Acknowledgments: We would like to acknowledge Sara Hermann, Paul Abram and Lea Pollack for their thoughtful comments on drafts of the manuscript, and members of the Rosenheim Lab for insightful discussions on various topics covered in the manuscript. MCM was supported by a USDA NIFA Predoctoral Fellowship (Award 2019-67011-29710) during stages of writing the manuscript. We dedicate this paper to the memory of Leon Blaustein, an important contributor to the field of enemy risk ecology and former UC Davis student, who passed away during the preparation of this manuscript.
Abram, P.K., Brodeur, J., Burte, V. & Boivin, G. (2016). Parasitoid-induced host egg abortion: An underappreciated component of biological control services provided by egg parasitoids. Biol. Control, 98, 52–60.
Abram, P.K., Brodeur, J., Urbaneja, A. & Tena, A. (2019). Nonreproductive Effects of Insect Parasitoids on Their Hosts. Annu. Rev. Entomol., 64, 259–276.
Abrams, P.A. (2008). Measuring the population-level consequences of predator-induced prey movement. Evol. Ecol. Res., 10, 333–350.
Abrams, P.A. & Matsuda, H. (1997). Prey Adaptation as a Cause of Predator-Prey Cycles. Evolution, 51, 10.
Abrams, P.A., Menge, B.A., Mittelbach, G.G., Spiller, D.A. & Yodzis, P. (1996). The role of indirect effects in food webs. In: Food webs. Springer, pp. 371–395.
Agarwala, B.K., Yasuda, H. & Kajita, Y. (2003). Effect of conspecific and heterospecific feces on foraging and oviposition of two predatory ladybirds: role of fecal cues in predator avoidance. J. Chem. Ecol., 29, 357–376.
Angelon, K.I.M.A. & Petranka, J.W. (2002). Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition sites by Culex mosquitoes, 28, 797–807.
Bailey, S.M., Irwin, M.E., Kampmeier, G.E., Eastman, C.E. & Hewings, A.D. (1995). Physical and biological perturbations: their effect on the movement of apterous Rhopalosiphum padi (Homoptera: Aphididae) and localized spread of barley yellow dwarf virus. Environ. Entomol., 24, 24–33.
Bannerman, J.A., Gillespie, D.R. & Roitberg, B.D. (2011). The impacts of extreme and fluctuating temperatures on trait-mediated indirect aphid-parasitoid interactions. Ecol. Entomol., 36, 490–498.
Barratt, B.I.P., Howarth, F.G., Withers, T.M., Kean, J.M. & Ridley, G.S. (2010). Progress in risk assessment for classical biological control. Biol. Control, 52, 245–254.
Bedoya-Perez, M.A., Smith, K.L., Kevin, R.C., Luo, J.L., Crowther, M.S. & McGregor, I.S. (2019). Parameters that affect fear responses in rodents and how to use them for management. Front. Ecol. Evol., 7, 136.
Bellamy, S.K. & Alto, B.W. (2018). Mosquito responses to trait- and density-mediated interactions of predation. Oecologia, 187, 233–243.
Belliure, B., Amorós-Jiménez, R., Fereres, A. & Marcos-García, M.Á. (2011). Antipredator behaviour of Myzus persicae affects transmission efficiency of Broad bean wilt virus 1. Virus Res., 159, 206–214.
Benard, M.F. (2004). Predator-Induced Phenotypic Plasticity in Organisms with Complex Life Histories. Annu. Rev. Ecol. Evol. Syst., 35, 651–673.
Berberet, R.C., Zarrabi, A.A., Payton, M.E. & Bisges, A.D. (2003). Reduction in Effective Parasitism of <I>Hypera postica</I> (Coleoptera: Curculionidae) by <I>Bathyplectes curculionis</I> (Hymenoptera: Ichneumonidae) Due to Encapsulation. Environ. Entomol., 32, 1123–1130.
Bianchi, F.J.J. a, Booij, C.J.H. & Tscharntke, T. (2006). Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. Biol. Sci., 273, 1715–1727.
Bigler, F., Babendreier, D. & Kuhlmann, U. (2006). Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CABI.
Bilu, E. & Coll, M. (2007). The importance of intraguild interactions to the combined effect of a parasitoid and a predator on aphid population suppression. BioControl, 52, 753–763.
Blaustein, L., Blaustein, J. & Chase, J. (2005). Chemical detection of the predator Notonecta irrorata by ovipositing Culex mosquitoes. J. Vector Ecol., 30, 3.
Blossey, B. & Notzold, R. (1995). Evolution of Increased Competitive Ability in Invasive Nonindigenous Plants: A Hypothesis. J. Ecol., 83, 887.
Blumstein, D.T. (2006). The Multipredator Hypothesis and the Evolutionary Persistence of Antipredator Behavior. Ethology, 112, 209–217.
Boonstra, R., Hik, D., Singleton, G.R. & Tinnikov, A. (1998). The impact of predator-induced stress on the snowshoe hare cycle. Ecol. Monogr., 68, 371–394.
Bourdeau, P.E. & Johansson, F. (2012). Predator-induced morphological defences as by-products of prey behaviour: A review and prospectus. Oikos, 121, 1175–1190.
Brown, J.S. & Kotler, B.P. (2004). Hazardous duty pay and the foraging cost of predation. Ecol. Lett., 7, 999–1014.
Buchanan, A.L., Hermann, S.L., Lund, M. & Szendrei, Z. (2017). A meta-analysis of non-consumptive predator effects in arthropods : the infl uence of organismal and environmental characteristics, 1–8.
Bucher, R., Binz, H., Menzel, F. & Entling, M.H. (2014). Effects of spider chemotactile cues on arthropod behavior. J. Insect Behav., 27, 567–580.
Bulgarella, M., Quiroga, M.A., Boulton, R.A., Ramírez, I.E., Moon, R.D., Causton, C.E., et al. (2017). Life cycle and host specificity of the parasitoid Conura annulifera (Hymenoptera: Chalcididae), a potential biological control agent of Philornis downsi (Diptera: Muscidae) in the Galápagos Islands. Ann. Entomol. Soc. Am., 110, 317–328.
Calcaterra, L.A., Delgado, A. & Tsutsui, N.D. (2008). Activity patterns and parasitism rates of fire ant-decapitating flies (Diptera: Phoridae: Pseudacteon spp.) in their native Argentina. Ann. Entomol. Soc. Am., 101, 539–550.
Calvet, É.C., Lima, D.B., Melo, J.W.S. & Gondim, M.G.C. (2018). Chemosensory cues of predators and competitors influence search for refuge in fruit by the coconut mite Aceria guerreronis. Exp. Appl. Acarol., 74, 249–259.
Carpenter, S.R., Kitchell, J.F., Hodgson, J.R., Cochran, P.A., Elser, J.J., Elser, M.M., et al. (1987). Regulation of Lake Primary Productivity by Food Web Structure. Ecology, 68, 1863–1876.
Carrière, Y., Fabrick, J.A. & Tabashnik, B.E. (2016). Can pyramids and seed mixtures delay resistance to Bt crops? Trends Biotechnol., 34, 291–302.
Carroll, M.W., Head, G. & Caprio, M. (2012). When and where a seed mix refuge makes sense for managing insect resistance to Bt plants. Crop Prot., 38, 74–79.
Carthey, A.J. & Blumstein, D.T. (2018). Predicting predator recognition in a changing world. Trends Ecol. Evol., 33, 106–115.
Carthey, A.J.R. & Banks, P.B. (2014). Na ï vet ´ e in novel ecological interactions : lessons from theory and experimental evidence, 89, 932–949.
Castellanos, I. & Barbosa, P. (2006). Evaluation of predation risk by a caterpillar using substrate-borne vibrations. Anim. Behav., 72, 461–469.
Castellanos, I., Barbosa, P., Zuria, I., Tammaru, T. & Christman, M.C. (2011). Contact with caterpillar hairs triggers predator-specific defensive responses. Behav. Ecol., 22, 1020–1025.
Chen, L. & Fadamiro, H.Y. (2018). Pseudacteon phorid flies: Host specificity and impacts on solenopsis fire ants. Annu. Rev. Entomol., 63, 47–67.
Choh, Y., Sabelis, M.W. & Janssen, A. (2015). Distribution and oviposition site selection by predatory mites in the presence of intraguild predators. Exp. Appl. Acarol., 67, 477–491.
Choh, Y., Takabayashi, J., Sabelis, M.W. & Janssen, A. (2014). Witnessing predation can affect strength of counterattack in phytoseiids with ontogenetic predator–prey role reversal. Anim. Behav., 93, 9–13.
Clark, C.W. (1994). Antipredator behavior and the asset-protection principle. Behav. Ecol., 5, 159–170.
Clark, R.E., Basu, S., Lee, B.W. & Crowder, D.W. (2019). Tri‐trophic interactions mediate the spread of a vector‐borne plant pathogen. Ecology, 100.
Clinchy, M., Sheriff, M.J. & Zanette, L.Y. (2013). Predator-induced stress and the ecology of fear. Funct. Ecol., 27, 56–65.
Cloutier, C. & Bauduin, F. (1995). Biological Control Of The Colorado Potato Beetle Leptinotarsa Decemlineata (Coleoptera: Chrysomelidae) In Quebec By Augmentative Releases Of The Two-spotted Stinkbug Perillus Bioculatus (Hemiptera: Pentatomidae). Can. Entomol., 127, 195–212.
Coll, M. (1996). Feeding and ovipositing on plants by an omnivorous insect predator. Oecologia, 105, 214–220.
Collier, T. & Van Steenwyk, R. (2004). A critical evaluation of augmentative biological control. Biol. Control, 31, 245–256.
Cook, S.M., Khan, Z.R. & Pickett, J. a. (2007). The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol., 52, 375–400.
Cotes, B., Rännbäck, L.-M., Björkman, M., Norli, H.R., Meyling, N.V., Rämert, B., et al. (2015). Habitat selection of a parasitoid mediated by volatiles informing on host and intraguild predator densities. Oecologia, 179, 151–162.
Cox, J.G. & Lima, S.L. (2006). Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol., 21, 674–680.
Creel, S. & Christianson, D. (2008). Relationships between direct predation and risk effects. Trends Ecol. Evol., 23, 194–201.
Crowder, D.W., Li, J., Borer, E.T., Finke, D.L., Sharon, R., Pattemore, D.E., et al. (2019). Species interactions affect the spread of vector‐borne plant pathogens independent of transmission mode. Ecology, 100.
Cuny, M.A.C., Traine, J., Bustos-Segura, C. & Benrey, B. (2019). Host density and parasitoid presence interact and shape the outcome of a tritrophic interaction on seeds of wild lima bean. Sci. Rep., 9.
Dáder, B., Moreno, A., Viñuela, E. & Fereres, A. (2012). Spatio-temporal dynamics of viruses are differentially affected by parasitoids depending on the mode of transmission. Viruses, 4, 3069–3089.
Deas, J.B. & Hunter, M.S. (2013). Delay, avoidance and protection in oviposition behaviour in response to fine-scale variation in egg parasitism risk. Anim. Behav., 86, 933–940.
Delnat, V., Janssens, L. & Stoks, R. (2020). Effects of predator cues and pesticide resistance on the toxicity of a (bio)pesticide mixture. Pest Manag. Sci., 76, 1448–1455.
Denno, R.F. & Peterson, M.A. (1995). Density-dependent dispersal and its consequences for population dynamics. Popul. Dyn. New Approaches Synth., 113–130.
Dias, C.R., Bernardo, A.M.G., Mencalha, J., Freitas, C.W.C., Sarmento, R.A., Pallini, A., et al. (2016). Antipredator behaviours of a spider mite in response to cues of dangerous and harmless predators. Exp. Appl. Acarol., 69, 263–276.
Dicke, M. & Grostal, P. (2001). Chemical Detection of Natural Enemies by Arthropods: An Ecological Perspective. Annu. Rev. Ecol. Syst., 32, 1–23.
Duffy, M.A., Housley, J.M., Penczykowski, R.M., Caceres, C.E. & Hall, S.R. (2011). Unhealthy herds: indirect effects of predators enhance two drivers of disease spread. Funct. Ecol., 25, 945–953.
Dumont, F., Lucas, E. & Brodeur, J. (2015). Do furtive predators benefit from a selfish herd effect by living within their prey colony? Behav. Ecol. Sociobiol., 69, 971–976.
Dupuy, M.M. & Ramirez, R.A. (2019). Consumptive and non-consumptive effects of predatory arthropods on billbug (Coleoptera: Dryophthoridae) pests in turfgrass. Biol. Control, 129, 136–147.
Ehlman, S.M., Trimmer, P.C. & Sih, A. (2019). Prey Responses to Exotic Predators: Effects of Old Risks and New Cues. Am. Nat., 193, 575–587.
Eilenberg, J., Hajek, A. & Lomer, C. (2001). Suggestions for unifying the terminology in biological control. BioControl, 46, 387–400.
Elliott, K.H., Betini, G.S., Dworkin, I. & Norris, D.R. (2016). Experimental evidence for within- and cross-seasonal effects of fear on survival and reproduction. J. Anim. Ecol., 85, 507–515.
Feener, D.H. (1981). Competition between ant species: outcome controlled by parasitic flies. Science, 214, 815–817.
Feener Jr., D.H. & Brown, B.V. (1992). Reduced foraging of Solenopsis geminata (Hymenoptera: Formicidae) in the presence of parasitic Pseudacteon spp. (Diptera: Phoridae). Ann. Entomol. Soc. Am., 85, 80–84.
Ferrari, M.C., Wisenden, B.D. & Chivers, D.P. (2010). Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool., 88, 698–724.
Ferrari, M.C.O., McCormick, M.I., Meekan, M.G. & Chivers, D.P. (2015). Background level of risk and the survival of predator-naive prey: can neophobia compensate for predator naivety in juvenile coral reef fishes? Proc. R. Soc. B Biol. Sci., 282, 20142197.
Fievet, V., Lhomme, P. & Outreman, Y. (2008). Predation risk cues associated with killed conspecifics affect the behavior and reproduction of prey animals. Oikos, 117, 1380–1385.
Fill, A., Long, E.Y. & Finke, D.L. (2012). Non-consumptive effects of a natural enemy on a non-prey herbivore population. Ecol. Entomol., 37, 43–50.
Finke, D.L. (2012). Contrasting the consumptive and non-consumptive cascading effects of natural enemies on vector-borne pathogens. Entomol. Exp. Appl., 144, 45–55.
Finke, D.L. & Snyder, W.E. (2008). Niche partitioning increases resource exploitation by diverse communities. Science, 321, 1488–1490.
Fischhoff, I.R., Burtis, J.C., Keesing, F. & Ostfeld, R.S. (2018). Tritrophic interactions between a fungal pathogen, a spider predator, and the blacklegged tick. Ecol. Evol., 8, 7824–7834.
Folgarait, P.J. & Gilber, L.E. (1999). Phorid parasitoids affect foraging activity of Solenopsis richteri under different availability of food in Argentina. Ecol. Ent, 24, 163–173.
Fouzai, N., Opdal, A.F., Jørgensen, C. & Fiksen, Ø. (2019). Dying from the lesser of three evils: facilitation and non-consumptive effects emerge in a model with multiple predators. Oikos, 128, 1307–1317.
Frago, E. (2016). Interactions between parasitoids and higher order natural enemies: intraguild predation and hyperparasitoids. Curr. Opin. Insect Sci., 14, 81–86.
Frago, E. & Godfray, H.C.J. (2014). Avoidance of intraguild predation leads to a long-term positive trait-mediated indirect effect in an insect community. Oecologia, 174, 943–952.
Fraker, M.E. & Luttbeg, B. (2012). Predator–prey space use and the spatial distribution of predation events. Behaviour, 149, 555–574.
Francesena, N., Rocca, M., Rizzo, E., Arneodo, J.D. & Greco, N.M. (2019). Potential of predatory Neotropical ladybirds and minute pirate bug on strawberry aphid. An. Acad. Bras. Ciênc., 91.
Furlong, M.J. (2015). Knowing your enemies: integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests. Insect Sci., 22, 6–19.
Garcia, A.G., Ferreira, C.P., Cônsoli, F.L. & Godoy, W.A. (2016). Predicting evolution of insect resistance to transgenic crops in within-field refuge configurations, based on larval movement. Ecol. Complex., 28, 94–103.
Gish, M., Dafni, A. & Inbar, M. (2011). Avoiding incidental predation by mammalian herbivores: accurate detection and efficient response in aphids. Naturwissenschaften, 98, 731–738.
Godfray, H.C.J. & Waage, J.K. (1991). Predictive Modelling in Biological Control: The Mango Mealy Bug (Rastrococcus invadens) and Its Parasitoids. J. Appl. Ecol., 28, 434.
Gonçalves-Souza, T., Omena, P.M., Souza, J.C. & Romero, G.Q. (2008). Trait-mediated effects on flowers: artificial spiders deceive pollinators and decrease plant fitness. Ecology, 89, 2407–2413.
Goodale, E. & Nieh, J.C. (2012). Public use of olfactory information associated with predation in two species of social bees. Anim. Behav., 84, 919–924.
Griffin, C.A.M. & Thaler, J.S. (2006). Insect predators affect plant resistance via density- and trait-mediated indirect interactions. Ecol. Lett., 9, 335–343.
Gruner, D.S. (2005). Biotic resistance to an invasive spider conferred by generalist insectivorous birds on Hawai’i Island. Biol. Invasions, 7, 541–546.
Gyuris, E., Szép, E., Kontschán, J., Hettyey, A. & Tóth, Z. (2017). Behavioural responses of two-spotted spider mites induced by predator-borne and prey-borne cues. Behav. Processes, 144, 100–106.
Hajek, A.E., Hurley, B.P., Kenis, M., Garnas, J.R., Bush, S.J., Wingfield, M.J., et al. (2016). Exotic biological control agents: a solution or contribution to arthropod invasions? Biol. Invasions, 18, 953–969.
Hamburg, H.V. & Hassell, M.P. (1984). Density dependence and the augmentative release of egg parasitoids against graminaceous stalk borers. Ecol. Entomol., 9, 101–108.
Hammill, E., Fitzjohn, R.G. & Srivastava, D.S. (2015). Conspecific density modulates the effect of predation on dispersal rates. Oecologia, 178, 1149–1158.
Hassell, M.P. & Varley, G.C. (1969). New Inductive Population Model for Insect Parasites and its Bearing on Biological Control. Nature, 223, 1133–1137.
Havel, J.E. & Dodson, S.I. (1984). Chaoborus predation on typical and spined morphs of Daphnia pulex: Behavioral observations. Limnol. Oceanogr., 29, 487–494.
Hawkins, B.A. & Cornell, H.V. (1994). Maximum parasitism rates and successful biological control. Science, 266, 1886–1887.
Hawkins, B.A., Thomas, M.B. & Hochberg, M.E. (1993). Refuge theory and biological control. Science, 262, 1429–1432.
Hawlena, D. & Schmitz, O.J. (2010). Physiological stress as a fundamental mechanism linking predation to ecosystem functioning. Am. Nat., 176, 537–556.
Head, G., Campbell, L.A., Carroll, M., Clark, T., Galvan, T., Hendrix, W.M., et al. (2014). Movement and survival of corn rootworm in seed mixtures of SmartStax® insect-protected corn. Crop Prot., 58, 14–24.
Heimpel, G.E. & Mills, N.J. (2017). Biological Control: Ecology and Applications. Cambridge University Press.
Henry, L.M., Bannerman, J.A., Gillespie, D.R. & Roitberg, B.D. (2010). Predator identity and the nature and strength of food web interactions. J. Anim. Ecol., 79, 1164–1171.
Hentley, W.T., Vanbergen, A.J., Beckerman, A.P., Brien, M.N., Hails, R.S., Jones, T.H., et al. (2016). Antagonistic interactions between an invasive alien and a native coccinellid species may promote coexistence. J. Anim. Ecol., 85, 1087–1097.
Hermann, S.L. & Landis, D.A. (2017). Scaling up our understanding of non-consumptive effects in insect systems. Curr. Opin. Insect Sci., 20, 54–60.
Hermann, S.L. & Thaler, J.S. (2014). Prey perception of predation risk: volatile chemical cues mediate non-consumptive effects of a predator on a herbivorous insect. Oecologia, 176, 669–676.
Hermann, S.L. & Thaler, J.S. (2018). The effect of predator presence on the behavioral sequence from host selection to reproduction in an invulnerable stage of insect prey. Oecologia, 188, 945–952.
Hik, D. (1995). Does Risk of Predation Influence Population Dynamics? Evidence from the Cyclic Decline of Snowshoe Hares. Wildl. Res., 22.
Hlivko, J.T. & Rypstra, A.L. (2003). Spiders Reduce Herbivory: Nonlethal Effects of Spiders on the Consumption of Soybean Leaves by Beetle Pests. Ann. Entomol. Soc. Am., 96, 914–919.
Hoddle, M.S. & Pandey, R. (2014). Host range testing of Tamarixia radiata (Hymenoptera: Eulophidae) sourced from the Punjab of Pakistan for classical biological control of Diaphorina citri (Hemiptera: Liviidae: Euphyllurinae: Diaphorinini) in California. J. Econ. Entomol., 107, 125–136.
Hodge, S., Hardie, J. & Powell, G. (2011). Parasitoids aid dispersal of a nonpersistently transmitted plant virus by disturbing the aphid vector. Agric. For. Entomol., 13, 83–88.
Hogg, B.N., Wang, X., Mills, N.J. & Daane, K.M. (2014). Resident spiders as predators of the recently introduced light brown apple moth, Epiphyas postvittana. Entomol. Exp. Appl., 151, 65–74.
Hoki, E., Losey, J. & Ugine, T.A. (2014). Comparing the consumptive and non-consumptive effects of a native and introduced lady beetle on pea aphids ( Acyrthosiphon pisum ). Biol. CONTROL, 70, 78–84.
Hokkanen, H.M.T. (1991). Trap Cropping in Pest Management. Annu. Rev. Entomol., 36, 20.
Höller, C., Micha, S.G., Schulz, S., Francke, W. & Pickett, J.A. (1994). Enemy-induced dispersal in a parasitic wasp. Experientia, 50, 182–185.
Houston, A.I., McNamara, J.M. & Hutchinson, J.M.C. (1993). General results concerning the trade-off between gaining energy and avoiding predation. Philos. Trans. R. Soc. B-Biol. Sci., 341, 375–397.
Houston, A.I., McNamara, J.M. & others. (1999). Models of adaptive behaviour: an approach based on state. Cambridge University Press.
Hufbauer, R.A. & Roderick, G.K. (2005). Microevolution in biological control: Mechanisms, patterns, and processes. Biol. Control, 35, 227–239.
Hulthén, K., Chapman, B.B., Nilsson, P.A., Hollander, J. & Brönmark, C. (2014). Express yourself: bold individuals induce enhanced morphological defences. Proc. R. Soc. B Biol. Sci., 281, 20132703.
Humphreys, R.K. & Ruxton, G.D. (2019). Dropping to escape: a review of an under-appreciated antipredator defence: Dropping to escape. Biol. Rev., 94, 575–589.
Ims, R.A. (1990). On the Adaptive Value of Reproductive Synchrony as a Predator-Swamping Strategy. Am. Nat., 136, 15.
Ingerslew, K.S. & Finke, D.L. (2017). Mechanisms underlying the nonconsumptive effects of parasitoid wasps on aphids. Environ. Entomol., 46, 75–83.
Jacobsen, S.K., Alexakis, I. & Sigsgaard, L. (2016). Antipredator responses in Tetranychus urticae differ with predator specialization. J. Appl. Entomol., 140, 228–231.
Jallow, M.F. a & Hoy, C.W. (2005). Phenotypic variation in adult behavioral response and offspring fitness in Plutella xylostella (Lepidoptera: Plutellidae) in response to permethrin. J. Econ. Entomol., 98, 2195–2202.
Jandricic, S.E., Schmidt, D., Bryant, G. & Frank, S.D. (2016). Non-consumptive predator effects on a primary greenhouse pest : Predatory mite harassment reduces western flower thrips abundance and plant damage. Biol. CONTROL, 95, 5–12.
Janssens, L. & Stoks, R. (2013). Synergistic effects between pesticide stress and predator cues: Conflicting results from life history and physiology in the damselfly Enallagma cyathigerum. Aquat. Toxicol., 132–133, 92–99.
Jensen, K. & Toft, S. (2020). Fly disturbance suppresses aphid population growth. Ecol. Entomol., 45, 901–903.
Jonsson, M., Kaartinen, R. & Straub, C.S. (2017). Relationships between natural enemy diversity and biological control. Curr. Opin. Insect Sci., 20, 1–6.
Kaplan, I., McArt, S.H. & Thaler, J.S. (2014). Plant defenses and predation risk differentially shape patterns of consumption, growth, and digestive efficiency in a guild of leaf-chewing insects. PLoS ONE, 9.
Kaplan, I. & Thaler, J.S. (2010). Plant resistance attenuates the consumptive and non-consumptive impacts of predators on prey. Oikos, 119, 1105–1113.
Kaplan, I. & Thaler, J.S. (2012). Phytohormone-mediated plant resistance and predation risk act independently on the population growth and wing formation of potato aphids, Macrosiphum euphorbiae. Arthropod-Plant Interact., 6, 181–186.
Kats, L.B. & Dill, L.M. (1998). The scent of death: Chemosensory assessment of predation risk by prey animals. Écoscience, 5, 361–394.
Kerfoot, W.C. & Sih, A. (1987). Predation: direct and indirect impacts on aquatic communities. University Press of New England.
Kersch-Becker, M.F., Kessler, A. & Thaler, J.S. (2017). Plant defences limit herbivore population growth by changing predator–prey interactions. Proc. R. Soc. B Biol. Sci., 284, 20171120.
Kersch-Becker, M.F. & Thaler, J.S. (2015). Plant resistance reduces the strength of consumptive and non-consumptive effects of predators on aphids. J. Anim. Ecol., 84, 1222–1232.
Kiflawi, M., Blaustein, L. & Mangel, M. (2003). Oviposition habitat selection by the mosquito Culiseta longiareolata in response to risk of predation and conspecific larval density. Ecol. Entomol., 28, 168–173.
Koch, R.L. (2003). The multicolored Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts. J. Insect Sci., 16.
Kopta, T., Pokluda, R. & Psota, V. (2012). Attractiveness of flowering plants for natural enemies, 39, 8.
Kraus, J.M. & Vonesh, J.R. (2010). Feedbacks between community assembly and habitat selection shape variation in local colonization. J. Anim. Ecol., 79, 795–802.
Krushelnycky, P.D., Ogura-Yamada, C.S., Kanegawa, K.M., Kaneshiro, K.Y. & Magnacca, K.N. (2017). Quantifying the effects of an invasive thief ant on the reproductive success of rare Hawaiian picture-winged flies. Biol. Conserv., 215, 254–259.
Kunert, G. & Weisser, W.W. (2003). The interplay between density- and trait-mediated effects in predator-prey interactions: A case study in aphid wing polymorphism. Oecologia, 135, 304–312.
LaManna, J.A. & Martin, T.E. (2016). Costs of fear: behavioural and life-history responses to risk and their demographic consequences vary across species. Ecol. Lett., 19, 403–413.
Landis, D. & Van der Werf, W. (1997). Early-season predation impacts the establishment of aphids and spread of beet yellows virus in sugar beet. Entomophaga, 42, 499–516.
Larsen, A.E. (2012). Modeling multiple nonconsumptive effects in simple food webs : a modified Lotka – Volterra approach. Behav. Ecol.
La-Spina, M., Jandricic, S.E. & Buitenhuis, R. (2019). Short-Term Increases in Aphid Dispersal From Defensive Dropping Do Not Necessarily Affect Long-Term Biological Control by Parasitoids. J. Econ. Entomol., 112, 1552–1559.
Laundré, J.W., Hernández, L. & Altendorf, K.B. (2001). Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. Can. J. Zool., 79, 1401–1409.
Lawson-Balagbo, L.M., Jr, M.G.C.G. & Moraes, G.J.D. (2007). Refuge use by the coconut mite Aceria guerreronis : Fine scale distribution and association with other mites under the perianth, 43, 102–110.
Lee, D.H., Nyrop, J.P. & Sanderson, J.P. (2011). Avoidance of natural enemies by adult whiteflies, Bemisia argentifolii, and effects on host plant choice. Biol. Control, 58, 302–309.
Lee, D.H., Nyrop, J.P. & Sanderson, J.P. (2014). Non-consumptive effects of the predatory beetle Delphastus catalinae ( Coleoptera : Coccinellidae ) on habitat use patterns of adult whitefly Bemisia argentifolii ( Hemiptera : Aleyrodidae ). Appl. Entomol. Zool., 49, 599–606.
Letourneau, D. & Bruggen, A. van. (2006). Crop protection in organic agriculture. In: Organic agriculture: a global perspective (eds. Kristiansen, P., Taji, A. & Reganold, J.). CABI, Wallingford, pp. 93–121.
Lima, S.L. (1998). Nonlethal effects in the ecology of predator-prey interactions. BioScience, 48, 25–34.
Livingston, G., Fukumori, K., Provete, D.B., Kawachi, M., Takamura, N. & Leibold, M.A. (2017). Predators regulate prey species sorting and spatial distribution in microbial landscapes. J. Anim. Ecol., 86, 501–510.
Lommen, S.T.E., Middendorp, C.W., Luijten, C.A., van Schelt, J., Brakefield, P.M. & de Jong, P.W. (2008). Natural flightless morphs of the ladybird beetle Adalia bipunctata improve biological control of aphids on single plants. Biol. Control, 47, 340–346.
Long, E.Y. & Finke, D.L. (2015). Predators indirectly reduce the prevalence of an insect-vectored plant pathogen independent of predator diversity. Oecologia, 177, 1067–1074.
Losey, J.E. & Denno, R.F. (1998). Positive predator–predator interactions: enhanced predation rates and synergistic suppression of aphid populations. Ecology, 79, 2143–2152.
Losey, J.E. & Vaughan, M. (2006). The Economic Value of Ecological Services Provided by Insects. BioScience, 56, 311.
Lövei, G.L. & Ferrante, M. (2017). A review of the sentinel prey method as a way of quantifying invertebrate predation under field conditions. Insect Sci., 24, 528–542.
Lucas, É., Coderre, D. & Brodeur, J. (2000). Selection of Molting and Pupation Sites by Coleomegilla maculata (Coleoptera: Coccinellidae): Avoidance of Intraguild Predation. Environ. Entomol., 29, 454–459.
Lundgren, J.G. & Fergen, J.K. (2006). The Oviposition Behavior of the Predator Orius insidiosus: Acceptability and Preference for Different Plants. Biocontrol, 51, 217–227.
Maanak, V., Nordenhem, H., Bjorklund, N., Lenoir, L. & Nordlander, G. (2013). Ants protect conifer seedlings from feeding damage by the pine weevil Hylobius abietis. Agric. For. Entomol., 15, 98–105.
Macfadyen, S., Davies, A.P. & Zalucki, M.P. (2015). Assessing the impact of arthropod natural enemies on crop pests at the field scale. Insect Sci., 22, 20–34.
Magalhães, S., Tudorache, C., Montserrat, M., van Maanen, R., Sabelis, M.W. & Janssen, A. (2004). Diet of intraguild predators affects antipredator behavior in intraguild prey. Behav. Ecol., 16, 364–370.
Mallet, J. & Porter, P. (1992). Preventing insect adaptation to insect-resistant crops: are seed mixtures or refugia the best strategy? Proc. R. Soc. Lond. B Biol. Sci., 250, 165–169.
Mappes, J., Mappes, T. & Lappalainen, T. (1997). Unequal maternal investment in offspring quality in relation to predation risk. Evol. Ecol., 11, 7.
Martini, X., Kincy, N. & Nansen, C. (2012). Quantitative impact assessment of spray coverage and pest behavior on contact pesticide performance. Pest Manag. Sci., 68, 1471–1477.
Matsumoto, T., Itioka, T. & Nishida, T. (2003). Rapid change in the settling behavior of the arrowhead scale Unaspis yanonensis as an avoidance mechanism against introduced parasitoids, Aphytis yanonensis and Coccobius fulvus. Entomol. Exp. Appl., 107, 105–113.
McArthur, C., Orlando, P., Banks, P.B. & Brown, J.S. (2012). The foraging tightrope between predation risk and plant toxins: a matter of concentration. Funct. Ecol., 26, 74–83.
McMurtry, J.A., Huffaker, C.B. & van de Vrie, M. (1970). Ecology of Tetranychid Mites and Their Natural Enemies: A Review. Hilgardia, 40.
Meadows, A.J., Owen, J.P. & Snyder, W.E. (2017). Keystone nonconsumptive effects within a diverse predator community. Ecol. Evol., 7, 10315–10325.
Meisner, M., Harmon, J.P., Harvey, C.T. & Ives, A.R. (2011). Intraguild predation on the parasitoid Aphidius ervi by the generalist predator Harmonia axyridis: The threat and its avoidance. Entomol. Exp. Appl., 138, 193–201.
Meresman, Y., BEN-ARI, M. & Inbar, M. (2017). Turning in mid-air allows aphids that flee the plant to avoid reaching the risky ground. Integr. Zool., 12, 409–420.
Michaud, J. & Belliure, B. (2001). Impact of syrphid predation on production of migrants in colonies of the brown citrus aphid, Toxoptera citricida (Homoptera: Aphididae). Biol. Control, 21, 91–95.
Michaud, J.P., Barbosa, P.R.R., Bain, C.L. & Torres, J.B. (2016). Extending the “Ecology of Fear” Beyond Prey: Reciprocal Nonconsumptive Effects Among Competing Aphid Predators. Environ. Entomol., 45, 1398–1403.
Miner, B.G., Sultan, S.E., Morgan, S.G., Padilla, D.K. & Relyea, R.A. (2005). Ecological consequences of phenotypic plasticity. Trends Ecol. Evol., 20, 685–692.
Mondor, E.B., Rosenheim, J.A. & Addicott, J.F. (2005). Predator-induced transgenerational phenotypic plasticity in the cotton aphid. Oecologia, 142, 104–108.
Moore, G.G., Singh, R., Horn, B.W. & Carbone, I. (2009). Recombination and lineage-specific gene loss in the aflatoxin gene cluster of Aspergillus flavus. Mol. Ecol., 18, 4870–4887.
Murdoch, W.W., Chesson, J. & Chesson, P.L. (1985). Biological Control in Theory and Practice. Am. Nat., 125, 344.
Nachman, G. (2006). The Effects of Prey Patchiness, Predator Aggregation, and Mutual Interference on the Functional Response of Phytoseiulus persimilis Feeding on Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae). Exp. Appl. Acarol., 38, 87–111.
Nakashima, Y. & Senoo, N. (2003). Avoidance of ladybird trails by an aphid parasitoid Aphidius ervi: active period and effects of prior oviposition experience. Entomol. Exp. Appl.
Naranjo, S.E., Ellsworth, P.C. & Frisvold, G.B. (2015). Economic Value of Biological Control in Integrated Pest Management of Managed Plant Systems. Annu. Rev. Entomol., 60, 621–645.
Nelson, E.H. (2007). Predator avoidance behavior in the pea aphid: Costs, frequency, and population consequences. Oecologia, 151, 22–32.
Nelson, E.H. & Rosenheim, J.A. (2006). Encounters between aphids and their predators: the relative frequencies of disturbance and consumption. Entomol. Exp. Appl., 118, 211–219.
Ninkovic, V., Feng, Y., Olsson, U. & Pettersson, J. (2013). Ladybird footprints induce aphid avoidance behavior. Biol. Control, 65, 63–71.
Northfield, T.D., Snyder, G.B., Ives, A.R. & Snyder, W.E. (2010). Niche saturation reveals resource partitioning among consumers. Ecol. Lett., 13, 338–348.
Oi, D., Porter, S. & Valles, S. (2015). A review of the biological control of fire ants. Myrmecol. News, 21, 101–116.
Oi, D., Valles, S., Porter, S., Cavanaugh, C., White, G. & Henke, J. (2019). Introduction of fire ant biological control agents into the coachella valley of california. Fla. Entomol., 102, 284–286.
Okada, J. & Akamine, S. (2012). Behavioral response to antennal tactile stimulation in the field cricket Gryllus bimaculatus. J. Comp. Physiol. A, 198, 557–565.
Op de Beeck, L., Janssens, L. & Stoks, R. (2016). Synthetic predator cues impair immune function and make the biological pesticide Bti more lethal for vector mosquitoes. Ecol. Appl., 26, 355–366.
Orr, M., Seike, S., Benson, W. & Gilbert, L.E. (1995). Flies suppress fire ants. Nature, 373, 292.
Orrock, J.L., Preisser, E.L., Grabowski, J.H. & Trussell, G.C. (2013). The cost of safety: refuges increase the impact of predation risk in aquatic systems. Ecology, 94, 573–579.
Otsuki, H. & Yano, S. (2014a). Functionally different predators break down antipredator defenses of spider mites, 27–33.
Otsuki, H. & Yano, S. (2014b). Potential lethal and non-lethal effects of predators on dispersal of spider mites. Exp. Appl. Acarol., 64, 265–275.
Pallini, A., Janssen, A. & Sabelis, M.W. (1999). Spider mites avoid plants with predators. Exp. Appl. Acarol., 23, 803–815.
Pappas, M.L., Broekgaarden, C., Broufas, G.D., Kant, M.R., Messelink, G.J., Steppuhn, A., et al. (2017). Induced plant defences in biological control of arthropod pests: a double-edged sword. Pest Manag. Sci., 73, 1780–1788.
Paterson, R.A., Pritchard, D.W., Dick, J.T.A., Alexander, M.E., Hatcher, M.J. & Dunn, A.M. (2013). Predator cue studies reveal strong trait-mediated effects in communities despite variation in experimental designs. Anim. Behav., 86, 1301–1313.
Peacor, S.D., Barton, B.T., Kimbro, D.L., Sih, A. & Sheriff, M.J. (2020). A framework and standardized terminology to facilitate the study of predation-risk effects. Ecology, In Press.
Pearce, S. & Zalucki, M.P. (2006). Do predators aggregate in response to pest density in agroecosystems? Assessing within-field spatial patterns. J. Appl. Ecol., 43, 128–140.
Peckarsky, B.L., Abrams, P.A., Bolnick, D.I. & Dill, L.M. (2008). Revisiting the Classics : Considering Nonconsumptive Effects in Textbook Examples of Predator – Prey Interactions. Ecology, 89, 2416–2425.
Penfold, S., Dayananda, B. & Webb, J.K. (2017). Chemical cues influence retreat-site selection by flat rock spiders. Behaviour, 154, 149–161.
Pepi, A.A., Broadley, H.J. & Elkinton, J.S. (2016). Density-dependent effects of larval dispersal mediated by host plant quality on populations of an invasive insect. Oecologia, 182, 499–509.
Polis, G.A. (1981). The Evolution and Dynamics of Intraspecific Predation. Annu. Rev. Ecol. Syst., 12, 225–251.
Polis, G.A. (1999). Why are parts of the world green? Multiple factors control productivity and the distribution of biomass. Oikos, 3–15.
Polis, G.A., Myers, C.A. & Holt, R.D. (1989). The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu. Rev. Ecol. Syst., 20, 297–330.
Porter, S.D. & Gilbert, L.E. (2004). Assessing host specificity and field release potential of fire ant decapitating flies (Phoridae: Pseudacteon). Assess. Host Ranges Parasit. Predat. Used Class. Biol. Control Guide Best Pract. For. Health Technol. Enterp. Team FHTET Publ., 3, 152–176.
Porter, S.D., Meer, R.K.V., Pesquero, M.A., Campiolo, S. & Fowler, H.G. (1995). Solenopsis (Hymenoptera: Formicidae) fire ant reactions to attacks of Pseudacteon flies (Diptera: Phoridae) in southeastern Brazil. Ann. Entomol. Soc. Am., 88, 570–575.
Prasad, R.P., Snyder, W.E., Prasad, R.P. & Snyder, W.E. (2018). A Non-Trophic Interaction Chain Links Predators in Different Spatial Niches, 162, 747–753.
Preisser, E.L. & Bolnick, D.I. (2008). The many faces of fear: Comparing the pathways and impacts of nonconsumptive predator effects on prey populations. PLoS ONE, 3, 5–8.
Preisser, E.L., Bolnick, D.I. & Benard, M.F. (2005). Scared To Death? the Effects of Intimidation and Consumption in Predator–Prey Interactions. Ecology, 86, 501–509.
Preisser, E.L., Orrock, J.L. & Schmitz, O.J. (2007). Predator hunting mode and habitat domain alter nonconsumptive effects in predator-prey interactions. Ecology.
R. E. Southwood, T. & Henderson, P. (2000). Ecological Methods 3rd edition.
Rabus, M. & Laforsch, C. (2011). Growing large and bulky in the presence of the enemy: Daphnia magna gradually switches the mode of inducible morphological defences. Funct. Ecol., 25, 1137–1143.
Ramirez, R.A., Crowder, D.W., Snyder, G.B., Strand, M.R. & Snyder, W.E. (2010). Antipredator behavior of Colorado potato beetle larvae differs by instar and attacking predator. Biol. Control, 53, 230–237.
Raymond, B., Darby, A. & Douglas, A. (2000). Intraguild predators and the spatial distribution of a parasitoid. Oecologia, 124, 367–372.
Reddy, G.V.P. (2002). Plant volatiles mediate orientation and plant preference by the predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae). Biol. Control, 25, 49–55.
Relyea, R.A. (2007). Getting out alive: how predators affect the decision to metamorphose. Oecologia, 152, 389–400.
Relyea, R.A., Stephens, P.R., Barrow, L.N., Blaustein, A.R., Bradley, P.W., Buck, J.C., et al. (2018). Phylogenetic patterns of trait and trait plasticity evolution: Insights from amphibian embryos. Evolution, 72, 663–678.
Rendon, D., Whitehouse, M.E.A. & Taylor, P.W. (2016). Consumptive and non-consumptive effects of wolf spiders on cotton bollworms. Entomol. Exp. Appl., 158, 170–183.
Roberts, D. (2014). Mosquito Larvae Change Their Feeding Behavior in Response to Kairomones From Some Predators. J. Med. Entomol., 51, 368–374.
Rosenheim, J. a, Kaya, H.K., Ehler, L.E., Marois, J.J. & Jaffee, B. a. (1995). Intraguild predation among biological control agents - Theory and evidence. Biol. Control, 5, 303–335.
Rosenheim, J.A. (1998). Higher-Order Predators and the Regulation of Insect Herbivore Populations. Annu. Rev. Entomol., 43, 421–447.
Rypstra, A.L. & Buddle, C.M. (2012). Spider silk reduces insect herbivory. Biol. Lett., 9, 20120948–20120948.
Saul, W.-C. & Jeschke, J.M. (2015). Eco-evolutionary experience in novel species interactions. Ecol. Lett., 18, 236–245.
Schausberger, P. (2003). Cannibalism among phytoseiid mites: a review. Exp. Appl. Acarol., 29, 173–191.
Schmitz, O.J. (1998). Direct and indirect effects of predation and predation risk in old-field interaction webs. Am. Nat., 151, 327–342.
Schmitz, O.J., Beckerman, A.P. & O’Brien, K.M. (1997). Behaviorally Mediated Trophic Cascades : Effects of Predation Risk on Food Web Interactions. Ecology, 78, 1388–1399.
Schmitz, O.J., Grabowski, J.H., Peckarsky, B.L., Preisser, E.L., Trussell, G.C. & Vonesh, J.R. (2008). From individuals to ecosystem function: towards an integration of evolutionary and ecosystem ecology. Ecology, 89, 2436–2445.
Schmitz, O.J., Krivan, V. & Ovadia, O. (2004). Trophic cascades: The primacy of trait-mediated indirect interactions. Ecol. Lett., 7, 153–163.
Schoeppner, N.M. & Relyea, R.A. (2005). Damage, digestion, and defence: the roles of alarm cues and kairomones for inducing prey defences: Damage, digestion, and defence. Ecol. Lett., 8, 505–512.
Seiter, M. & Schausberger, P. (2015). Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites. Sci. Rep., 5, 15046.
Shang, G.-Z., Zhu, Y.-H., Wu, Y., Cao, Y.-F. & Bian, J.-H. (2019). Synergistic effects of predation and parasites on the overwinter survival of root voles. Oecologia, 191, 83–96.
Sih, A. (1992). Prey Uncertainty and the Balancing of Antipredator and Feeding. Am. Nat., 139, 1052–1069.
Sih, A., Bolnick, D.I., Luttbeg, B., Orrock, J.L., Peacor, S.D., Pintor, L.M., et al. (2010). Predator-prey naivete, antipredator behavior, and the ecology of predator invasions. Oikos, 119, 610–621.
Sih, A., Englund, G. & Wooster, D. (1998). Emergent impacts of multiple predators on prey. Trends Ecol. Evol., 13, 350–355.
Sih, A. & Wooster, D.E. (1994). Prey behavior, prey dispersal, and predator impacts on stream prey. Ecology, 75, 1199–1207.
Silberbush, A. & Blaustein, L. (2011). Mosquito females quantify risk of predation to their progeny when selecting an oviposition site. Funct. Ecol., 25, 1091–1095.
Silberbush, A., Markman, S., Lewinsohn, E., Bar, E., Cohen, J.E. & Blaustein, L. (2010). Predator-released hydrocarbons repel oviposition by a mosquito. Ecol. Lett., 13, 1129–1138.
Silberbush, A., Tsurim, I., Margalith, Y. & Blaustein, L. (2014). Interactive effects of salinity and a predator on mosquito oviposition and larval performance. Oecologia, 175, 565–575.
Simberloff, D. & Stiling, P. (1996). How Risky is Biological Control? Ecology, 77, 1965–1974.
Sitvarin, M.I. & Rypstra, A.L. (2012). Sex-Specific Response of Pardosa milvina (Araneae: Lycosidae) to Experience with a Chemotactile Predation Cue. Ethology, 118, 1230–1239.
Skals, N. (2005). Her odours make him deaf: crossmodal modulation of olfaction and hearing in a male moth. J. Exp. Biol., 208, 595–601.
Sloggett, J.J. & Weisser, W.W. (2002). Parasitoids induce production of the dispersal morph of the pea aphid, Acyrthosiphon pisum. Oikos, 98, 323–333.
Snyder, W.E. & Ives, A.R. (2008). Behavior influences whether intra-guild predation disrupts herbivore suppression by parasitoids. Behav. Ecol. Insect Parasit. Blackwell Pub Malden MA USA, 71–91.
Snyder, W.E. & Wise, D.H. (2000). Antipredator Behavior of Spotted Cucumber Beetles (Coleoptera: Chrysomelidae) in Response to Predators That Pose Varying Risks. Environ. Entomol., 29, 35–42.
Staats, E.G., Agosta, S.J. & Vonesh, J.R. (2016). Predator diversity reduces habitat colonization by mosquitoes and midges. Biol. Lett., 12, 20160580.
Stamps, J.A. (2007). Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecol. Lett., 10, 355–363.
Stankowich, T. & Blumstein, D.T. (2005). Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci., 272, 2627–2634.
Stastny, M. & Sargent, R.D. (2017). Evidence for rapid evolutionary change in an invasive plant in response to biological control. J. Evol. Biol., 30, 1042–1052.
Stav, G., Blaustein, L. & Margalit, Y. (2000). Influence of nymphal Anax imperator (Odonata: Aeshnidae) on oviposition by the mosquito Culiseta longiareolata (Diptera: Culicidae) and community structure in temporary pools. J. Vector Ecol., 13.
Stav, G., Kotler, B.P. & Blaustein, L. (2010). Foraging Response to Risks of Predation and Competition in Artificial Pools. Isr. J. Ecol. Evol., 56, 9–20.
Steffan, S.A. & Snyder, W.E. (2010). Cascading diversity effects transmitted exclusively by behavioral interactions. Ecology, 91, 2242–2252.
Stephan, J.G., Stenberg, J.A. & Björkman, C. (2017). Consumptive and nonconsumptive effect ratios depend on interaction between plant quality and hunting behavior of omnivorous predators. Ecol. Evol., 7, 2327–2339.
Straub, C.S. & Snyder, W.E. (2008). Increasing enemy biodiversity strengthens herbivore suppression on two plant species. Ecology, 89, 1605–1615.
Suh, C.P.-C., Orr, D.B. & Van Duyn, J.W. (2000). Trichogramma Releases in North Carolina Cotton: Why Releases Fail to Suppress Heliothine Pests. J. Econ. Entomol., 93, 1137–1145.
Tabashnik, B.E., Brévault, T. & Carrière, Y. (2013). Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol., 31, 510.
Tamaki, G., Eric, J.E. & Hathaway, D.O. (1970). Dispersal and Reduction of Colonies of Pea Aphids by Aphidius smithi (Hymenoptera: Aphidiidae). Ann Entomol Soc Am, 63, 973–980.
Thaker, M., Vanak, A.T., Owen, C.R., Ogden, M.B., Niemann, S.M. & Slotow, R. (2011). Minimizing predation risk in a landscape of multiple predators: effects on the spatial distribution of African ungulates. Ecology, 92, 398–407.
Thaler, J.S., Contreras, H. & Davidowitz, G. (2014). Effects of predation risk and plant resistance on Manduca sexta caterpillar feeding behaviour and physiology. Ecol. Entomol., 39, 210–216.
Thaler, J.S. & Griffin, C.A.M. (2008). Relative importance of consumptive and non-consumptive effects of predators on prey and plant damage: the influence of herbivore ontogeny. Entomol. Exp. Appl., 128, 34–40.
Thaler, J.S., McArt, S.H. & Kaplan, I. (2012). Compensatory mechanisms for ameliorating the fundamental trade-off between predator avoidance and foraging. Proc. Natl. Acad. Sci., 109, 12075–12080.
Tholt, G., Kis, A., Medzihradszky, A., Szita, É., Tóth, Z., Havelda, Z., et al. (2018). Could vectors’ fear of predators reduce the spread of plant diseases? Sci. Rep., 8.
Tollrian, R. (1995). Predator-Induced Morphological Defenses : Costs , Life History Shifts , and Maternal Effects in Daphnia Pulex. Ecology, 76, 1691–1705.
Trimmer, P.C., Ehlman, S.M. & Sih, A. (2017). Predicting behavioural responses to novel organisms: state-dependent detection theory. Proc. R. Soc. B Biol. Sci., 284, 20162108.
Tscharntke, T., Bommarco, R., Clough, Y., Crist, T.O., Kleijn, D., Rand, T.A., et al. (2007). Conservation biological control and enemy diversity on a landscape scale. Biol. Control, 43, 294–309.
Tscharntke, T., Karp, D.S., Chaplin-Kramer, R., Bat??ry, P., DeClerck, F., Gratton, C., et al. (2016). When natural habitat fails to enhance biological pest control - Five hypotheses. Biol. Conserv.
Tyndale-Biscoe, M. & Vogt, W.G. (1996). Population status of the bush fly, Musca vetustissima (Diptera: Muscidae), and native dung beetles (Coleoptera: Scarabaeinae) in south-eastern Australia in relation to establishment of exotic dung beetles. Bull. Entomol. Res., 86, 183.
Uesugi, A. (2015). The slow-growth high-mortality hypothesis: direct experimental support in a leafmining fly. Ecol. Entomol., 40, 221–228.
Ugine, T.A. & Thaler, J.S. (2020). Insect predator odors protect herbivore from fungal infection. Biol. Control, 143, 104186.
Valente, C., Afonso, C., Gonçalves, C.I., Alonso-Zarazaga, M.A., Reis, A. & Branco, M. (2017). Environmental risk assessment of the egg parasitoid Anaphes inexpectatus for classical biological control of the Eucalyptus snout beetle, Gonipterus platensis. BioControl, 62, 457–468.
Van Driesche, R.G. (2016). Methods for evaluation of natural enemy impacts on invasive pests of wildlands. Integrating Biol. Control Conserv. Pract. WileyBlackwell Oxf. UK, 189–207.
Vance-Chalcraft, H.D., Rosenheim, J.A., Vonesh, J.R., Osenberg, C.W. & Sih, A. (2007). The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology, 88, 2689–2696.
Vance-Chalcraft, H.D. & Soluk, D.A. (2005). Estimating the prevalence and strength of non-independent predator effects. Oecologia, 146, 452–460.
Vandermoten, S., Mescher, M.C., Francis, F., Haubruge, E. & Verheggen, F.J. (2012). Aphid alarm pheromone: an overview of current knowledge on biosynthesis and functions. Insect Biochem. Mol. Biol., 42, 155–163.
Velasco-Hernández, M.C., Ramirez-Romero, R., Cicero, L., Michel-Rios, C. & Desneux, N. (2013). Intraguild predation on the whitefly parasitoid Eretmocerus eremicus by the generalist predator Geocoris punctipes: a behavioral approach. PloS One, 8, e80679.
Venzon, M., Janssen, A., Pallini, A. & Sabelis, M.W. (2000). Diet of a polyphagous arthropod predator affects refuge seeking of its thrips prey. Anim. Behav., 60, 369–375.
Verdolin, J.L. (2006). Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behav. Ecol. Sociobiol., 60, 457–464.
Vonesh, J.R. & Blaustein, L. (2010). Predator-Induced Shifts in Mosquito Oviposition Site Selection : A Meta-Analysis and Implications for Vector Control. Isr. J. Ecol. Evol., 56, 263–279.
de Vos, M., Cheng, W.Y., Summers, H.E., Raguso, R.A. & Jander, G. (2010). Alarm pheromone habituation in Myzus persicae has fitness consequences and causes extensive gene expression changes. Proc. Natl. Acad. Sci., 107, 14673–14678.
Walzer, A., Lepp, N. & Schausberger, P. (2015). Compensatory growth following transient intraguild predation risk in predatory mites. Oikos, 124, 603–609.
Walzer, A. & Schausberger, P. (2009). Non-consumptive effects of predatory mites on thrips and its host plant. Oikos, 118, 934–940.
Wanger, T.C., Wielgoss, A.C., Motzke, I., Clough, Y., Brook, B.W., Sodhi, N.S., et al. (2011). Endemic predators, invasive prey and native diversity. Proc. R. Soc. B Biol. Sci., 278, 690–694.
Warburg, A., Faiman, R., Shtern, A., Silberbush, A., Markman, S., Cohen, J.E., et al. (2011). Oviposition Habitat Selection by Anopheles gambiae in Response to Chemical Cues by Notonecta Maculata Oviposition habitat selection by Anopheles gambiae in response to chemical cues by Notonecta maculata. J. Vector Ecol., 36, 421–425.
Wasserberg, G., White, L., Bullard, A., King, J. & Maxwell, R. (2013). Oviposition site selection in Aedes albopictus (Diptera: Culicidae): are the effects of predation risk and food level independent? J Med Entomol, 50, 1159–1164.
Weber, D.C., Rowley, D.L., Greenstone, M.H. & Athanas, M.M. (2006). Prey preference and host suitability of the predatory and parasitoid carabid beetle, Lebia grandis, for several species of Leptinotarsa beetles. J. Insect Sci., 6, 1–14.
Weissburg, M. & Beauvais, J. (2015). The smell of success: the amount of prey consumed by predators determines the strength and range of cascading non-consumptive effects. PeerJ, 3, e1426.
Weissburg, M., Smee, D.L. & Ferner, M.C. (2014). The Sensory Ecology of Nonconsumptive Predator Effects. Am. Nat., 184, 141–157.
Weisser, W.W., Braendle, C. & Minoretti, N. (1999). Predator-induced morphological shift in the pea aphid. Proc. R. Soc. B Biol. Sci., 266, 1175–1181.
Welch, K.D. & Harwood, J.D. (2014). Temporal dynamics of natural enemy-pest interactions in a changing environment. Biol. Control, 75, 18–27.
Werner, E.E. & Anholt, B.R. (1996). Predator-induced behavioral indirect effects: consequences to competitive interactions in anuran larvae. Ecology, 77, 157–169.
Werner, E.E. & Peacor, S.D. (2003). A review of trait- mediated indirect interactions in ecological communities. Ecology, 84, 1083–1100.
Wiedenmann, R.N. & Smith, J.W. (1997). Attributes of Natural Enemies in Ephemeral Crop Habitats. Biol. Control, 10, 16–22.
Wilson, E.E., Mullen, L.M. & Holway, D.A. (2009). Life history plasticity magnifies the ecological effects of a social wasp invasion. Proc. Natl. Acad. Sci., 106, 12809–12813.
Wilson, M.R. & Leather, S.R. (2012). The effect of past natural enemy activity on host-plant preference of two aphid species. Entomol. Exp. Appl., 144, 216–222.
Winder, L., Alexander, C.J., Holland, J.M., Woolley, C. & Perry, J.N. (2001). Modelling the dynamic spatio-temporal response of predators to transient prey patches in the field. Ecol. Lett., 4, 568–576.
Wise, D.H. (2006). Cannibalism, Food Limitation, Intraspecific Competition, and the Regulation of Spider Populations. Annu. Rev. Entomol., 51, 441–465.
Wuellner, A.C.T., Aglio-Holvorcem, C.G.D., Benson, W.W. & Gilbert, E. (2002). Phorid Fly ( Diptera : Phoridae ) Oviposition Behavior and Fire Ant ( Hymenoptera : Formicidae ) Reaction to Attack Differ According to Phorid Species Phorid Fly ( Diptera : Phoridae ) Oviposition Behavior and Fire Ant ( Hymenoptera : Formicidae ) Reactio. Ann. Entomol. Soc. Am., 95, 257–266.
Xiong, X., Michaud, J.P., Li, Z., Wu, P., Chu, Y., Zhang, Q., et al. (2015). Chronic , predator-induced stress alters development and reproductive performance of the cotton bollworm , Helicoverpa ar .... BioControl.
Zaguri, M. & Hawlena, D. (2019). Bearding the scorpion in his den: desert isopods take risks to validate their ‘landscape of fear’ assessment. Oikos, 128, 1458–1466.
Zhang, W. & Swinton, S.M. (2012). Optimal control of soybean aphid in the presence of natural enemies and the implied value of their ecosystem services. J. Environ. Manage., 96, 7–16.