–1097.
Hermann, S.L. & Landis, D.A. (2017). Scaling up our understanding of
non-consumptive effects in insect systems. Curr. Opin. Insect
Sci. , 20, 54–60.
Hermann, S.L. & Thaler, J.S. (2014). Prey perception of predation risk:
volatile chemical cues mediate non-consumptive effects of a predator on
a herbivorous insect. Oecologia , 176, 669–676.
Hermann, S.L. & Thaler, J.S. (2018). The effect of predator presence on
the behavioral sequence from host selection to reproduction in an
invulnerable stage of insect prey. Oecologia , 188, 945–952.
Hik, D. (1995). Does Risk of Predation Influence Population Dynamics?
Evidence from the Cyclic Decline of Snowshoe Hares. Wildl. Res. ,
22.
Hlivko, J.T. & Rypstra, A.L. (2003). Spiders Reduce Herbivory:
Nonlethal Effects of Spiders on the Consumption of Soybean Leaves by
Beetle Pests. Ann. Entomol. Soc. Am. , 96, 914–919.
Hoddle, M.S. & Pandey, R. (2014). Host range testing of Tamarixia
radiata (Hymenoptera: Eulophidae) sourced from the Punjab of Pakistan
for classical biological control of Diaphorina citri (Hemiptera:
Liviidae: Euphyllurinae: Diaphorinini) in California. J. Econ.
Entomol. , 107, 125–136.
Hodge, S., Hardie, J. & Powell, G. (2011). Parasitoids aid dispersal of
a nonpersistently transmitted plant virus by disturbing the aphid
vector. Agric. For. Entomol. , 13, 83–88.
Hogg, B.N., Wang, X., Mills, N.J. & Daane, K.M. (2014). Resident
spiders as predators of the recently introduced light brown apple moth,
Epiphyas postvittana. Entomol. Exp. Appl. , 151, 65–74.
Hoki, E., Losey, J. & Ugine, T.A. (2014). Comparing the consumptive and
non-consumptive effects of a native and introduced lady beetle on pea
aphids ( Acyrthosiphon pisum ). Biol. CONTROL , 70, 78–84.
Hokkanen, H.M.T. (1991). Trap Cropping in Pest Management. Annu.
Rev. Entomol. , 36, 20.
Höller, C., Micha, S.G., Schulz, S., Francke, W. & Pickett, J.A.
(1994). Enemy-induced dispersal in a parasitic wasp. Experientia ,
50, 182–185.
Houston, A.I., McNamara, J.M. & Hutchinson, J.M.C. (1993). General
results concerning the trade-off between gaining energy and avoiding
predation. Philos. Trans. R. Soc. B-Biol. Sci. , 341, 375–397.
Houston, A.I., McNamara, J.M. & others. (1999). Models of
adaptive behaviour: an approach based on state . Cambridge University
Press.
Hulthén, K., Chapman, B.B., Nilsson, P.A., Hollander, J. & Brönmark, C.
(2014). Express yourself: bold individuals induce enhanced morphological
defences. Proc. R. Soc. B Biol. Sci. , 281, 20132703.
Ims, R.A. (1990). On the Adaptive Value of Reproductive Synchrony as a
Predator-Swamping Strategy. Am. Nat. , 136, 15.
Ingerslew, K.S. & Finke, D.L. (2017). Mechanisms underlying the
nonconsumptive effects of parasitoid wasps on aphids. Environ.
Entomol. , 46, 75–83.
Jacobsen, S.K., Alexakis, I. & Sigsgaard, L. (2016). Antipredator
responses in Tetranychus urticae differ with predator specialization.J. Appl. Entomol. , 140, 228–231.
Jallow, M.F. a & Hoy, C.W. (2005). Phenotypic variation in adult
behavioral response and offspring fitness in Plutella xylostella
(Lepidoptera: Plutellidae) in response to permethrin. J. Econ.
Entomol. , 98, 2195–2202.
Jandricic, S.E., Schmidt, D., Bryant, G. & Frank, S.D. (2016).
Non-consumptive predator effects on a primary greenhouse pest :
Predatory mite harassment reduces western flower thrips abundance and
plant damage. Biol. CONTROL , 95, 5–12.
Janssens, L. & Stoks, R. (2013). Synergistic effects between pesticide
stress and predator cues: Conflicting results from life history and
physiology in the damselfly Enallagma cyathigerum. Aquat.
Toxicol. , 132–133, 92–99.
Jonsson, M., Kaartinen, R. & Straub, C.S. (2017). Relationships between
natural enemy diversity and biological control. Curr. Opin. Insect
Sci. , 20, 1–6.
Kaplan, I., McArt, S.H. & Thaler, J.S. (2014). Plant defenses and
predation risk differentially shape patterns of consumption, growth, and
digestive efficiency in a guild of leaf-chewing insects. PLoS
ONE , 9.
Kaplan, I. & Thaler, J.S. (2010). Plant resistance attenuates the
consumptive and non-consumptive impacts of predators on prey.Oikos , 119, 1105–1113.
Kaplan, I. & Thaler, J.S. (2012). Phytohormone-mediated plant
resistance and predation risk act independently on the population growth
and wing formation of potato aphids, Macrosiphum euphorbiae.Arthropod-Plant Interact. , 6, 181–186.
Kats, L.B. & Dill, L.M. (1998). The scent of death: Chemosensory
assessment of predation risk by prey animals. Écoscience , 5,
361–394.
Kerfoot, W.C. & Sih, A. (1987). Predation: direct and indirect
impacts on aquatic communities . University Press of New England.
Kersch-Becker, M.F., Kessler, A. & Thaler, J.S. (2017). Plant defences
limit herbivore population growth by changing predator–prey
interactions. Proc. R. Soc. B Biol. Sci. , 284, 20171120.
Kersch-Becker, M.F. & Thaler, J.S. (2015). Plant resistance reduces the
strength of consumptive and non-consumptive effects of predators on
aphids. J. Anim. Ecol. , 84, 1222–1232.
Kiflawi, M., Blaustein, L. & Mangel, M. (2003). Oviposition habitat
selection by the mosquito Culiseta longiareolata in response to risk of
predation and conspecific larval density. Ecol. Entomol. , 28,
168–173.
Koch, R.L. (2003). The multicolored Asian lady beetle, Harmonia
axyridis: A review of its biology, uses in biological control, and
non-target impacts. J. Insect Sci. , 16.
Kopta, T., Pokluda, R. & Psota, V. (2012). Attractiveness of flowering
plants for natural enemies, 39, 8.
Kraus, J.M. & Vonesh, J.R. (2010). Feedbacks between community assembly
and habitat selection shape variation in local colonization. J.
Anim. Ecol. , 79, 795–802.
Krushelnycky, P.D., Ogura-Yamada, C.S., Kanegawa, K.M., Kaneshiro, K.Y.
& Magnacca, K.N. (2017). Quantifying the effects of an invasive thief
ant on the reproductive success of rare Hawaiian picture-winged flies.Biol. Conserv. , 215, 254–259.
Kunert, G. & Weisser, W.W. (2003). The interplay between density- and
trait-mediated effects in predator-prey interactions: A case study in
aphid wing polymorphism. Oecologia , 135, 304–312.
LaManna, J.A. & Martin, T.E. (2016). Costs of fear: behavioural and
life-history responses to risk and their demographic consequences vary
across species. Ecol. Lett. , 19, 403–413.
Landis, D. & Van der Werf, W. (1997). Early-season predation impacts
the establishment of aphids and spread of beet yellows virus in sugar
beet. Entomophaga , 42, 499–516.
Larsen, A.E. (2012). Modeling multiple nonconsumptive effects in simple
food webs : a modified Lotka – Volterra approach. Behav. Ecol.
Laundré, J.W., Hernández, L. & Altendorf, K.B. (2001). Wolves, elk, and
bison: reestablishing the “landscape of fear” in Yellowstone National
Park, U.S.A. Can. J. Zool. , 79, 1401–1409.
Lawson-Balagbo, L.M., Jr, M.G.C.G. & Moraes, G.J.D. (2007). Refuge use
by the coconut mite Aceria guerreronis : Fine scale distribution and
association with other mites under the perianth, 43, 102–110.
Lee, D.H., Nyrop, J.P. & Sanderson, J.P. (2011). Avoidance of natural
enemies by adult whiteflies, Bemisia argentifolii, and effects on host
plant choice. Biol. Control , 58, 302–309.
Lee, D.H., Nyrop, J.P. & Sanderson, J.P. (2014). Non-consumptive
effects of the predatory beetle Delphastus catalinae ( Coleoptera :
Coccinellidae ) on habitat use patterns of adult whitefly Bemisia
argentifolii ( Hemiptera : Aleyrodidae ). Appl. Entomol. Zool. ,
49, 599–606.
Letourneau, D. & Bruggen, A. van. (2006). Crop protection in organic
agriculture. In: Organic agriculture: a global perspective (eds.
Kristiansen, P., Taji, A. & Reganold, J.). CABI, Wallingford, pp.
93–121.
Lima, S.L. (1998). Nonlethal effects in the ecology of predator-prey
interactions. BioScience , 48, 25–34.
Livingston, G., Fukumori, K., Provete, D.B., Kawachi, M., Takamura, N.
& Leibold, M.A. (2017). Predators regulate prey species sorting and
spatial distribution in microbial landscapes. J. Anim. Ecol. , 86,
501–510.
Lommen, S.T.E., Middendorp, C.W., Luijten, C.A., van Schelt, J.,
Brakefield, P.M. & de Jong, P.W. (2008). Natural flightless morphs of
the ladybird beetle Adalia bipunctata improve biological control of
aphids on single plants. Biol. Control , 47, 340–346.
Long, E.Y. & Finke, D.L. (2015). Predators indirectly reduce the
prevalence of an insect-vectored plant pathogen independent of predator
diversity. Oecologia , 177, 1067–1074.
Losey, J.E. & Denno, R.F. (1998). Positive predator–predator
interactions: enhanced predation rates and synergistic suppression of
aphid populations. Ecology , 79, 2143–2152.
Losey, J.E. & Vaughan, M. (2006). The Economic Value of Ecological
Services Provided by Insects. BioScience , 56, 311.
Lövei, G.L. & Ferrante, M. (2017). A review of the sentinel prey method
as a way of quantifying invertebrate predation under field conditions.Insect Sci. , 24, 528–542.
Lucas, É., Coderre, D. & Brodeur, J. (2000). Selection of Molting and
Pupation Sites by Coleomegilla maculata (Coleoptera:
Coccinellidae): Avoidance of Intraguild Predation. Environ.
Entomol. , 29, 454–459.
Lundgren, J.G. & Fergen, J.K. (2006). The Oviposition Behavior of the
Predator Orius insidiosus: Acceptability and Preference for Different
Plants. Biocontrol , 51, 217–227.
Maanak, V., Nordenhem, H., Bjorklund, N., Lenoir, L. & Nordlander, G.
(2013). Ants protect conifer seedlings from feeding damage by the pine
weevil Hylobius abietis. Agric. For. Entomol. , 15, 98–105.
Macfadyen, S., Davies, A.P. & Zalucki, M.P. (2015). Assessing the
impact of arthropod natural enemies on crop pests at the field scale.Insect Sci. , 22, 20–34.
Magalhães, S., Tudorache, C., Montserrat, M., van Maanen, R., Sabelis,
M.W. & Janssen, A. (2004). Diet of intraguild predators affects
antipredator behavior in intraguild prey. Behav. Ecol. , 16,
364–370.
Mallet, J. & Porter, P. (1992). Preventing insect adaptation to
insect-resistant crops: are seed mixtures or refugia the best strategy?Proc. R. Soc. Lond. B Biol. Sci. , 250, 165–169.
Mappes, J., Mappes, T. & Lappalainen, T. (1997). Unequal maternal
investment in offspring quality in relation to predation risk.Evol. Ecol. , 11, 7.
Martini, X., Kincy, N. & Nansen, C. (2012). Quantitative impact
assessment of spray coverage and pest behavior on contact pesticide
performance. Pest Manag. Sci. , 68, 1471–1477.
Matsumoto, T., Itioka, T. & Nishida, T. (2003). Rapid change in the
settling behavior of the arrowhead scale Unaspis yanonensis as an
avoidance mechanism against introduced parasitoids, Aphytis yanonensis
and Coccobius fulvus. Entomol. Exp. Appl. , 107, 105–113.
McArthur, C., Orlando, P., Banks, P.B. & Brown, J.S. (2012). The
foraging tightrope between predation risk and plant toxins: a matter of
concentration. Funct. Ecol. , 26, 74–83.
Meadows, A.J., Owen, J.P. & Snyder, W.E. (2017). Keystone
nonconsumptive effects within a diverse predator community. Ecol.
Evol. , 7, 10315–10325.
Meisner, M., Harmon, J.P., Harvey, C.T. & Ives, A.R. (2011). Intraguild
predation on the parasitoid Aphidius ervi by the generalist predator
Harmonia axyridis: The threat and its avoidance. Entomol. Exp.
Appl. , 138, 193–201.
Meresman, Y., BEN-ARI, M. & Inbar, M. (2017). Turning in mid-air allows
aphids that flee the plant to avoid reaching the risky ground.Integr. Zool. , 12, 409–420.
Michaud, J. & Belliure, B. (2001). Impact of syrphid predation on
production of migrants in colonies of the brown citrus aphid, Toxoptera
citricida (Homoptera: Aphididae). Biol. Control , 21, 91–95.
Michaud, J.P., Barbosa, P.R.R., Bain, C.L. & Torres, J.B. (2016).
Extending the “Ecology of Fear” Beyond Prey: Reciprocal Nonconsumptive
Effects Among Competing Aphid Predators. Environ. Entomol. , 45,
1398–1403.
Miner, B.G., Sultan, S.E., Morgan, S.G., Padilla, D.K. & Relyea, R.A.
(2005). Ecological consequences of phenotypic plasticity. Trends
Ecol. Evol. , 20, 685–692.
Mondor, E.B., Rosenheim, J.A. & Addicott, J.F. (2005). Predator-induced
transgenerational phenotypic plasticity in the cotton aphid.Oecologia , 142, 104–108.
Moore, G.G., Singh, R., Horn, B.W. & Carbone, I. (2009). Recombination
and lineage-specific gene loss in the aflatoxin gene cluster ofAspergillus flavus . Mol. Ecol. , 18, 4870–4887.
Nachman, G. (2006). The Effects of Prey Patchiness, Predator
Aggregation, and Mutual Interference on the Functional Response of
Phytoseiulus persimilis Feeding on Tetranychus urticae (Acari:
Phytoseiidae, Tetranychidae). Exp. Appl. Acarol. , 38, 87–111.
Nakashima, Y. & Senoo, N. (2003). Avoidance of ladybird trails by an
aphid parasitoid Aphidius ervi: active period and effects of prior
oviposition experience. Entomol. Exp. Appl.
Naranjo, S.E., Ellsworth, P.C. & Frisvold, G.B. (2015). Economic Value
of Biological Control in Integrated Pest Management of Managed Plant
Systems. Annu. Rev. Entomol. , 60, 621–645.
Nelson, E.H. (2007). Predator avoidance behavior in the pea aphid:
Costs, frequency, and population consequences. Oecologia , 151,
22–32.
Nelson, E.H. & Rosenheim, J.A. (2006). Encounters between aphids and
their predators: the relative frequencies of disturbance and
consumption. Entomol. Exp. Appl. , 118, 211–219.
Ninkovic, V., Feng, Y., Olsson, U. & Pettersson, J. (2013). Ladybird
footprints induce aphid avoidance behavior. Biol. Control , 65,
63–71.
Northfield, T.D., Snyder, G.B., Ives, A.R. & Snyder, W.E. (2010). Niche
saturation reveals resource partitioning among consumers. Ecol.
Lett. , 13, 338–348.
Oi, D., Porter, S. & Valles, S. (2015). A review of the biological
control of fire ants. Myrmecol. News , 21, 101–116.
Oi, D., Valles, S., Porter, S., Cavanaugh, C., White, G. & Henke, J.
(2019). Introduction of fire ant biological control agents into the
coachella valley of california. Fla. Entomol. , 102, 284–286.
Okada, J. & Akamine, S. (2012). Behavioral response to antennal tactile
stimulation in the field cricket Gryllus bimaculatus. J. Comp.
Physiol. A , 198, 557–565.
Orr, M., Seike, S., Benson, W. & Gilbert, L.E. (1995). Flies suppress
fire ants. Nature , 373, 292.
Orrock, J.L., Grabowski, J.H., Pantel, J.H., Peacor, S.D., Peckarsky,
B.L., Sih, A., et al. (2008). Consumptive and nonconsumptive
effects of predators on metacommunities of competing prey.Ecology , 89, 2426–2435.
Orrock, J.L., Preisser, E.L., Grabowski, J.H. & Trussell, G.C. (2013).
The cost of safety: refuges increase the impact of predation risk in
aquatic systems. Ecology , 94, 573–579.
Otsuki, H. & Yano, S. (2014a). Functionally different predators break
down antipredator defenses of spider mites, 27–33.
Otsuki, H. & Yano, S. (2014b). Potential lethal and non-lethal effects
of predators on dispersal of spider mites. Exp. Appl. Acarol. ,
64, 265–275.
Pallini, A., Janssen, A. & Sabelis, M.W. (1999). Spider mites avoid
plants with predators. Exp. Appl. Acarol. , 23, 803–815.
Pappas, M.L., Broekgaarden, C., Broufas, G.D., Kant, M.R., Messelink,
G.J., Steppuhn, A., et al. (2017). Induced plant defences in
biological control of arthropod pests: a double-edged sword. Pest
Manag. Sci. , 73, 1780–1788.
Pardee, G.L. & Philpott, S.M. (2011). Cascading Indirect Effects in a
Coffee Agroecosystem: Effects of Parasitic Phorid Flies on Ants and the
Coffee Berry Borer in a High-Shade and Low-Shade Habitat. Environ.
Entomol. , 40, 581–588.
Paterson, R.A., Pritchard, D.W., Dick, J.T.A., Alexander, M.E., Hatcher,
M.J. & Dunn, A.M. (2013). Predator cue studies reveal strong
trait-mediated effects in communities despite variation in experimental
designs. Anim. Behav. , 86, 1301–1313.
Peacor, S.D., Peckarsky, B.L., Trussell, G.C. & Vonesh, J.R. (2013).
Costs of predator-induced phenotypic plasticity: a graphical model for
predicting the contribution of nonconsumptive and consumptive effects of
predators on prey. Oecologia , 171, 1–10.
Pearce, S. & Zalucki, M.P. (2006). Do predators aggregate in response
to pest density in agroecosystems? Assessing within-field spatial
patterns. J. Appl. Ecol. , 43, 128–140.
Peckarsky, B.L., Abrams, P.A., Bolnick, D.I. & Dill, L.M. (2008).
Revisiting the Classics : Considering Nonconsumptive Effects in
Textbook Examples of Predator – Prey Interactions. Ecology , 89,
2416–2425.
Penfold, S., Dayananda, B. & Webb, J.K. (2017). Chemical cues influence
retreat-site selection by flat rock spiders. Behaviour , 154,
149–161.
Pepi, A.A., Broadley, H.J. & Elkinton, J.S. (2016). Density-dependent
effects of larval dispersal mediated by host plant quality on
populations of an invasive insect. Oecologia , 182, 499–509.
Polis, G.A. (1981). The Evolution and Dynamics of Intraspecific
Predation. Annu. Rev. Ecol. Syst. , 12, 225–251.
Polis, G.A. (1999). Why are parts of the world green? Multiple factors
control productivity and the distribution of biomass. Oikos ,
3–15.
Polis, G.A., Myers, C.A. & Holt, R.D. (1989). The ecology and evolution
of intraguild predation: potential competitors that eat each other.Annu. Rev. Ecol. Syst. , 20, 297–330.
Porter, S.D. & Gilbert, L.E. (2004). Assessing host specificity and
field release potential of fire ant decapitating flies (Phoridae:
Pseudacteon). Assess. Host Ranges Parasit. Predat. Used Class.
Biol. Control Guide Best Pract. For. Health Technol. Enterp. Team FHTET
Publ. , 3, 152–176.
Porter, S.D., Meer, R.K.V., Pesquero, M.A., Campiolo, S. & Fowler, H.G.
(1995). Solenopsis (Hymenoptera: Formicidae) fire ant reactions to
attacks of Pseudacteon flies (Diptera: Phoridae) in southeastern Brazil.Ann. Entomol. Soc. Am. , 88, 570–575.
Preisser, E.L. & Bolnick, D.I. (2008). The many faces of fear:
Comparing the pathways and impacts of nonconsumptive predator effects on
prey populations. PLoS ONE , 3, 5–8.
Preisser, E.L., Bolnick, D.I. & Benard, M.F. (2005). Scared To Death?
the Effects of Intimidation and Consumption in Predator–Prey
Interactions. Ecology , 86, 501–509.
Preisser, E.L., Orrock, J.L. & Schmitz, O.J. (2007). Predator hunting
mode and habitat domain alter nonconsumptive effects in predator-prey
interactions. Ecology .
R. E. Southwood, T. & Henderson, P. (2000). Ecological Methods
3rd edition .
Rabus, M. & Laforsch, C. (2011). Growing large and bulky in the
presence of the enemy: Daphnia magna gradually switches the mode of
inducible morphological defences. Funct. Ecol. , 25, 1137–1143.
Ramirez, R.A., Crowder, D.W., Snyder, G.B., Strand, M.R. & Snyder, W.E.
(2010). Antipredator behavior of Colorado potato beetle larvae differs
by instar and attacking predator. Biol. Control , 53, 230–237.
Raymond, B., Darby, A. & Douglas, A. (2000). Intraguild predators and
the spatial distribution of a parasitoid. Oecologia , 124,
367–372.
Reddy, G.V.P. (2002). Plant volatiles mediate orientation and plant
preference by the predator Chrysoperla carnea Stephens (Neuroptera:
Chrysopidae). Biol. Control , 25, 49–55.
Relyea, R.A. (2007). Getting out alive: how predators affect the
decision to metamorphose. Oecologia , 152, 389–400.
Relyea, R.A., Stephens, P.R., Barrow, L.N., Blaustein, A.R., Bradley,
P.W., Buck, J.C., et al. (2018). Phylogenetic patterns of trait
and trait plasticity evolution: Insights from amphibian embryos.Evolution , 72, 663–678.
Rendon, D., Whitehouse, M.E.A. & Taylor, P.W. (2016). Consumptive and
non-consumptive effects of wolf spiders on cotton bollworms.Entomol. Exp. Appl. , 158, 170–183.
Roberts, D. (2014). Mosquito Larvae Change Their Feeding Behavior in
Response to Kairomones From Some Predators. J. Med. Entomol. , 51,
368–374.
Rosenheim, J. a, Kaya, H.K., Ehler, L.E., Marois, J.J. & Jaffee, B. a.
(1995). Intraguild predation among biological control agents - Theory
and evidence. Biol. Control , 5, 303–335.
Rosenheim, J.A. (1998). Higher-Order Predators and the Regulation of
Insect Herbivore Populations. Annu. Rev. Entomol. , 43, 421–447.
Rypstra, A.L. & Buddle, C.M. (2012). Spider silk reduces insect
herbivory. Biol. Lett. , 9, 20120948–20120948.
Saul, W.-C. & Jeschke, J.M. (2015). Eco-evolutionary experience in
novel species interactions. Ecol. Lett. , 18, 236–245.
Schausberger, P. (2003). Cannibalism among phytoseiid mites: a review.Exp. Appl. Acarol. , 29, 173–191.
Schmitz, O.J. (1998). Direct and indirect effects of predation and
predation risk in old-field interaction webs. Am. Nat. , 151,
327–342.
Schmitz, O.J., Beckerman, A.P. & O’Brien, K.M. (1997). Behaviorally
Mediated Trophic Cascades : Effects of Predation Risk on Food Web
Interactions. Ecology , 78, 1388–1399.
Schmitz, O.J., Grabowski, J.H., Peckarsky, B.L., Preisser, E.L.,
Trussell, G.C. & Vonesh, J.R. (2008). From individuals to ecosystem
function: towards an integration of evolutionary and ecosystem ecology.Ecology , 89, 2436–2445.
Schmitz, O.J., Krivan, V. & Ovadia, O. (2004). Trophic cascades: The
primacy of trait-mediated indirect interactions. Ecol. Lett. , 7,
153–163.
Schoeppner, N.M. & Relyea, R.A. (2005). Damage, digestion, and defence:
the roles of alarm cues and kairomones for inducing prey defences:
Damage, digestion, and defence. Ecol. Lett. , 8, 505–512.
Seiter, M. & Schausberger, P. (2015). Maternal intraguild predation
risk affects offspring anti-predator behavior and learning in mites.Sci. Rep. , 5, 15046.
Shang, G.-Z., Zhu, Y.-H., Wu, Y., Cao, Y.-F. & Bian, J.-H. (2019).
Synergistic effects of predation and parasites on the overwinter
survival of root voles. Oecologia , 191, 83–96.
Sih, A. (1992). Prey Uncertainty and the Balancing of Antipredator and
Feeding. Am. Nat. , 139, 1052–1069.
Sih, A., Bell, A. & Johnson, J.C. (2004). Behavioral syndromes: an
ecological and evolutionary overview. Trends Ecol. Evol. , 19,
372–378.
Sih, A., Bolnick, D.I., Luttbeg, B., Orrock, J.L., Peacor, S.D., Pintor,
L.M., et al. (2010). Predator-prey naivete, antipredator
behavior, and the ecology of predator invasions. Oikos , 119,
610–621.
Sih, A., Englund, G. & Wooster, D. (1998). Emergent impacts of multiple
predators on prey. Trends Ecol. Evol. , 13, 350–355.
Sih, A. & Wooster, D.E. (1994). Prey behavior, prey dispersal, and
predator impacts on stream prey. Ecology , 75, 1199–1207.
Silberbush, A. & Blaustein, L. (2011). Mosquito females quantify risk
of predation to their progeny when selecting an oviposition site.Funct. Ecol. , 25, 1091–1095.
Silberbush, A., Markman, S., Lewinsohn, E., Bar, E., Cohen, J.E. &
Blaustein, L. (2010). Predator-released hydrocarbons repel oviposition
by a mosquito. Ecol. Lett. , 13, 1129–1138.
Silberbush, A., Tsurim, I., Margalith, Y. & Blaustein, L. (2014).
Interactive effects of salinity and a predator on mosquito oviposition
and larval performance. Oecologia , 175, 565–575.
Simberloff, D. & Stiling, P. (1996). How Risky is Biological Control?Ecology , 77, 1965–1974.
Sitvarin, M.I. & Rypstra, A.L. (2012). Sex-Specific Response ofPardosa milvina (Araneae: Lycosidae) to Experience with a
Chemotactile Predation Cue. Ethology , 118, 1230–1239.
Skals, N. (2005). Her odours make him deaf: crossmodal modulation of
olfaction and hearing in a male moth. J. Exp. Biol. , 208,
595–601.
Sloggett, J.J. & Weisser, W.W. (2002). Parasitoids induce production of
the dispersal morph of the pea aphid, Acyrthosiphon pisum .Oikos , 98, 323–333.
Snyder, W.E. & Ives, A.R. (2008). Behavior influences whether
intra-guild predation disrupts herbivore suppression by parasitoids.Behav. Ecol. Insect Parasit. Blackwell Pub Malden MA USA , 71–91.
Snyder, W.E. & Wise, D.H. (2000). Antipredator Behavior of Spotted
Cucumber Beetles (Coleoptera: Chrysomelidae) in Response to Predators
That Pose Varying Risks. Environ. Entomol. , 29, 35–42.
Snyder, W.E., Wise, D.H. & Wise, D.H. (2000). Antipredator Behavior of
Spotted Cucumber Beetles (Coleoptera : Chrysomelidae) in Response to
Predators That Pose Varying Risks. Community Ecosyst. Ecol. , 29,
35–42.
Stamps, J.A. (2007). Growth-mortality tradeoffs and ‘personality traits’
in animals. Ecol. Lett. , 10, 355–363.
Stankowich, T. & Blumstein, D.T. (2005). Fear in animals: a
meta-analysis and review of risk assessment. Proc. R. Soc. B Biol.
Sci. , 272, 2627–2634.
Stastny, M. & Sargent, R.D. (2017). Evidence for rapid evolutionary
change in an invasive plant in response to biological control. J.
Evol. Biol. , 30, 1042–1052.
Stav, G., Blaustein, L. & Margalit, Y. (2000). Influence of nymphal
Anax imperator (Odonata: Aeshnidae) on oviposition by the mosquito
Culiseta longiareolata (Diptera: Culicidae) and community structure in
temporary pools. J. Vector Ecol. , 13.
Stav, G., Kotler, B.P. & Blaustein, L. (2010). Foraging Response to
Risks of Predation and Competition in Artificial Pools. Isr. J.
Ecol. Evol. , 56, 9–20.
Stephan, J.G., Stenberg, J.A. & Björkman, C. (2017). Consumptive and
nonconsumptive effect ratios depend on interaction between plant quality
and hunting behavior of omnivorous predators. Ecol. Evol. , 7,
2327–2339.
Straub, C.S. & Snyder, W.E. (2008). Increasing enemy biodiversity
strengthens herbivore suppression on two plant species. Ecology ,
89, 1605–1615.
Suh, C.P.-C., Orr, D.B. & Van Duyn, J.W. (2000). Trichogramma Releases
in North Carolina Cotton: Why Releases Fail to Suppress Heliothine
Pests. J. Econ. Entomol. , 93, 1137–1145.
Tabashnik, B.E., Brévault, T. & Carrière, Y. (2013). Insect resistance
to Bt crops: lessons from the first billion acres. Nat.
Biotechnol. , 31, 510.
Tamaki, G., Eric, J.E. & Hathaway, D.O. (1970). Dispersal and Reduction
of Colonies of Pea Aphids by Aphidius smithi (Hymenoptera: Aphidiidae).Ann Entomol Soc Am , 63, 973–980.
Thaker, M., Vanak, A.T., Owen, C.R., Ogden, M.B., Niemann, S.M. &
Slotow, R. (2011). Minimizing predation risk in a landscape of multiple
predators: effects on the spatial distribution of African ungulates.Ecology , 92, 398–407.
Thaler, J.S., Contreras, H. & Davidowitz, G. (2014). Effects of
predation risk and plant resistance on Manduca sexta caterpillar feeding
behaviour and physiology. Ecol. Entomol. , 39, 210–216.
Thaler, J.S. & Griffin, C.A.M. (2008). Relative importance of
consumptive and non-consumptive effects of predators on prey and plant
damage: the influence of herbivore ontogeny. Entomol. Exp. Appl. ,
128, 34–40.
Thaler, J.S., McArt, S.H. & Kaplan, I. (2012). Compensatory mechanisms
for ameliorating the fundamental trade-off between predator avoidance
and foraging. Proc. Natl. Acad. Sci. , 109, 12075–12080.
Tollrian, R. (1995). Predator-Induced Morphological Defenses : Costs ,
Life History Shifts , and Maternal Effects in Daphnia Pulex.Ecology , 76, 1691–1705.
Trimmer, P.C., Ehlman, S.M. & Sih, A. (2017). Predicting behavioural
responses to novel organisms: state-dependent detection theory.Proc. R. Soc. B Biol. Sci. , 284, 20162108.
Tscharntke, T., Bommarco, R., Clough, Y., Crist, T.O., Kleijn, D., Rand,
T.A., et al. (2007). Conservation biological control and enemy
diversity on a landscape scale. Biol. Control , 43, 294–309.
Tscharntke, T., Karp, D.S., Chaplin-Kramer, R., Bat??ry, P., DeClerck,
F., Gratton, C., et al. (2016). When natural habitat fails to
enhance biological pest control - Five hypotheses. Biol. Conserv.
Tyndale-Biscoe, M. & Vogt, W.G. (1996). Population status of the bush
fly, Musca vetustissima (Diptera: Muscidae), and native dung beetles
(Coleoptera: Scarabaeinae) in south-eastern Australia in relation to
establishment of exotic dung beetles. Bull. Entomol. Res. , 86,
183.
Uesugi, A. (2015). The slow-growth high-mortality hypothesis: direct
experimental support in a leafmining fly. Ecol. Entomol. , 40,
221–228.
Valente, C., Afonso, C., Gonçalves, C.I., Alonso-Zarazaga, M.A., Reis,
A. & Branco, M. (2017). Environmental risk assessment of the egg
parasitoid Anaphes inexpectatus for classical biological control of the
Eucalyptus snout beetle, Gonipterus platensis. BioControl , 62,
457–468.
Van Driesche, R.G. (2016). Methods for evaluation of natural enemy
impacts on invasive pests of wildlands. Integrating Biol. Control
Conserv. Pract. WileyBlackwell Oxf. UK , 189–207.
Vance-Chalcraft, H.D., Rosenheim, J.A., Vonesh, J.R., Osenberg, C.W. &
Sih, A. (2007). The influence of intraguild predation on prey
suppression and prey release: a meta-analysis. Ecology , 88,
2689–2696.
Vance-Chalcraft, H.D. & Soluk, D.A. (2005). Estimating the prevalence
and strength of non-independent predator effects. Oecologia , 146,
452–460.
Vandermoten, S., Mescher, M.C., Francis, F., Haubruge, E. & Verheggen,
F.J. (2012). Aphid alarm pheromone: an overview of current knowledge on
biosynthesis and functions. Insect Biochem. Mol. Biol. , 42,
155–163.
Velasco-Hernández, M.C., Ramirez-Romero, R., Cicero, L., Michel-Rios, C.
& Desneux, N. (2013). Intraguild predation on the whitefly parasitoid
Eretmocerus eremicus by the generalist predator Geocoris punctipes: a
behavioral approach. PloS One , 8, e80679.
Venzon, M., Janssen, A., Pallini, A. & Sabelis, M.W. (2000). Diet of a
polyphagous arthropod predator affects refuge seeking of its thrips
prey. Anim. Behav. , 60, 369–375.
Verdolin, J.L. (2006). Meta-analysis of foraging and predation risk
trade-offs in terrestrial systems. Behav. Ecol. Sociobiol. , 60,
457–464.
Vonesh, J.R. & Blaustein, L. (2010). Predator-Induced Shifts in
Mosquito Oviposition Site Selection : A Meta-Analysis and Implications
for Vector Control. Isr. J. Ecol. Evol. , 56, 263–279.
de Vos, M., Cheng, W.Y., Summers, H.E., Raguso, R.A. & Jander, G.
(2010). Alarm pheromone habituation in Myzus persicae has fitness
consequences and causes extensive gene expression changes. Proc.
Natl. Acad. Sci. , 107, 14673–14678.
Walzer, A., Lepp, N. & Schausberger, P. (2015). Compensatory growth
following transient intraguild predation risk in predatory mites.Oikos , 124, 603–609.
Walzer, A. & Schausberger, P. (2009). Non-consumptive effects of
predatory mites on thrips and its host plant. Oikos , 118,
934–940.
Wanger, T.C., Wielgoss, A.C., Motzke, I., Clough, Y., Brook, B.W.,
Sodhi, N.S., et al. (2011). Endemic predators, invasive prey and
native diversity. Proc. R. Soc. B Biol. Sci. , 278, 690–694.
Warburg, A., Faiman, R., Shtern, A., Silberbush, A., Markman, S., Cohen,
J.E., et al. (2011). Oviposition Habitat Selection by Anopheles
gambiae in Response to Chemical Cues by Notonecta Maculata Oviposition
habitat selection by Anopheles gambiae in response to chemical cues by
Notonecta maculata. J. Vector Ecol. , 36, 421–425.
Wasserberg, G., White, L., Bullard, A., King, J. & Maxwell, R. (2013).
Oviposition site selection in Aedes albopictus (Diptera: Culicidae): are
the effects of predation risk and food level independent? J Med
Entomol , 50, 1159–1164.
Weber, D.C., Rowley, D.L., Greenstone, M.H. & Athanas, M.M. (2006).
Prey preference and host suitability of the predatory and parasitoid
carabid beetle, Lebia grandis, for several species of Leptinotarsa
beetles. J. Insect Sci. , 6, 1–14.
Weissburg, M. & Beauvais, J. (2015). The smell of success: the amount
of prey consumed by predators determines the strength and range of
cascading non-consumptive effects. PeerJ , 3, e1426.
Weissburg, M., Smee, D.L. & Ferner, M.C. (2014). The Sensory Ecology of
Nonconsumptive Predator Effects. Am. Nat. , 184, 141–157.
Weisser, W.W., Braendle, C. & Minoretti, N. (1999). Predator-induced
morphological shift in the pea aphid. Proc. R. Soc. B Biol. Sci. ,
266, 1175–1181.
Welch, K.D. & Harwood, J.D. (2014). Temporal dynamics of natural
enemy-pest interactions in a changing environment. Biol. Control ,
75, 18–27.
Werner, E.E. & Anholt, B.R. (1996). Predator-induced behavioral
indirect effects: consequences to competitive interactions in anuran
larvae. Ecology , 77, 157–169.
Werner, E.E. & Peacor, S.D. (2003). A review of trait- mediated
indirect interactions in ecological communities. Ecology , 84,
1083–1100.
Wiedenmann, R.N. & Smith, J.W. (1997). Attributes of Natural Enemies in
Ephemeral Crop Habitats. Biol. Control , 10, 16–22.
Wilson, E.E., Mullen, L.M. & Holway, D.A. (2009). Life history
plasticity magnifies the ecological effects of a social wasp invasion.Proc. Natl. Acad. Sci. , 106, 12809–12813.
Wilson, M.R. & Leather, S.R. (2012). The effect of past natural enemy
activity on host-plant preference of two aphid species. Entomol.
Exp. Appl. , 144, 216–222.
Winder, L., Alexander, C.J., Holland, J.M., Woolley, C. & Perry, J.N.
(2001). Modelling the dynamic spatio-temporal response of predators to
transient prey patches in the field. Ecol. Lett. , 4, 568–576.
Wise, D.H. (2006). Cannibalism, Food Limitation, Intraspecific
Competition, and the Regulation of Spider Populations. Annu. Rev.
Entomol. , 51, 441–465.
Wuellner, A.C.T., Aglio-Holvorcem, C.G.D., Benson, W.W. & Gilbert, E.
(2002). Phorid Fly ( Diptera : Phoridae ) Oviposition Behavior and Fire
Ant ( Hymenoptera : Formicidae ) Reaction to Attack Differ According to
Phorid Species Phorid Fly ( Diptera : Phoridae ) Oviposition Behavior
and Fire Ant ( Hymenoptera : Formicidae ) Reactio. Ann. Entomol.
Soc. Am. , 95, 257–266.
Xiong, X., Michaud, J.P., Li, Z., Wu, P., Chu, Y., Zhang, Q., et
al. (2015). Chronic , predator-induced stress alters development and
reproductive performance of the cotton bollworm , Helicoverpa ar ….BioControl .
Zaguri, M. & Hawlena, D. (2019). Bearding the scorpion in his den:
desert isopods take risks to validate their ‘landscape of fear’
assessment. Oikos , 128, 1458–1466.
Zhang, W. & Swinton, S.M. (2012). Optimal control of soybean aphid in
the presence of natural enemies and the implied value of their ecosystem
services. J. Environ. Manage. , 96, 7–16.