References
1. Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future
life expectancy in 35 industrialised countries: projections with a
Bayesian model ensemble. Lancet [Internet].
2017;389(10076):1323–35. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/28236464
2. World Population Prospects: the 2017 Revision [Internet]. 2017.
Available from:
https://esa.un.org/unpd/wpp/Publications/Files/WPP2017_KeyFindings.pdf
3. Divo MJ, Martinez CH, Mannino DM. Ageing and the epidemiology of
multimorbidity. Eur Respir J [Internet]. 2014;44(4):1055–68.
Available from: https://www.ncbi.nlm.nih.gov/pubmed/25142482
4. Tchkonia T, Kirkland JL. Aging, Cell Senescence, and Chronic Disease:
Emerging Therapeutic Strategies. JAMA [Internet].
2018;320(13):1319–20. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/30242336
5. Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and
pathways. Nature [Internet]. 2015/01/17. 2015;517(7534):302–10.
Available from: https://www.ncbi.nlm.nih.gov/pubmed/25592535
6. Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot JD, et al. Opposing
Effects of Fasting Metabolism on Tissue Tolerance in Bacterial and Viral
Inflammation. Cell. 2016/09/10. 2016;166:1512-1525 e12.
7. Kristan DM. Calorie restriction and susceptibility to intact
pathogens. Age. 2009/05/09. 2008;30:147–56.
8. Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric
Restriction Mimetics against Age-Associated Disease: Targets,
Mechanisms, and Therapeutic Potential. Cell Metabolism 2019.
9. Templeman NM, Murphy CT. Regulation of reproduction and longevity by
nutrient-sensing pathways. J Cell Biol [Internet]. 2017/10/28.
2018;217(1):93–106. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/29074705
10. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and
Disease. Cell [Internet]. 2017/04/08. 2017;169(6):960–76. Available
from: https://www.ncbi.nlm.nih.gov/pubmed/28283069
11. Paquette M, El-Houjeiri L, Pause A. mTOR Pathways in Cancer and
Autophagy. Cancers (Basel) [Internet]. 2018;10(1). Available from:
https://www.ncbi.nlm.nih.gov/pubmed/29329237
12. Schreiber KH, Ortiz D, Academia EC, Anies AC, Liao CY, Kennedy BK.
Rapamycin-mediated mTORC2 inhibition is determined by the relative
expression of FK506-binding proteins. Aging Cell [Internet].
2015;14(2):265–73. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/25652038
13. Gaubitz C, Prouteau M, Kusmider B, Loewith R. TORC2 Structure and
Function. Trends Biochem Sci [Internet]. 2016;41(6):532–45.
Available from: https://www.ncbi.nlm.nih.gov/pubmed/27161823
14. Burkewitz K, Zhang Y, Mair WB. AMPK at the nexus of energetics and
aging. Cell Metab. 2014/04/15. 2014;20(1):10–25.
15. Chen J, Ou Y, Li Y, Hu S, Shao LW, Liu Y. Metformin extends C.
elegans lifespan through lysosomal pathway. Elife. 2017/10/14. 2017;6.
16. Cameron AR, Morrison VL, Levin D, Mohan M, Forteath C, Beall C, et
al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes
Status. Circ Res. 2016/07/16. 2016;119:652–65.
17. Johnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, De
Magalhães JP. The role of DNA methylation in aging, rejuvenation, and
age-related disease. Rejuvenation Res. 2012 Oct 1;15(5):483–94.
18. Zeng J deng, Wu WKK, Wang H yun, Li X xing. Serine and one-carbon
metabolism, a bridge that links mTOR signaling and DNA methylation in
cancer. Vol. 149, Pharmacological Research. Academic Press; 2019.
19. Zhong T, Men Y, Lu L, Geng T, Zhou J, Mitsuhashi A, et al. Metformin
alters DNA methylation genome-wide via the H19/SAHH axis. Oncogene. 2017
Apr 27;36(17):2345–54.
20. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T,
et al. Metformin retards aging in C. elegans by altering microbial
folate and methionine metabolism. Cell [Internet].
2013;153(1):228–39. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/23540700
21. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL,
Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in
mice. Nat Commun. 2013/08/01. 2013;4:2192.
22. Elbere I, Silamikelis I, Ustinova M, Kalnina I, Zaharenko L, Peculis
R, et al. Significantly altered peripheral blood cell DNA methylation
profile as a result of immediate effect of metformin use in healthy
individuals. Clin Epigenetics [Internet]. 2018 Dec 13 [cited 2020
Jun 29];10(1). Available from:
https://pubmed.ncbi.nlm.nih.gov/30545422/
23. Aliper A, Jellen L, Cortese F, Artemov A, Karpinsky-Semper D,
Moskalev A, et al. Towards natural mimetics of metformin and rapamycin.
Aging (Albany NY) [Internet]. 2017;9(11):2245–68. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/29165314
24. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, et
al. Rapamycin fed late in life extends lifespan in genetically
heterogeneous mice. Nature [Internet]. 2009;460(7253):392–5.
Available from: https://www.ncbi.nlm.nih.gov/pubmed/19587680
25. Nadon NL, Strong R, Miller RA, Harrison DE. NIA Interventions
Testing Program: Investigating Putative Aging Intervention Agents in a
Genetically Heterogeneous Mouse Model. EBioMedicine [Internet].
2017;21:3–4. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/27923560
26. Wang T, Tsui B, Kreisberg JF, Robertson NA, Gross AM, Yu MK, et al.
Epigenetic aging signatures in mice livers are slowed by dwarfism,
calorie restriction and rapamycin treatment. Genome Biol. 2017 Mar
28;18(1):1–11.
27. Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J,
Huang B, et al. mTOR inhibition improves immune function in the elderly.
Sci Transl Med. 2014/12/30. 2014;6(268):268ra179.
28. Mortality GBD, Causes of Death C. Global, regional, and national
life expectancy, all-cause mortality, and cause-specific mortality for
249 causes of death, 1980-2015: a systematic analysis for the Global
Burden of Disease Study 2015. Lancet [Internet].
2016;388(10053):1459–544. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/27733281
29. North BJ, Sinclair DA. The intersection between aging and
cardiovascular disease. Circ Res [Internet]. 2012;110(8):1097–108.
Available from: https://www.ncbi.nlm.nih.gov/pubmed/22499900
30. Yazdanyar A, Newman AB. The burden of cardiovascular disease in the
elderly: morbidity, mortality, and costs. Clin Geriatr Med
[Internet]. 2009;25(4):563–77, vii. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/19944261
31. Xu T, Brandmaier S, Messias AC, Herder C, Draisma HH, Demirkan A, et
al. Effects of metformin on metabolite profiles and LDL cholesterol in
patients with type 2 diabetes. Diabetes Care. 2015/08/08.
2015;38(10):1858–67.
32. Adeyemo MA, Mcduffie JR, Kozlosky M, Krakoff J, Calis KA, Brady SM,
et al. Effects of metformin on energy intake and satiety in obese
children. Diabetes, Obes Metab. 2015;
33. Day EA, Ford RJ, Smith BK, Mohammadi-Shemirani P, Morrow MR,
Gutgesell RM, et al. Metformin-induced increases in GDF15 are important
for suppressing appetite and promoting weight loss. Nat Metab
[Internet]. 2019;1(12):1202–8. Available from:
https://doi.org/10.1038/s42255-019-0146-4
34. Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross J, et al.
GDF15 mediates the effects of metformin on body weight and energy
balance. Nature [Internet]. 2019/12/26. 2019; Available from:
https://www.ncbi.nlm.nih.gov/pubmed/31875646
35. Au Yeung SL, Luo S, Schooling CM. The impact of GDF-15, a biomarker
for metformin, on the risk of coronary artery disease, breast and
colorectal cancer, and type 2 diabetes and metabolic traits: a Mendelian
randomisation study. Diabetologia [Internet]. 2019 Sep 1 [cited
2020 Jun 30];62(9):1638–46. Available from:
https://link.springer.com/article/10.1007/s00125-019-4913-2
36. Isoda K, Young JL, Zirlik A, MacFarlane LA, Tsuboi N, Gerdes N, et
al. Metformin inhibits proinflammatory responses and nuclear factor-κB
in human vascular wall cells. Arterioscler Thromb Vasc Biol. 2006;
37. Karnewar S, Neeli PK, Panuganti D, Kotagiri S, Mallappa S, Jain N,
et al. Metformin regulates mitochondrial biogenesis and senescence
through AMPK mediated H3K79 methylation: Relevance in age-associated
vascular dysfunction. Biochim Biophys Acta - Mol Basis Dis. 2018 Apr
1;1864(4):1115–28.
38. Zhang YP, Huang YT, Huang TS, Pang W, Zhu JJ, Liu YF, et al. The
Mammalian Target of Rapamycin and DNA methyltransferase 1 axis mediates
vascular endothelial dysfunction in response to disturbed flow. Sci Rep.
2017 Dec 1;7(1):1–12.
39. Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles IV WG, Schlattner
U, et al. Activation of the AMP-activated protein kinase by the
anti-diabetic drug metformin in vivo: Role of mitochondrial reactive
nitrogen species. J Biol Chem. 2004;
40. Davis BJ, Xie Z, Viollet B, Zou MH. Activation of the AMP-activated
kinase by antidiabetes drug metformin stimulates nitric oxide synthesis
in vivo by promoting the association of heat shock protein 90 and
endothelial nitric oxide synthase. Diabetes [Internet]. 2006/01/31.
2006;55(2):496–505. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/16443786
41. Kanamori H, Naruse G, Yoshida A, Minatoguchi S, Watanabe T,
Kawaguchi T, et al. Metformin Enhances Autophagy and Provides
Cardioprotection in δ-Sarcoglycan Deficiency-Induced Dilated
Cardiomyopathy. Circ Heart Fail [Internet]. 2019 Apr 1 [cited 2020
Jun 23];12(4):e005418. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/30922066
42. Roumie CL, Hung AM, Greevy RA, Grijalva CG, Liu X, Murff HJ, et al.
Comparative effectiveness of sulfonylurea and metformin monotherapy on
cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann
Intern Med [Internet]. 2012/11/07. 2012;157(9):601–10. Available
from: https://www.ncbi.nlm.nih.gov/pubmed/23128859
43. Hong J, Zhang Y, Lai S, Lv A, Su Q, Dong Y, et al. Effects of
metformin versus glipizide on cardiovascular outcomes in patients with
type 2 diabetes and coronary artery disease. Diabetes Care. 2012/12/12.
2013;36(5):1304–11.
44. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year
follow-up of intensive glucose control in type 2 diabetes. N Engl J Med
[Internet]. 2008;359(15):1577–89. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/18784090
45. Lexis CP, van der Horst-Schrivers AN, Lipsic E, Valente MA, Muller
Kobold AC, de Boer RA, et al. The effect of metformin on cardiovascular
risk profile in patients without diabetes presenting with acute
myocardial infarction: data from the Glycometabolic Intervention as
adjunct to Primary Coronary Intervention in ST Elevation Myocardial
Infarction (G. BMJ Open Diabetes Res Care. 2015/12/22.
2015;3(1):e000090.
46. Goldberg RB, Aroda VR, Bluemke DA, Barrett-Connor E, Budoff M,
Crandall JP, et al. Effect of Long-Term Metformin and Lifestyle in the
Diabetes Prevention Program and Its Outcome Study on Coronary Artery
Calcium. Circulation. 2017/05/10. 2017;136(1):52–64.
47. Berger NA, Savvides P, Koroukian SM, Kahana EF, Deimling GT, Rose
JH, et al. Cancer in the elderly. Trans Am Clin Clim Assoc
[Internet]. 2006;117:146–7. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/18528470
48. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer
Cell [Internet]. 2007;12(1):9–22. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/17613433
49. Nitta N, Nakasu S, Shima A, Nozaki K. mTORC1 signaling in primary
central nervous system lymphoma. Surg Neurol Int [Internet].
2016;7(Suppl 17):S475-80. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/27512609
50. Liu H, Zhang L, Zhang X, Cui Z. PI3K/AKT/mTOR pathway promotes
progestin resistance in endometrial cancer cells by inhibition of
autophagy. Onco Targets Ther [Internet]. 2017;10:2865–71. Available
from: https://www.ncbi.nlm.nih.gov/pubmed/28652768
51. Majmundar AJ, Wong WJ, Simon MC. Hypoxia inducible factors and the
response to hypoxic stress. Mol Cell [Internet]. 2010 [cited 2020
Jun 29];40(2):294. Available from:
/pmc/articles/PMC3143508/?report=abstract
52. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, et
al. SREBP Activity Is Regulated by mTORC1 and Contributes to
Akt-Dependent Cell Growth. Cell Metab. 2008;
53. Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas
E, et al. MTOR complex 1 regulates lipin 1 localization to control the
srebp pathway. Cell. 2011;
54. Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de novo
pyrimidine synthesis by growth signaling through mTOR and S6K1. Science
(80- ). 2013;
55. Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung
M, et al. Rapamycin inhibits primary and metastatic tumor growth by
antiangiogenesis: involvement of vascular endothelial growth factor. Nat
Med [Internet]. 2002;8(2):128–35. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/11821896
56. Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko
A V, Tyndyk ML, et al. Rapamycin increases lifespan and inhibits
spontaneous tumorigenesis in inbred female mice. Cell Cycle. 2011/11/24.
2011;10(24):4230–6.
57. Granville CA, Warfel N, Tsurutani J, Hollander MC, Robertson M, Fox
SD, et al. Identification of a highly effective rapamycin schedule that
markedly reduces the size, multiplicity, and phenotypic progression of
tobacco carcinogen-induced murine lung tumors. Clin Cancer Res.
2007/04/04. 2007;13(7):2281–9.
58. Llovet JM, Hernandez-Gea V. Hepatocellular carcinoma: reasons for
phase III failure and novel perspectives on trial design. Clin Cancer
Res [Internet]. 2014;20(8):2072–9. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/24589894
59. Meng LH, Zheng XF. Toward rapamycin analog (rapalog)-based precision
cancer therapy. Acta Pharmacol Sin [Internet]. 2015;36(10):1163–9.
Available from: https://www.ncbi.nlm.nih.gov/pubmed/26299952
60. Zhao H, Orhan YC, Zha X, Esencan E, Chatterton RT, Bulun SE.
AMP-activated protein kinase and energy balance in breast cancer. Am J
Transl Res [Internet]. 2017/03/25. 2017;9(2):197–213. Available
from: https://www.ncbi.nlm.nih.gov/pubmed/28337254
61. Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA, Egormin PA,
Piskunova TS, et al. If started early in life, metformin treatment
increases life span and postpones tumors in female SHR mice. Aging
(Albany NY) [Internet]. 2011/03/10. 2011;3(2):148–57. Available
from: https://www.ncbi.nlm.nih.gov/pubmed/21386129
62. Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA.
Metformin prevents tobacco carcinogen-induced lung tumorigenesis. Cancer
Prev Res. 2010;
63. Mitsuhashi A, Kiyokawa T, Sato Y, Shozu M. Effects of metformin on
endometrial cancer cell growth in vivo: a preoperative prospective
trial. Cancer. 2014/06/12. 2014;120(19):2986–95.
64. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD.
Metformin and reduced risk of cancer in diabetic patients. BMJ.
2005/04/26. 2005;330(7503):1304–5.
65. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New
users of metformin are at low risk of incident cancer: a cohort study
among people with type 2 diabetes. Diabetes Care. 2009/07/01.
2009;32(9):1620–5.
66. Chen HP, Shieh JJ, Chang CC, Chen TT, Lin JT, Wu MS, et al.
Metformin decreases hepatocellular carcinoma risk in a dose-dependent
manner: population-based and in vitro studies. Gut. 2012/07/10.
2013;62(4):606–15.
67. Suissa S, Azoulay L. Metformin and the risk of cancer: time-related
biases in observational studies. Diabetes Care [Internet].
2012/11/23. 2012;35(12):2665–73. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/23173135
68. Zi F, Zi H, Li Y, He J, Shi Q, Cai Z. Metformin and cancer: An
existing drug for cancer prevention and therapy. Oncol Lett
[Internet]. 2018;15(1):683–90. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/29422962
69. Home PD, Kahn SE, Jones NP, Noronha D, Beck-Nielsen H, Viberti G.
Experience of malignancies with oral glucose-lowering drugs in the
randomised controlled ADOPT (A Diabetes Outcome Progression Trial) and
RECORD (Rosiglitazone Evaluated for Cardiovascular Outcomes and
Regulation of Glycaemia in Diabetes) clinical trials. Diabetologia.
2010/06/10. 2010;53(9):1838–45.
70. Stevens RJ, Ali R, Bankhead CR, Bethel MA, Cairns BJ, Camisasca RP,
et al. Cancer outcomes and all-cause mortality in adults allocated to
metformin: systematic review and collaborative meta-analysis of
randomised clinical trials. Diabetologia. 2012/08/10.
2012;55(10):2593–603.
71. Thakkar B, Aronis KN, Vamvini MT, Shields K, Mantzoros CS. Metformin
and sulfonylureas in relation to cancer risk in type II diabetes
patients: a meta-analysis using primary data of published studies.
Metabolism. 2013/02/20. 2013;62(7):922–34.
72. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR.
Alzheimer’s disease and senile dementia: loss of neurons in the basal
forebrain. Science (80- ) [Internet]. 1982;215(4537):1237–9.
Available from: https://www.ncbi.nlm.nih.gov/pubmed/7058341
73. Alzheimer’s A. 2015 Alzheimer’s disease facts and figures.
Alzheimers Dement [Internet]. 2015;11(3):332–84. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/25984581
74. Woodruff-Pak DS, Vogel RW, Wenk GL. Galantamine: Effect on nicotinic
receptor binding, acetylcholinesterase inhibition, and learning. Proc
Natl Acad Sci [Internet]. 2001 Feb 13 [cited 2019 Nov
10];98(4):2089–94. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/11172080
75. Birks JS, Chong LY, Grimley Evans J. Rivastigmine for Alzheimer’s
disease [Internet]. Vol. 2015, Cochrane Database of Systematic
Reviews. John Wiley and Sons Ltd; 2015 [cited 2020 Jun 29].
Available from:
https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD001191.pub4/full
76. Korabecny J, Spilovska K, Mezeiova E, Benek O, Juza R, Kaping D, et
al. A Systematic Review on Donepezil-based Derivatives as Potential
Cholinesterase Inhibitors for Alzheimer’s Disease. Curr Med Chem
[Internet]. 2019 Oct 26 [cited 2019 Nov 10];26(30):5625–48.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/29768996
77. Kishi T, Matsunaga S, Oya K, Nomura I, Ikuta T, Iwata N. Memantine
for Alzheimer’s Disease: An Updated Systematic Review and Meta-analysis.
J Alzheimer’s Dis [Internet]. 2017 Sep 18 [cited 2019 Nov
10];60(2):401–25. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/28922160
78. Koenig AM, Mechanic-Hamilton D, Xie SX, Combs MF, Cappola AR, Xie L,
et al. Effects of the Insulin Sensitizer Metformin in Alzheimer Disease.
Alzheimer Dis Assoc Disord [Internet]. 2017 [cited 2019 Nov
10];31(2):107–13. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/28538088
79. Imfeld P, Bodmer M, Jick SS, Meier CR. Metformin, Other Antidiabetic
Drugs, and Risk of Alzheimer’s Disease: A Population-Based Case-Control
Study. J Am Geriatr Soc [Internet]. 2012 May 1 [cited 2019 Nov
10];60(5):916–21. Available from:
http://doi.wiley.com/10.1111/j.1532-5415.2012.03916.x
80. Chen Y, Zhou K, Wang R, Liu Y, Kwak Y-D, Ma T, et al. Antidiabetic
drug metformin (GlucophageR) increases biogenesis of Alzheimer’s amyloid
peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A
[Internet]. 2009 Mar 10 [cited 2019 Nov 10];106(10):3907–12.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/19237574
81. Li J, Deng J, Sheng W, Zuo Z. Metformin attenuates Alzheimer’s
disease-like neuropathology in obese, leptin-resistant mice. Pharmacol
Biochem Behav [Internet]. 2012 Jun 1 [cited 2019 Nov
10];101(4):564–74. Available from:
https://www.sciencedirect.com/science/article/pii/S0091305712000640?via%3Dihub
82. Tramutola A, Triplett JC, Di Domenico F, Niedowicz DM, Murphy MP,
Coccia R, et al. Alteration of mTOR signaling occurs early in the
progression of Alzheimer disease (AD): Analysis of brain from subjects
with pre-clinical AD, amnestic mild cognitive impairment and late-stage
AD. J Neurochem. 2015;
83. Lu AT, Hannon E, Levine ME, Hao K, Crimmins EM, Lunnon K, et al.
Genetic variants near MLST8 and DHX57 affect the epigenetic age of the
cerebellum. Nat Commun [Internet]. 2016 Feb 2 [cited 2020 Jun
28];7(1):1–9. Available from:
https://www.nature.com/articles/ncomms10561
84. Caccamo A, Magrì A, Medina DX, Wisely E V, López-Aranda MF, Silva
AJ, et al. mTOR regulates tau phosphorylation and degradation:
Implications for Alzheimer’s disease and other tauopathies. Aging Cell.
2013;
85. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular
interplay between mammalian target of rapamycin (mTOR), amyloid-beta,
and Tau: effects on cognitive impairments. J Biol Chem. 2010/02/25.
2010;285(17):13107–20.
86. Majumder S, Richardson A, Strong R, Oddo S. Inducing autophagy by
rapamycin before, but not after, the formation of plaques and tangles
ameliorates cognitive deficits. PLoS One. 2011;
87. Lin AL, Jahrling JB, Zhang W, DeRosa N, Bakshi V, Romero P, et al.
Rapamycin rescues vascular, metabolic and learning deficits in
apolipoprotein E4 transgenic mice with pre-symptomatic Alzheimer’s
disease. J Cereb Blood Flow Metab. 2016/01/02. 2017;37(1):217–26.
88. Palacios N, Gao X, McCullough ML, Jacobs EJ, Patel A V, Mayo T, et
al. Obesity, diabetes, and risk of Parkinson’s disease. Mov Disord
[Internet]. 2011;26(12):2253–9. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/21739472
89. Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J
Neural Transm [Internet]. 2017;124(8):901–5. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/28150045
90. Djamshidian A, Poewe W. Apomorphine and levodopa in Parkinson’s
disease: Two revolutionary drugs from the 1950’s. Parkinsonism Relat
Disord [Internet]. 2016 Dec [cited 2019 Nov 10];33:S9–12.
Available from: http://www.ncbi.nlm.nih.gov/pubmed/28012951
91. Weinreb O, Amit T, Bar-Am O, Youdim MBH. Rasagiline: A novel
anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective
activity. Prog Neurobiol [Internet]. 2010 Nov [cited 2019 Nov
10];92(3):330–44. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/20600573
92. Mindham RHS, Lamb P, Bradley R. A Comparison of Piribedil,
Procyclidine and Placebo in the Control of Phenothiazine-induced
Parkinsonism. Br J Psychiatry [Internet]. 1977 Jun 29 [cited 2019
Nov 10];130(6):581–5. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/326325
93. Wahlqvist ML, Lee M-S, Hsu C-C, Chuang S-Y, Lee J-T, Tsai H-N.
Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s
disease occurring with Type 2 diabetes in a Taiwanese population cohort.
Parkinsonism Relat Disord [Internet]. 2012 Jul [cited 2019 Nov
10];18(6):753–8. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/22498320
94. Przedborski S, Vila M. MPTP: A review of its mechanisms of
neurotoxicity. Vol. 1, Clinical Neuroscience Research. 2001. p. 407–18.
95. Katila N, Bhurtel S, Shadfar S, Srivastav S, Neupane S, Ojha U, et
al. Metformin lowers α-synuclein phosphorylation and upregulates
neurotrophic factor in the MPTP mouse model of Parkinson’s disease.
Neuropharmacology [Internet]. 2017 Oct 1 [cited 2019 Nov
10];125:396–407. Available from:
https://www.sciencedirect.com/science/article/pii/S0028390817303829
96. Fitzgerald JC, Zimprich A, Carvajal Berrio DA, Schindler KM, Maurer
B, Schulte C, et al. Metformin reverses TRAP1 mutation-associated
alterations in mitochondrial function in Parkinson’s disease. Brain
[Internet]. 2017 Sep 1 [cited 2019 Nov 10];140(9):2444–59.
Available from:
https://academic.oup.com/brain/article/140/9/2444/4096700
97. Slack C, Foley A, Partridge L. Activation of AMPK by the putative
dietary restriction mimetic metformin is insufficient to extend lifespan
in Drosophila. PLoS One [Internet]. 2012;7(10):e47699. Available
from: https://www.ncbi.nlm.nih.gov/pubmed/23077661
98. McCreight LJ, Bailey CJ, Pearson ER. Metformin and the
gastrointestinal tract. Diabetologia [Internet]. 2016/01/19.
2016;59(3):426–35. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/26780750
99. Liu Q, Li S, Quan H, Li J. Vitamin B12 status in metformin treated
patients: systematic review. PLoS One [Internet]. 2014;9(6):e100379.
Available from: https://www.ncbi.nlm.nih.gov/pubmed/24959880
100. Aroda VR, Edelstein SL, Goldberg RB, Knowler WC, Marcovina SM,
Orchard TJ, et al. Long-term Metformin Use and Vitamin B12 Deficiency in
the Diabetes Prevention Program Outcomes Study. J Clin Endocrinol Metab
[Internet]. 2016;101(4):1754–61. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/26900641
101. Administration USF and D. Rapamune Prescribing Information
[Internet]. 2015. Available from:
https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/021083s058,021110s075lbl.pdf
102. Kraig E, Linehan LA, Liang H, Romo TQ, Liu Q, Wu Y, et al. A
randomized control trial to establish the feasibility and safety of
rapamycin treatment in an older human cohort: Immunological, physical
performance, and cognitive effects. Exp Gerontol [Internet].
2018;105:53–69. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/29408453
103. Arriola Apelo SI, Pumper CP, Baar EL, Cummings NE, Lamming DW.
Intermittent Administration of Rapamycin Extends the Life Span of Female
C57BL/6J Mice. J Gerontol A Biol Sci Med Sci [Internet].
2016;71(7):876–81. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/27091134
104. Azoulay L, Schneider-Lindner V, Dell’aniello S, Schiffrin A, Suissa
S. Combination therapy with sulfonylureas and metformin and the
prevention of death in type 2 diabetes: a nested case-control study.
Pharmacoepidemiol Drug Saf. 2010/01/07. 2010;19(4):335–42.
105. Schreiber KH, Arriola Apelo SI, Yu D, Brinkman JA, Velarde MC, Syed
FA, et al. A novel rapamycin analog is highly selective for mTORC1 in
vivo. Nat Commun [Internet]. 2019/07/22. 2019;10(1):3194. Available
from: https://www.ncbi.nlm.nih.gov/pubmed/31324799
106. Mannick JB, Morris M, Hockey HP, Roma G, Beibel M, Kulmatycki K, et
al. TORC1 inhibition enhances immune function and reduces infections in
the elderly. Sci Transl Med. 2018/07/13. 2018;10(449).
107. Matter MS, Decaens T, Andersen JB, Thorgeirsson SS. Targeting the
mTOR pathway in hepatocellular carcinoma: current state and future
trends. J Hepatol [Internet]. 2014;60(4):855–65. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/24308993
108. Chiarini F, Evangelisti C, McCubrey JA, Martelli AM. Current
treatment strategies for inhibiting mTOR in cancer. Trends Pharmacol Sci
[Internet]. 2015;36(2):124–35. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/25497227
109. Dykens JA, Will Y. Mitochondrial Toxicity. In: Encyclopedia of
Toxicology: Third Edition. Elsevier; 2014. p. 349–53.
110. Kalyanaraman B, Cheng G, Hardy M, Ouari O, Sikora A, Zielonka J, et
al. Mitochondria-targeted metformins: Antitumour and redox signalling
mechanisms [Internet]. Vol. 7, Interface Focus. Royal Society; 2017
[cited 2020 Jul 1]. Available from:
/pmc/articles/PMC5311906/?report=abstract
111. Anisimov VN, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML,
Egormin PA, et al. Gender differences in metformin effect on aging, life
span and spontaneous tumorigenesis in 129/Sv mice. Aging (Albany NY)
[Internet]. 2010;2(12):945–58. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/21164223
112. Miller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M, et
al. Rapamycin-mediated lifespan increase in mice is dose and sex
dependent and metabolically distinct from dietary restriction. Aging
Cell [Internet]. 2014;13(3):468–77. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/24341993
113. Trilla-Fuertes L, Gámez-Pozo A, Arevalillo JM, Díaz-Almirón M,
Prado-Vázquez G, Zapater-Moros A, et al. Molecular characterization of
breast cancer cell response to metabolic drugs. Oncotarget
[Internet]. 2018 [cited 2020 Jun 30];9(11):9645–60. Available
from: /pmc/articles/PMC5839391/?report=abstract
114. Zhou Y, Guo Y, Ye W, Wang Y, Li X, Tian Y, et al. RS11212617 is
associated with metformin treatment response in type 2 diabetes in
Shanghai local Chinese population. Int J Clin Pr [Internet].
2014;68(12):1462–6. Available from:
https://www.ncbi.nlm.nih.gov/pubmed/25296556
115. López-Bermejo A, Díaz M, Morán E, De Zegher F, Ibáñez L. A single
nucleotide polymorphism in STK11 influences insulin sensitivity and
metformin efficacy in hyperinsulinemic girls with androgen excess.
Diabetes Care [Internet]. 2010 Jul [cited 2020 Jun
30];33(7):1544–8. Available from:
/pmc/articles/PMC2890356/?report=abstract
116. Jablonski KA, McAteer JB, De Bakker PIW, Franks PW, Pollin TI,
Hanson RL, et al. Common variants in 40 genes assessed for diabetes
incidence and response to metformin and lifestyle intervention in the
diabetes prevention program. Diabetes [Internet]. 2010 Oct [cited
2020 Jun 30];59(10):2672–81. Available from:
https://pubmed.ncbi.nlm.nih.gov/20682687/
117. Zhou K, Bellenguez C, Spencer CCA, Bennett AJ, Coleman RL,
Tavendale R, et al. Common variants near ATM are associated with
glycemic response to metformin in type 2 diabetes [Internet]. Vol.
43, Nature Genetics. Nat Genet; 2011 [cited 2020 Jun 30]. p.
117–20. Available from: https://pubmed.ncbi.nlm.nih.gov/21186350/
118. Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as
a Tool to Target Aging. Cell Metab. 2016/06/16. 2016;23(6):1060–5.
119. World’s first anti-aging TAME trial gets green-light -
Longevity.Technology [Internet]. [cited 2020 Jul 1]. Available
from:
https://www.longevity.technology/worlds-first-anti-aging-trial-gets-green-light/
Table 1. Summary of major animal studies and clinical trials about the
effects of metformin and rapamycin