REFERENCES
1. Bean, D., Kraljevic, Z., Searle, T.,Bendayan, R., Pickles, A.,
Folarin, A.,Roguski, L., Noor, K., Shek, A., O’gallagher, K.,Zakeri, R.,
Shah, A., Teo, J., Dobson, R. J. B. (2020). Treatment with
ACE-inhibitors is Associated with Less Severe Disease with SARS-Covid-19
Infection in a Multi-site UK acute Hospital Trust. medRxiv,
.04.07.20056788; doi: https://doi.org/10.1101/2020.04.07.20056788
2. Blanco-Melo, D., Nilsson-Payant, B. E., Liu, W., Møller, R., Panis,
M., Sachs, D., Albrecht, R. A., tenOever, B. R. (2020). SARS-CoV-2
Launches a Unique Transcriptional Signature from In-vitro, Ex-vivo,and
In-vivo Systems. bioRxiv, doi:
https://doi.org/10.1101/2020.03.24.004655
3. Caldeira, D., Alarcão, J., Vaz-Carneiro, A., Costa, J. (2012). Risk
of pneumonia associated with use of angiotensin converting enzyme
inhibitors and angiotensin receptor blockers: systematic review and
meta-analysis. BMJ, Jul 11;345:e4260. doi: 10.1136/bmj.e4260.
4. Cha, S. A., Park, B. M., Kim, S. H. (2018) Angiotensin-(1-9)
Ameliorates Pulmonary Arterial Hypertension via Angiotensin type II
Receptor. Korean Journal of Physiology and Pharmacology,
22(4):447-456447 doi: 10.4196/kjpp.2018.22.4.447
5. Essig, M., Matt, M., Massy, Z. (2020). The COVID-19 outbreak and the
angiotensin-converting enzyme 2: too little or too much? Nephrology
Dialysis Transplantation, doi: https://doi.org/10.1093/ndt/gfaa113
6. Fang, L., Karakiulakis, G., Roth, M. (2020). Are patients with
hypertension and diabetesmellitus at increased risk for COVID-19
infection? The Lancet Respiratory Medicine, doi:
https://doi.org/10.1016/S2213-2600(20)30116-8.
7. Ferrario, C. M., Jessup, J., Chappell, M. C., Averill, D. B.,
Brosnihan, K. B.,Tallant, E. A.,Diz, D. I., Gallagher, P. E. (2005).
Effect of Angiotensin-converting enzyme Inhibition and Angiotensin II
Receptor Blockers on Cardiac Angiotensin-converting enzyme 2.
Circulation, 111 (20), 2605–2610.
8. Focosi, D., Tuccori, M., Maggi, F. (2020). Ace Inhibitors and AT1R
Blockers for COVID-2019: Friends or Foes?. Preprints, 2020040151
(doi:10.20944/preprints202004.0151.v1).
9. Furuhashi, M., Moniwa, N., Mita T.,Fuseya, T., Ishimura S., Ohno K.,
Shibata, S., Tanaka, M., Watanabe, Y.,Akasaka, H., Ohnishi, H., Yoshida,
H., Takizawa, H.,Saitoh, S.,Ura, N.,Shimamoto, K., Miura ,T. (2015).
Urinary angiotensin-converting enzyme 2 in hypertensive patients may be
increased by olmesartan, an angiotensin II receptor blocker. American
Journal of Hypertension ,28(1), 15–21. doi:
https://doi.org/10.1093/ajh/hpu086.
10.Ganguly, D. (2018) Do Type I Interferons Link Systemic Autoimmunities
and Metabolic Syndrome in a Pathogenetic Continuum? Trends in
Immunology, 39(1), 28-43. doi: 10.1016/j.it.2017.07.001.
11. Gonzalez, L., Novoa, U., Moya, J., Gabrielli, L., Jalil, J. E.,
García, L., Chiong, M., Lavandero, S., Ocaranza, M. P. (2018).
Angiotensin-(1-9) Reduces Cardiovascular and Renal Inflammation in
Experimental Renin-Independent Hypertension. Biochemical
Pharmacology,156, 357-370. doi: 10.1016/j.bcp.2018.08.045.
12. Guan, W. J., Liang, W. H., Zhao,Y., Liang, H. R., Chen, Z. S., Li,
Y. M., Liu, X. Q., Chen, R. C., Tang, C. L., Wang, T., Ou, C. Q., Li,
L., Chen, P. Y., Sang, L., Wang, W., Li, J. F., Li, C. C., Ou, L. M.,
Cheng, B.,Xiong, S., Ni, Z. Y., Xiang, J., Hu, Y., Liu, L., Shan, H.,
Lei C. L.,Peng, Y. X., Wei, L., Liu, Y., Hu, Y. H.,Peng, P., Wang, J.
M., Liu J. Y., Chen, Z., Li, G.,Zheng, Z. J.,Qiu, S.Q.,Luo, J., Ye,
C.J., Zhu, S. Y., Cheng, L. L., Ye, F., Li, S. Y.,Zheng, J. P., Zhang,
N. F., Zhong, N. S., He, J. X. (2020). Comorbidity and its Impact on
1590 Patients with Covid-19 in China: A Nationwide Analysis. European
Respiratory Journal, Mar 26:2000547. doi:
10.1183/13993003.00547-2020. Epub ahead of print.
13. Guzik, T. J., Hoch, N. E., Brown, K. A., McCann, L. A., Rahman,
A.,Dikalov, S., Goronzy, J., Weyand, C., Harrison, D. G. (2007). Role of
the T cell in the Genesis of Angiotensin II–Induced Hypertension and
Vascular Dysfunction. Journal of Experimental Medicine, 204(10),
2449–2460. doi: https://doi.org/10.1084/jem.20070657.
14. He, X., Han, B., Mura, M., Xia, S., Wang, S., Ma, T., Liu, M., Liu,
Z. (2007). Angiotensin-converting enzyme inhibitor captopril prevents
oleic acid-induced severe acute lung injury in rats. Shock, 28(1),
106-11.
15. Henry, C., Zaizafoun, M., Stock, E., Ghamande, S., Arroliga, A. C.,
White, H. D. (2018). Impact of angiotensin-converting enzyme Inhibitors
and Statins on Viral Pneumonia. Proceedings (Baylor University Medical
Center) ,31(4), 419-423. doi: 10.1080/08998280.2018.1499293.
16. Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., Yang, P.,
Sarao, R., Wada, T., Leong, P. H., Crackower, M. A., Fukamizu, A., Hui,
C. C., Hein, L., Uhlig, S., Slutsky, A. S., Jiang, C., Penninger, J. M.
(2005). Angiotensin-converting enzyme 2 Protects from Severe Acute Lung
Failure. Nature, 436, 112–116. doi: 10.1038/nature03712.
17. Jia, H. P., Look, D. C., Tan, P., Shi, L., Hickey, M., Gakhar, L.,
Chappell, M. C., Wohlford-Lenane, C., McCray, P. B. Jr. (2009).
Ectodomain shedding of angiotensin converting enzyme 2 in human airway
epithelia. American Journal of Physiology - Lung Cellular and Molecular
Physiology, 297(1), L84-96.
18. Kortekaas, K.E., Meijer, C.A., Hinnen, J.W., Dalman, R.L., Xu, B.,
Hamming, J.P., Lindeman, J. H. (2014). ACE Inhibitors Potently Reduce
Vascular Inflammation, Results of an Open Proof-Of-Concept Study in the
Abdominal Aortic Aneurysm. PLoS One ,9(12), e111952.doi:
10.1371/journal.pone.0111952.
19. Kuba, K., Imai, Y., Penninger, J. M. (2006). Angiotensin-converting
enzyme 2 in Lung Diseases. Current Opinion in Pharmacology, 6(3) ,
271-276. doi: 10.1016/j.coph.2006.03.001.
20. Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., Wang,
Z., Li, J., Li, J.,Feng, C., Zhang, Z., Wang, L.,Peng, L., Chen, L.,
Qin, Y., Zhao, D., Tan, S., Yin, L., Xu, J., Zhou, C., Jiang, C., Liu,
L. (2020a). Clinical and Biochemical Indexes from 2019-nCoV Infected
Patients Linked to Viral loads and Lung Injury. Science China Life
Science, 63(3), 364–374. doi:
:https://doi.org/10.1007/s11427-020-1643-8.
21. Liu, Y., Huang, F., Xu, J., Yang, P., Qin, Y., Cao, M., Wang, Z.,
Li, X., Zhang, S., Ye, L., Lv, J., Wei, J., Xie, T., Gao, H., Xu, K. F.,
Wang, F., Liu, L., Jiang, C. (2020b). Anti-hypertensive Angiotensin II
Receptor Blockers Associated to Mitigation of Disease Severity in
elderly COVID-19 Patients. medRxiv,.03.20.20039586; doi:
https://doi.org/10.1101/2020.03.20.20039586.
22. Li, X.,Geng, M.,Peng, Y.,Meng, L., Lu, S. (2020a). Molecular Immune
Pathogenesis and Diagnosis of COVID-19. Journal of Pharmaceutical
Analysis, 10(2), 102-108. doi:
https://doi.org/10.1016/j.jpha.2020.03.001. [Epub ahead of print]
23. Li, Y., Zeng, Z., Li, Y., Huang, W., Zhou, M., Zhang, X., Jiang, W.
(2020b).Angiotensin-converting enzyme inhibition attenuates
lipopolysaccharide-induced lung injury by regulating the balance between
angiotensin-converting enzyme and angiotensin-converting enzyme 2 and
inhibiting mitogen-activated protein kinase activation. Shock, 43(4),
395-404. doi: 10.1097/SHK.0000000000000302.
24. Li, X. C., Zhang, J.,Zhuo, J.L. (2017). The Vasoprotective Axes of
the Renin-Angiotensin System: Physiological Relevance and Therapeutic
Implications in Cardiovascular, Hypertensive and Kidney Diseases.
Pharmacological Research,125(Pt A), 21–38.
25. Magalhaes, G.S., Barroso, L. C., Reis, A. C., Rodrigues-Machado, M.
G.,Gregório, J.F., Motta-Santos, D., Oliveira, A.C., Perez, D. A.,
Barcelos, L. S., Teixeira, M. M., Santos, R. A. S., Pinho, V.,
Campagnole-Santos, M. J. (2018). Angiotensin-(1-7) Promotes Resolution
of Eosinophilic Inflammation in an Experimental Model of Asthma.
Frontiers in Immunoogy, 9, 58. doi: 10.3389/fimmu.2018.00058.
26. Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R.
S., Manson, J. J. (2020). COVID-19: consider cytokine storm syndromes
and immunosuppression. The Lancet, 395, 28.doi:
https://doi.org/10.1016/S0140-6736(20)30630-9
27. Meng, J., Xiao, G., Zhang, J., He, X., Ou, M., Bi, J., Yang, R., Di,
W., Wang, Z., Li, Z., Gao, H., Liu, L., Zhang, G. (2020).
Renin-angiotensin system inhibitors improve the clinical outcomes of
COVID-19 patients with hypertension. Emerging Microbes and Infections,
9(1), 757-760. doi: 10.1080/22221751.2020.1746200.
28. Meng, Y., Yu, C. H., Li, W., Li, T., Luo, W., Huang, S., Wu, P. S.,
Cai, S. X., Li, X. (2014) Angiotensin-converting enzyme
2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by
inhibiting the MAPK/NF-κB pathway. American Journal of Respiratory Cell
and Molecular Biology, 50(4), 723-36. doi: 10.1165/rcmb.2012-0451OC.
29. Mortensen, E. M., Nakashima, B., Cornell, J., Copeland, L. A., Pugh,
M. J., Anzueto, A., Good, C., Restrepo, M. I., Downs, J. R., Frei, C.
R., Fine, M. J. (2012). Population-based study of statins, angiotensin
II receptor blockers, and angiotensin-converting enzyme inhibitors on
pneumonia-related outcomes. Clinical Infectious Diseases, 55(11),
1466-73. doi: 10.1093/cid/cis733. Epub 2012 Aug 23.
30. Platten, M., Youssef, S., Hur, E. M., Ho, P.P., Han, M.H., Lanz,
T.V., Phillips, L. K., Goldstein, .J.,R.; Raine, C.S., Sobel, R.A.,
Steinman, L. (2009). Blocking angiotensin-converting enzyme induces
potent regulatory T cells and modulates TH1- and TH17-mediated
autoimmunity. Proceedings of the National Academy of Sciences of the
United States of America, 106(35), 14948-14953; doi:
10.1073/pnas.0903958106.
31. Rodrigues, P. T. R., Rocha, N. P., Miranda, A. S., Teixeira, A.
L.,Simoes-E-Silva, A. C. (2017). The Anti-Inflammatory Potential of
ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and
Clinical Research. Current Drug Targets, 18(11), 1301-1313. doi:
10.2174/1389450117666160727142401.
32. Saavedra, J. M. (2020). Angiotensin receptor blockers and COVID-19.
Pharmacological Research, 156, 104832.
33. Santuchi, M. C., Dutra, M.F., Vago , J.P., Lima, K. M., Galvão, I.,
Souza-Neto, F. P., Silva, M.M., Oliveira, A.C., Oliveira, F. C. B.,
Gonçalves, R., Teixeira, M. M., Sousa , L.P. Santos , R. A. S., Silva,
R.F. Angiotensin-(1-7) and Alamandine Promote Anti-inflammatory Response
in Macrophages In Vitro and In Vivo. (2019). Mediators of Inflammation,
doi: https://doi.org/10.1155/2019/2401081 Volume 2019 |Article
ID 2401081 | 14 pages
34. Sepehri, Z.,Masoumi, M.,Ebrahimi, N.,Kiani, Z., Nasiri, A. A.,
Kohan, F., Sheikh, F M.,Kazemi A. M., Asadikaram, G. (2016).
Atorvastatin, Losartan and Captopril Lead to Upregulation of TGF-β, and
Downregulation of IL-6 in Coronary Artery Disease and Hypertension.Plos
One, 11(12), e0168312. doi: https://doi.org/10.1371/journal.pone.0168312
35. Shen, L., Mo, H., Cai, L., Kong, T., Zheng, W., Ye, J., Qi, J.,
Xiao, Z. (2009). Losartan prevents sepsis-induced acute lung injury and
decreases activation of nuclear factor kappaB and mitogen-activated
protein kinases. Shock, 31(5), 500-6. doi: 10.1097/SHK.0b013e318189017a.
36. Sriram, K., Insel, P. A. (2020). Dangers of ACE inhibitor and ARB
usage in COVID-19: evaluating the evidence MedRxiv preprint, doi:
https://doi.org/10.1101/2020.03.25.20043927.
37. Vaduganathan, M., Vardeny O., Michel, T., McMurray, J.J. V.,
Pfeffer, M. A., Solomon, S. D. (2020). Renin-Angiotensin-Aldosterone
System Inhibitors in Patients with Covid-19. New England Journal of
Medicine, 382(17), 1653-1659. doi: 10.1056/NEJMsr2005760.
38. Wang, X., Khaidakov, M., Ding, Z., Mitra, S., Lu, J., Liu, S.,
Mehta, J. L. (2012). Cross-talk between Inflammation and Angiotensin II:
Studies Based on Direct Transfection of Cardiomyocytes with AT1R and
AT2R cDNA. Experimental Biology and Medicine, 237(12), 1394–1401. doi:
https://doi.org/10.1258/ebm.2012.012212.
39. Wösten-van Asperen, R. M., Lutter, R., Specht, P. A., Moll, G. N.,
van Woensel, J. B., van der Loos, C. M., van Goor, H., Kamilic, J.,
Florquin, S., Bos, A. P. (2011). Acute respiratory distress syndrome
leads to reduced ratio of ACE/ACE2 activities and is prevented by
angiotensin-(1-7) or an angiotensin II receptor antagonist. The Journal
of Pathology, 225(4), 618-27. doi: 10.1002/path.2987. Epub 2011 Oct 18.
40. Wu, H., Li, Y., Wang, Y., Xu, D., Li, C., Liu, M., Sun, X., Li, Z.
(2014). Tanshinone IIA attenuates bleomycin-induced pulmonary fibrosis
via modulating angiotensin-converting enzyme 2/ angiotensin-(1-7) axis
in rats. International Journal of Medical Sciences, 11(6), 578-86. doi:
10.7150/ijms.8365. eCollection 2014.
41. WHO. Coronavirus disease 2019 (COVID-19) Situation Report – 52.
March 12, 2020.
https://www.who.int/docs/default-source/coronaviruse/20200312-sitrep-52-covid-19.pdf?sfvrsn=e2bfc9c0_2
(accessed April 25, 2020).
42. Yang, G., Tan, Z., Zhou, L., Yang, M., Peng, L., Liu, J., Cai, J.,
Yang, R., Han, J., Huang, Y., He, S. (2020). Angiotensin II Receptor
Blockers and Angiotensin-Converting Enzyme Inhibitors Usage is
Associated with Improved Inflammatory Status and Clinical Outcomes in
COVID-19 Patients With Hypertension. medRxiv, .03.31.20038935;
doi: https://doi.org/10.1101/2020.03.31.20038935.
43. Yu, X., Cui, L., Hou, F., Liu, X., Wang, Y., Wen, Y.,Yin, C. (2018).
Angiotensin-converting enzyme 2-angiotensin (1-7)-Mas axis prevents
pancreatic acinar cell inflammatory response via inhibition of the p38
mitogen-activated protein kinase/nuclear factor-κB pathway.
International Journal of Molecular Medicine, 41(1), 409-420. doi:
https://doi.org/10.3892/ijmm.2017.3252.
44. Zhang,P., Zhu, L.,Cai, J., Lei, F., Qin, J. J.,Xie, J., Liu, Y. M.,
Zhao, Y. C., Huang, X., Lin, L., Xia, M., Chen, M. M., Cheng, X., Zhang,
X.,Guo, D., Peng, Y.,Ji, Y. X., Chen, J., She, Z. G., Wang, Y.,Xu, Q.,
Tan, R., Wang, H., Lin, J., Luo, P., Fu, S.,Cai, H., Ye, P., Xiao, B1.,
Mao, W., Liu, L., Yan, Y., Liu, M., Chen, M., Zhang, X., Wang, X.,Touyz,
R. M., Xia, J., Zhang, B. H., Huang, X., Yuan, Y.,Rohit, L., Liu, P. P.,
Li, H. (2020). Association of Inpatient Use of Angiotensin Converting
Enzyme Inhibitors and Angiotensin II Receptor Blockers with Mortality
Among Patients With Hypertension Hospitalized With COVID-19. Circulation
Research, doi: 10.1161/CIRCRESAHA.120.317134. [Epub ahead of print]
45. Zhang, Y.; Li, Y.; Shi, C.; Fu, X.; Zhao, L.; Song, Y. (2018).
Angiotensin-(1-7)-mediated Mas1 receptor/NF-κB-p65 signaling is involved
in a cigarette smoke-induced chronic obstructive pulmonary disease mouse
model. Environmental Toxicology, 33(1), 5-15. doi: 10.1002/tox.22454.
Epub 2017 Sep 28.