5 References
1. Gilliam, B.L., D.J. Riedel, and R.R. Redfield, Clinical use of CCR5 inhibitors in HIV and beyond. J Transl Med, 2011. 9 Suppl 1 : p. S9.
2. Deng, H., et al., Identification of a major co-receptor for primary isolates of HIV-1. Nature, 1996. 381 (6584): p. 661-6.
3. Dean, M., et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science, 1996. 273 (5283): p. 1856-62.
4. Kalidasan, V. and K. Theva Das, Lessons Learned From Failures and Success Stories of HIV Breakthroughs: Are We Getting Closer to an HIV Cure? Front Microbiol, 2020. 11 : p. 46.
5. Huang, Y., et al., The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med, 1996. 2 (11): p. 1240-3.
6. Galvani, A.P. and M. Slatkin, Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele. Proc Natl Acad Sci U S A, 2003. 100 (25): p. 15276-9.
7. Hutter, G., et al., Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med, 2009.360 (7): p. 692-8.
8. Hutter, G. and E. Thiel, Allogeneic transplantation of CCR5-deficient progenitor cells in a patient with HIV infection: an update after 3 years and the search for patient no. 2. AIDS, 2011.25 (2): p. 273-4.
9. Allers, K., et al., Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood, 2011.117 (10): p. 2791-9.
10. Gupta, R.K., et al., HIV-1 remission following CCR5Delta32/Delta32 haematopoietic stem-cell transplantation. Nature, 2019. 568 (7751): p. 244-248.
11. Gupta, R.K., et al., Evidence for HIV-1 cure after CCR5Delta32/Delta32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report. Lancet HIV, 2020.
12. B.-E., J., et al., Analytic treatment interruption (ATI) after allogeneic CCR5-D32 HSCT for AML in 2013. Proceedings of the Conference on Retroviruses and Opportunistic Infections (CROI), Seattle, WA, 2019.
13. Cornu, T.I., et al., Editing CCR5: a novel approach to HIV gene therapy. Adv Exp Med Biol, 2015. 848 : p. 117-30.
14. Cornu, T.I., C. Mussolino, and T. Cathomen, Refining strategies to translate genome editing to the clinic. Nat Med, 2017.23 (4): p. 415-423.
15. June, C.H., Emerging Use of CRISPR Technology - Chasing the Elusive HIV Cure. N Engl J Med, 2019. 381 (13): p. 1281-1283.
16. Tebas, P., et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med, 2014.370 (10): p. 901-10.
17. Mussolino, C., et al., TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity.Nucleic Acids Res, 2014.
18. Mussolino, C., et al., A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res, 2011. 39 (21): p. 9283-93.
19. Gautron, A.S., et al., Fine and Predictable Tuning of TALEN Gene Editing Targeting for Improved T Cell Adoptive Immunotherapy. Mol Ther Nucleic Acids, 2017. 9 : p. 312-321.
20. Kormann, M.S., et al., Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol, 2011. 29 (2): p. 154-7.
21. Dreyer, A.K., et al., TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials, 2015. 69 : p. 191-200.
22. Cornu, T.I. and T. Cathomen, Targeted genome modifications using integrase-deficient lentiviral vectors. Mol Ther, 2007.15 (12): p. 2107-13.
23. Lusso, P., et al., Growth of macrophage-tropic and primary human immunodeficiency virus type 1 (HIV-1) isolates in a unique CD4+ T-cell clone (PM1): failure to downregulate CD4 and to interfere with cell-line-tropic HIV-1. J Virol, 1995. 69 (6): p. 3712-20.
24. Koyanagi, Y., et al., Dual infection of the central nervous system by AIDS viruses with distinct cellular tropisms. Science, 1987.236 (4803): p. 819-22.
25. Adachi, A., et al., Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol, 1986. 59 (2): p. 284-91.
26. Kok, Y.L., et al., Monocyte-derived macrophages exhibit distinct and more restricted HIV-1 integration site repertoire than CD4(+) T cells. Sci Rep, 2016. 6 : p. 24157.
27. Moore, J.P., et al., Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science, 1990. 250 (4984): p. 1139-42.
28. Fine, E.J., et al., An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage. Nucleic Acids Res, 2014. 42 (6): p. e42.
29. Clement, K., et al., CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol, 2019. 37 (3): p. 224-226.
30. Benjamini, Y. and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B (Methodological), 1995.57 (1): p. 289-300.
31. Mar, J.C. and J. Quackenbush, Decomposition of gene expression state space trajectories. PLoS Comput Biol, 2009. 5 (12): p. e1000626.
32. Cormier, E.G., et al., Mapping the determinants of the CCR5 amino-terminal sulfopeptide interaction with soluble human immunodeficiency virus type 1 gp120-CD4 complexes. J Virol, 2001.75 (12): p. 5541-9.
33. Dragic, T., et al., Amino-terminal substitutions in the CCR5 coreceptor impair gp120 binding and human immunodeficiency virus type 1 entry. J Virol, 1998. 72 (1): p. 279-85.
34. Meijerink, H., et al., The number of CCR5 expressing CD4+ T lymphocytes is lower in HIV-infected long-term non-progressors with viral control compared to normal progressors: a cross-sectional study.BMC Infect Dis, 2014. 14 : p. 683.
35. Bae, S., et al., Microhomology-based choice of Cas9 nuclease target sites. Nat Methods, 2014. 11 (7): p. 705-6.
36. Tsai, S.Q., et al., GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 2015.33 (2): p. 187-197.
37. Mock, U., et al., mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5. Nucleic Acids Res, 2015. 43 (11): p. 5560-71.
38. Qi, C., et al., Inducing CCR5Delta32/Delta32 Homozygotes in the Human Jurkat CD4+ Cell Line and Primary CD4+ Cells by CRISPR-Cas9 Genome-Editing Technology. Mol Ther Nucleic Acids, 2018. 12 : p. 267-274.
39. Xiao, Q., et al., CCR5 editing by Staphylococcus aureus Cas9 in human primary CD4(+) T cells and hematopoietic stem/progenitor cells promotes HIV-1 resistance and CD4(+) T cell enrichment in humanized mice. Retrovirology, 2019. 16 (1): p. 15.
40. Shi, B., et al., TALEN-Mediated Knockout of CCR5 Confers Protection Against Infection of Human Immunodeficiency Virus. J Acquir Immune Defic Syndr, 2017. 74 (2): p. 229-241.
41. Xu, L., et al., CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia. N Engl J Med, 2019. 381 (13): p. 1240-1247.
42. Kordelas, L., et al., Shift of HIV tropism in stem-cell transplantation with CCR5 Delta32 mutation. N Engl J Med, 2014.371 (9): p. 880-2.
43. Didigu, C.A., et al., Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood, 2014. 123 (1): p. 61-9.
44. Liu, Z., et al., Genome editing of the HIV co-receptors CCR5 and CXCR4 by CRISPR-Cas9 protects CD4(+) T cells from HIV-1 infection.Cell Biosci, 2017. 7 : p. 47.
45. Yu, S., et al., Simultaneous Knockout of CXCR4 and CCR5 Genes in CD4+ T Cells via CRISPR/Cas9 Confers Resistance to Both X4- and R5-Tropic Human Immunodeficiency Virus Type 1 Infection. Hum Gene Ther, 2018. 29 (1): p. 51-67.
46. Lim, J.K., et al., CCR5 deficiency is a risk factor for early clinical manifestations of West Nile virus infection but not for viral transmission. J Infect Dis, 2010. 201 (2): p. 178-85.