References
Alberti, S., Gitler, A. D. and Lindquist, S. (2007). A suite of
Gateway® cloning vectors for high-throughput genetic analysis in
Saccharomyces cerevisiae. Yeast 24 , 913–919.
Anthony, T. L., Brooks, H. L., Boassa, D., Leonov, S., Yanochko,
G. M., Regan, J. W. and Yool, A. J. (2000). Cloned human aquaporin-1 Is
a cyclic GMP-gated ion channel. Mol. Pharmacol. 57 ,
576–588.
Banuelos, M. a, Sychrova, H., Bleykasten-Grosshans, C., Souciet,
J. and Potier, S. (1998). The Nha1 antiporter of Saccharomyces
cerevisiae mediates sodium and potassium efflux. Microbiology144 , 2749–2758.
Bienert, G. P. and Chaumont, F. (2014). Aquaporin-facilitated
transmembrane diffusion of hydrogen peroxide. Biochim. Biophys.
Acta - Gen. Subj. 1840 , 1596–1604.
Bienert, G. P., Moller, A. L. B., Kristiansen, K. A., Schulz,
A., Moller, I. M., Schjoerring, J. K. and Jahn, T. P. (2007). Specific
aquaporins facilitate the diffusion of hydrogen peroxide across
membranes. J. Biol. Chem. 282 , 1183–1192.
Boursiac, Y., Chen, S., Luu, D.-T. T., Sorieul, M., van den
Dries, N. and Maurel, C. (2005). Early effects of salinity on water
transport in Arabidopsis roots. Molecular and cellular features of
aquaporin expression. Plant Physiol. 139 , 790–805.
Boursiac, Y., Boudet, J., Postaire, O., Luu, D.-T. T.,
Tournaire-Roux, C. and Maurel, C. (2008). Stimulus-induced
downregulation of root water transport involves reactive oxygen
species-activated cell signalling and plasma membrane intrinsic protein
internalization. Plant J. 56 , 207–218.
Burri, L. and Lithgow, T. (2004). A complete set of SNAREs in
yeast. Traffic 5 , 45–52.
Byrt, C. S., Zhao, M., Kourghi, M., Bose, J., Henderson, S. W.,
Qiu, J., Gilliham, M., Schultz, C., Schwarz, M., Ramesh, S. A., et al.(2017). Non-selective cation channel activity of aquaporin AtPIP2;1
regulated by Ca2+and pH. Plant Cell Environ.40 , 802–815.
Campbell, E. M., Birdsell, D. N. and Yool, A. J. (2012). The
activity of human aquaporin 1 as a cGMP-gated cation channel is
regulated by tyrosine phosphorylation in the carboxyl-terminal domain.Mol. Pharmacol. 81 , 97–105.
Chaumont, F. and Tyerman, S. D. (2014). Aquaporins: Highly
regulated channels controlling plant water relations. Plant
Physiol. 164 , 1600–1618.
Conti, M., Hsieh, M., Musa Zamah, A. and Oh, J. S. (2012).
Novel signaling mechanisms in the ovary during oocyte maturation and
ovulation. Mol. Cell. Endocrinol. 356 , 65–73.
Demidchik, V. and Tester, M. (2002). Sodium fluxes through
nonselective cation channels in the plasma membrane of protoplasts from
Arabidopsis roots. Plant Physiol. 128 , 379–387.
di Pietro, M., Vialaret, J., Li, G.-W., Hem, S., Prado, K.,
Rossignol, M., Maurel, C. and Santoni, V. (2013). Coordinated
post-translational responses of aquaporins to abiotic and nutritional
stimuli in Arabidopsis roots. Mol. Cell. Proteomics 12 ,
3886–3897.
Donaldson, L., Ludidi, N., Knight, M. R., Gehring, C. and Denby,
K. (2004). Salt and osmotic stress cause rapid increases inArabidopsis thaliana cGMP levels. FEBS Lett. 569 ,
317–320.
Dynowski, M., Schaaf, G., Loque, D., Moran, O. and Ludewig, U.(2008a). Plant plasma membrane water channels conduct the signalling
molecule H2O2. Biochem. J.414 , 53–61.
Dynowski, M., Mayer, M., Moran, O. and Ludewig, U. (2008b).
Molecular determinants of ammonia and urea conductance in plant
aquaporin homologs. Febs Lett. 582 , 2458–2462.
Essah, P. A., Davenport, R. and Tester, M. (2003). Sodium
influx and accumulation in Arabidopsis. Plant Physiol.133 , 307–318.
Eto, K., Noda, Y., Horikawa, S., Uchida, S. and Sasaki, S.(2010). Phosphorylation of aquaporin-2 regulates its water permeability.J. Biol. Chem. 285 , 40777–40784.
Fenton, R. A., Moeller, H. B., Hoffert, J. D., Yu, M.-J.,
Nielsen, S. and Knepper, M. A. (2008). Acute regulation of aquaporin-2
phosphorylation at Ser-264 by vasopressin. Proc. Natl. Acad. Sci.
U. S. A. 105 , 3134–3139.
Fischer, G., Kosinska-Eriksson, U., Aponte-Santamaría, C.,
Palmgren, M., Geijer, C., Hedfalk, K., Hohmann, S., De Groot, B. L.,
Neutze, R. and Lindkvist-Petersson, K. (2009). Crystal structure of a
yeast aquaporin at 1.15 Å reveals a novel gating mechanism. PLoS
Biol. 7 ,.
Gambetta, G. A., Knipfer, T., Fricke, W. and McElrone, A. J.(2017). Aquaporins and root water uptake. In Plant Aquaporins ,
pp. 133–153. Springer.
Gerbeau, P., Guclu, J., Ripoche, P. and Maurel, C. (1999).
Aquaporin Nt-TIP$α$ can account for the high permeability of tobacco
cell vacuolar membrane to small neutral solutes. Plant J.18 , 577–587.
Glass, D. B. and Krebs, E. G. (1980). Protein phosphorylation
catalyzed by cyclic AMP-dependent and cyclic GMP-dependent protein
kinases. Annu. Rev. Pharmacol. Toxicol. 20 , 363–388.
Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt,
N. and Maurel, C. (2015). Aquaporins contribute to ABA-triggered
stomatal closure through OST1-mediated phosphorylation. Plant
Cell 27 , 1945–1954.
Guenther, J. F., Chanmanivone, N., Galetovic, M. P., Wallace, I.
S., Cobb, J. A. and Roberts, D. M. (2003). Phosphorylation of soybean
nodulin 26 on serine 262 enhances water permeability and is regulated
developmentally and by osmotic signals. Plant Cell 15 ,
981–991.
Gunnarson, E., Axehult, G., Baturina, G., Zelenin, S., Zelenina,
M. and Aperia, A. (2005). Lead induces increased water permeability in
astrocytes expressing aquaporin 4. Neuroscience 136 ,
105–114.
Hachez, C., Laloux, T., Reinhardt, H., Cavez, D., Degand, H.,
Grefen, C., De Rycke, R., Inze, D., Blatt, M. R., Russinova, E., et al.(2014). Arabidopsis SNAREs SYP61 and SYP121 Coordinate the Trafficking
of Plasma Membrane Aquaporin PIP2;7 to Modulate the Cell Membrane Water
Permeability. Plant Cell 26 , 3132–3147.
Han, Z. and Patil, R. V (2000). Protein kinase A-dependent
phosphorylation of aquaporin-1. Biochem. Biophys. Res. Commun.273 , 328–332.
Hoffert, J. D., Pisitkun, T., Wang, G., Shen, R.-F. and Knepper,
M. A. (2006). Quantitative phosphoproteomics of vasopressin-sensitive
renal cells: Regulation of aquaporin-2 phosphorylation at two sites.Proc. Natl. Acad. Sci. 103 , 7159–7164.
Hoffert, J. D., Fenton, R. A., Moeller, H. B., Simons, B.,
Tchapyjnikov, D., McDill, B. W., Yu, M. J., Pisitkun, T., Chen, F. and
Knepper, M. A. (2008). Vasopressin-stimulated increase in
phosphorylation at Ser269 potentiates plasma membrane retention of
aquaporin-2. J. Biol. Chem. 283 , 24617–24627.
Hooijmaijers, C., Rhee, J. Y., Kwak, K. J., Chung, G. C., Horie,
T., Katsuhara, M. and Kang, H. (2012). Hydrogen peroxide permeability
of plasma membrane aquaporins of Arabidopsis thaliana . J.
Plant Res. 125 , 147–153.
Horie, T., Kaneko, T., Sugimoto, G., Sasano, S., Panda, S. K.,
Shibasaka, M. and Katsuhara, M. (2011). Mechanisms of water transport
mediated by PIP aquaporins and their regulation via phosphorylation
events under salinity stress in Barley roots. Plant Cell Physiol.52 , 663–675.
Isayenkov, S. V and Maathuis, F. J. M. (2019). Plant salinity
stress: Many unanswered questions remain. Front. Plant Sci.10 ,.
Jang, H. Y., Rhee, J., Carlson, J. E. and Ahn, S. J. (2014).
The Camelina aquaporin CsPIP2;1 is regulated by phosphorylation at
Ser273, but not at Ser277, of the C-terminus and is involved in salt-
and drought-stress responses. J. Plant Physiol. 171 ,
1401–1412.
Johansson, I., Karlsson, M., Shukla, V. K., Chrispeels, M. J.,
Larsson, C. and Kjellbom, P. (1998). Water transport activity of the
plasma membrane aquaporin PM28A is regulated by phosphorylation.Plant Cell 10 , 451–459.
Kourghi, M., Nourmohammadi, S., Pei, J., Qiu, J., McGaughey, S.,
Tyerman, S., Byrt, C. and Yool, A. (2017). Divalent cations regulate
the ion conductance properties of diverse classes of aquaporins.Int. J. Mol. Sci. 18 ,.
Kourghi, M., Pei, J. V, De Ieso, M. L., Nourmohammadi, S., Chow,
P. H. and Yool, A. J. (2018). Fundamental structural and functional
properties of Aquaporin ion channels found across the kingdoms of life.Clin. Exp. Pharmacol. Physiol. 45 , 401–409.
Kuwahara, M., Fushimi, K., Terada, Y., Liqun, B., Marumo, F. and
Sasaki, S. (1995). cAMP-dependent Phosphorylation Stimulates Water
Permeability of Aquaporin-collecting Duct Water Channel Protein
Expressed in Xenopus Oocytes. J. Biol. Chem. 270 ,
10384–10387.
Lee, J. W., Zhang, Y., Weaver, C. D., Shomer, N. H., Louis, C.
F. and Roberts, D. M. (1995). Phosphorylation of Nodulin 26 on Serine
262 affects its voltage-sensitive channel activity in planar lipid
bilayers. J. Biol. Chem. 270 , 27051–27057.
Li, R. Y., Ago, Y., Liu, W. J., Mitani, N., Feldmann, J.,
McGrath, S. P., Ma, J. F. and Zhao, F. J. (2009). The rice aquaporin
Lsi1 mediates uptake of methylated arsenic species. Plant
Physiol. 150 , 2071–2080.
Li, X., Wang, X., Yang, Y., Li, R., He, Q., Fang, X., Luu,
D.-T., Maurel, C. and Lin, J. (2011). Single-molecule analysis of
PIP2;1 dynamics and partitioning reveals multiple modes ofArabidopsis plasma membrane aquaporin regulation. Plant
Cell 23 , 3780–3797.
Loqué, D., Ludewig, U., Yuan, L. and von Wirén, N. (2005).
Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3
transport into the vacuole. Plant Physiol. 137 ,
671–680.
Lu, H. J., Matsuzaki, T., Bouley, R., Hasler, U., Qin, Q. H. and
Brown, D. (2008). The phosphorylation state of serine 256 is dominant
over that of serine 261 in the regulation of AQP2 trafficking in renal
epithelial cells. Am J Physiol Ren. Physiol 295 ,
F290–4.
Luu, D. T., Martiniãre, A., Sorieul, M., Runions, J., Maurel,
C., Martiniere, A., Sorieul, M., Runions, J. and Maurel, C. (2012).
Fluorescence recovery after photobleaching reveals high cycling dynamics
of plasma membrane aquaporins in Arabidopsis roots under salt stress.Plant J. 69 , 894–905.
Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S.,
Katsuhara, M., Ishiguro, M., Murata, Y. and Yano, M. (2006). A silicon
transporter in rice. Nature 440 , 688–691.
Maathuis, F. J. and Sanders, D. (2001). Sodium uptake inArabidopsis roots is regulated by cyclic nucleotides. Plant
Physiol. 127 , 1617–25.
Maurel, C., Kado, R. T., Guern, J. and Chrispeels, M. J.(1995). Phosphorylation Regulates the Water Channel Activity of the
Seed-Specific Aquaporin Alpha-Tip. Embo J. 14 ,
3028–3035.
Maurel, C., Boursiac, Y., Luu, D. T. D.-T. T., Santoni, V.,
Shahzad, Z. and Verdoucq, L. (2015). Aquaporins in plants.Physiol. Rev. 95 , 1321–1358.
McGaughey, S. A., Qiu, J., Tyerman, S. D. and Byrt, C. S.(2018). Regulating root Aauaporin function in response to changes in
salinity. Annu. Plant Rev. 1 , 1–36.
Metzger, M. B., Maurer, M. J., Dancy, B. M. and Michaelis, S.(2008). Degradation of a cytosolic protein requires endoplasmic
reticulum-associated degradation machinery. J. Biol. Chem.283 , 32302–32316.
Moeller, H. B., Praetorius, J., Rutzler, M. R. and Fenton, R.
A. (2010). Phosphorylation of aquaporin-2 regulates its endocytosis and
protein-protein interactions. Proc. Natl. Acad. Sci.107 , 424–429.
Munns, R., Day, D. A., Fricke, W., Watt, M., Arsova, B., Barkla,
B. J., Bose, J., Byrt, C. S., Chen, Z., Foster, K. J., et al. (2019).
Energy costs of salt tolerance in crop plants. New Phytol.
Nyblom, M., Frick, A., Wang, Y., Ekvall, M., Hallgren, K.,
Hedfalk, K., Neutze, R., Tajkhorshid, E. and Törnroth-Horsefield, S.(2009). Structural and functional analysis of SoPIP2;1 mutants adds
insight into plant aquaporin gating. J. Mol. Biol. 387 ,
653–668.
Prado, K. and Maurel, C. (2013). Regulation of leaf hydraulics:
from molecular to whole plant levels. Front. Plant Sci.4 ,.
Prado, K., Cotelle, V., Li, G., Bellati, J., Tang, N.,
Tournaire-Roux, C., Martiniere, A., Santoni, V., Maurel, C., Martiniere,
A., et al. (2019). Oscillating aquaporin phosphorylations and 14-3-3
proteins mediate circadian regulation of leaf hydraulics. Plant
Cell 4 , tpc.00804.2018.
Prak, S., Hem, S., Boudet, J., Viennois, G., Sommerer, N.,
Rossignol, M., Maurel, C. and Santoni, V. (2008). Multiple
phosphorylations in the C-terminal tail of plant plasma membrane
aquaporins. Mol. Cell. Proteomics 7 , 1019–1030.
Qing, D., Yang, Z., Li, M., Wong, W. S., Guo, G., Liu, S., Guo,
H. and Li, N. (2016). Quantitative and functional phosphoproteomic
analysis reveals that ethylene regulates water transport via the
C-Terminal phosphorylation of aquaporin PIP2;1 in Arabidopsis .Mol. Plant 9 , 158–174.
Qiu, J., Henderson, S. W., Tester, M., Roy, S. J. and Gilliham,
M. (2016). SLAH1, a homologue of the slow type anion channel SLAC1,
modulates shoot Cl- accumulation and salt tolerance in Arabidopsis
thaliana. J. Exp. Bot. 67 , 4495–4505.
Roberts, S. K. and Tester, M. (1997). A patch clamp study of
Na+ transport in maize roots. J. Exp. Bot.48 , 431–440.
Rodrigues, O., Reshetnyak, G., Grondin, A., Saijo, Y.,
Leonhardt, N., Maurel, C. and Verdoucq, L. (2017). Aquaporins
facilitate hydrogen peroxide entry into guard cells to mediate ABA- and
pathogen-triggered stomatal closure. Proc. Natl. Acad. Sci.114 , 9200–9205.
Rubio, F., Flores, P., Navarro, J. M. and Martínez, V. (2003).
Effects of Ca2+, K+and cGMP on Na+
uptake in pepper plants. Plant Sci. 165 , 1043–1049.
Rubio, F., Alemán, F., Nieves‐Cordones, M. and Martínez, V.(2010). Studies on Arabidopsis athak5, atakt1 double mutants disclose
the range of concentrations at which AtHAK5, AtAKT1 and unknown systems
mediate K+uptake. Physiol. Plant. 139 ,
220–228.
Takano, J., Wada, M., Ludewig, U., Schaaf, G., Von Wirén, N. and
Fujiwara, T. (2006). The Arabidopsis major intrinsic protein NIP5;1 is
essential for efficient boron uptake and plant development under boron
limitation. Plant Cell 18 , 1498–1509.
Tanghe, A., Van Dijck, P., Dumortier, F., Teunissen, A.,
Hohmann, S. and Thevelein, J. M. (2002). Aquaporin expression
correlates with freeze tolerance in baker’s yeast, and overexpression
improves freeze tolerance in industrial strains. Appl. Environ.
Microbiol. 68 , 5981–5989.
Törnroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U.,
Karlsson, M., Tajkhorshid, E., Neutze, R. and Kjellbom, P. (2006).
Structural mechanism of plant aquaporin gating. Nature439 , 688–694.
Tournaire-Roux, C., Sutka, M., Javot, H. H., Gout, E. E.,
Gerbeau, P., Luu, D.-T. T., Bligny, R. and Maurel, C. (2002). Cytosolic
pH regulates root water transport during anoxic stress through gating of
aquaporins. Nature 425 , 187–194.
Ueda, M., Tsutsumi, N. and Fujimoto, M. (2016). Salt stress
induces internalization of plasma membrane aquaporin into the vacuole inArabidopsis thaliana . Biochem. Biophys. Res. Commun.474 , 742–746.
Uehlein, N., Lovisolo, C., Siefritz, F. and Kaldenhoff, R.(2003). The tobacco aquaporin NtAQP1 is a membrane CO2pore with physiological functions. Nature 425 , 734–737.
Van Balkom, B. W. M., Savelkoul, P. J. M., Markovich, D.,
Hofman, E., Nielsen, S., Van Der Sluijs, P. and Deen, P. M. T. (2002).
The role of putative phosphorylation sites in the targeting and
shuttling of the aquaporin-2 water channel. J. Biol. Chem.277 , 41473–41479.
Van Wilder, V. V. V., Miecielica, U., Degand, H. H. H., Derua,
R., Waelkens, E. and Chaumont, F. F. (2008). Maize plasma membrane
aquaporins belonging to the PIP1 and PIP2 subgroups are in vivo
phosphorylated. Plant Cell Physiol. 49 , 1364–1377.
Weaver, C. D., Shomer, N. H., Louis, C. F. and Roberts, D. M.(1994). Nodulin 26, a nodule-specific symbiosome membrane protein from
Soybean, is an ion channel. J. Biol. Chem. 269 ,
17858–17862.
Yaneff, A., Sigaut, L., Gómez, N., Aliaga Fandiño, C., Alleva,
K., Pietrasanta, L. I. and Amodeo, G. (2016). Loop B serine of a plasma
membrane aquaporin type PIP2 but not PIP1 plays a key role in pH
sensing. Biochim. Biophys. Acta - Biomembr. 1858 ,
2778–2787.
Yanochko, G. M. and Yool, A. J. (2002). Regulated cationic
channel function in Xenopus oocytes expressing DrosophilaBig Brain. J. Neurosci. 22 , 2530–2540.
Yool, A. J., Stamer, W. D. and Regan, J. W. (1996). Forskolin
stimulation of water and cation permeability in aquaporin1 water
channels. Science (80-. ). 273 , 1216–1218.
Zelenina, M., Zelenin, S., Bondar, A. A., Brismar, H. and
Aperia, A. (2002). Water permeability of aquaporin-4 is decreased by
protein kinase C and dopamine. Am. J. Physiol. Physiol.283 , F309–F318.
Zhang, W., Zitron, E., Hö, M., Kihm, L., Morath, C., Scherer,
D., Hegge, S., Thomas, D., Schmitt, C. P., Zeier, M., et al. (2007).
Aquaporin-1 channel function is positively regulated by protein kinase
C. J. Biol. Chem. 282 , 20933–20940.
Zwiazek, J. J., Xu, H., Tan, X., Navarro-Ródenas, A., Morte, A.,
Benga, G., Popescu, O., Pop, V. I., Holmes, R., Agre, P., et al.(2017). Significance of oxygen transport through aquaporins. Sci.
Rep. 7 , 40411.
Figure 1: Exogenous application of membrane permeable cAMP and
cGMP analogues as kinase stimulators and the kinase inhibitor H7
influence ionic conductance of AtPIP2;1 injected oocytes.Oocytes were either untreated or were pre-treated in Low
Na+ Ringers solution that contained 1 mM 8-Br-cAMP
(cAMP), 1 mM 8-Br-cGMP (cGMP) or 10 µM H7 dihydrochloride (H7) or H7
followed by cAMP/cGMP. TEVC was performed in a ‘Na50’ solution. The
ionic conductance of treated water injected and AtPIP2;1 cRNA
injected oocytes were normalised to untreated water injected andAtPIP2;1 cRNA injected oocytes respectively. (a)Relative ionic conductance of control oocytes. (b) Relative
ionic conductance of AtPIP2;1 injected oocytes. Data was compiled
from at least two independent oocytes batches with the exception of the
H7 + cNMP treatment where data from one batch of oocytes is represented.
Data is represented as mean relative conductance ± SEM where each point
represents a single oocyte. Significant differences (P <
0.001) are indicated by different letters using one-way ANOVA, Fisher’s
post test, or by an * (un-paired t-test).
Figure 2: Phosphorylation mimic of AtPIP2;1 S280 and S283
residues influence AtPIP2;1 facilitated cation transport. Oocytes were
injected with 46 nL water (Control) or with 46 nL water containing 23 ngAtPIP2;1 WT (WT) or S280A, S280D, S283A, S283D, A/A, D/A, A/D or
D/D cRNA. Representative superimposed currents as a function of time of(a) AtPIP2;1 single phosphorylation mutants in ‘Na100’
(Na+) and ‘K100’ (K+), and(b) AtPIP2;1 double phosphorylation mutants in ‘Na100’
(Na+). Currents were recorded starting from -40 mV
holding potential for 0.5 s and ranging from 40 mV to –120 mV with 20
mV decrements for 0.5 s before following a –40 mV pulse for another 0.5
s. Ionic conductance of oocytes expressing (c) AtPIP2;1 single
phosphorylation mutants in ‘Na100’ (Na+) and ‘K100’
(K+), and (d) AtPIP2;1 double phosphorylation
mutants in ‘Na100’ (Na+). Ionic conductance was
calculated by taking the slope of a regression of the linear region
across the reversal potential (–60 mV to +40 mV). (e)Na+ content of oocytes incubated in ‘Na100’ for 24 h.
Data in (c-e) is compiled from three independent oocyte batches and is
shown as mean ± SEM where each data point represents an individual
oocyte. Significant differences (P<0.05) are indicated by
different letters (one-way ANOVA, Fisher’s post-test), or by an *
(un-paired t-test).
Figure 3.Phosphorylation mimics of AtPIP2;1 S280 and S283 residues
influences its osmotic water permeability and the relationship between
osmotic water permeability and ionic conductance. Osmotic water
permeability (Pos) and ionic conductance of water
injected (n= 13) and AtPIP2;1 Wild-type (n=37), S280D (n=20) , S280A (n=
13), S283D (n= 19), S283A (n= 17), A/A(n= 25), D/A (n= 16), A/D (n= 27)
or AtPIP2;1 D/D (n= 30) cRNA injected oocytes was determined via the
swelling assay and TEVC, respectively. (a) Ionic conductance
collected from multiple batches were allocated into 10 µS bins and the
mean ± SEM of each binned group and corresponding Pos is
plotted. Individual conductance was plotted against the corresponding
Pos for each oocyte (data shown in Figure S3). A single
exponential decay best fit the combined data (P< 0.005). The
red and blue dashed lines indicate the mean ionic conductance and
Pos of water injected (control) oocytes. (b)Frequency histogram of Posfor each of the phospho-mimics in
decreasing order of the mean Pos from left to right. The
blue dashed line in each histogram indicated the mean of Pos in water
injected (control) oocytes. (c) Frequency histogram of ionic
conductance for each of the phospho-mimics in increasing order of the
mean from left to right. The red dashed line in each histogram indicated
the mean of ionic conductance in water injected (control) oocytes.(d) Comparison of the order of decreasing Posand increasing ionic conductance. Genotypes marked by shaded boxes
follow the same relative order for the change in mean
Pos and ionic conductance.
Figure 4: Intracellular Na+ accumulation
varied in yeast expressing AtPIP2;1 CTD phosphorylation mimic mutants.Empty vector, AtPIP2;7, AtPIP2;1WT and all versions of CTD of AtPIP2;1
mutants were each expressed in the B31 yeast mutant strain. After
suspension in NaCl uptake buffer (70 mM NaCl, 10 mM MES, 10 mM EGTA,
pH5.6) for 40 min, intracellular Na+ contents were
measured. Data are compiled from three independent experimental batches
each comprised of three independent replicate cultures, and is
represented as mean ± SEM. Significant differences (P<0.05) are indicated by different letters (one-way ANOVA,
Fisher’s post-test). N= Empty (10), AtPIP2;7 (7), AtPIP2;1 WT (10),
S280A (7), S280D (7), S283A (7), S283D (10), A/D (7), D/A (7), AtPIP2;1
A/A (7) and D/D (7).
Figure 5: Subcellular
localisation of AtPIP2;1 wild-type and S280/S283 phospho-mutants in
yeast. (a) A control showing that GFP alone results in a
diffuse cytosolic localised signal. (b) SEC63::RFP endoplasmic
reticulum marker. The yeast ER network consists of the prominent nuclear
envelope ER domain (nER) and a peripheral or cortical ER domain (cER).
The cER lies just beneath the plasma membrane but is not continuous
around the perimeter with gaps distinguishing it from plasma membrane
localisation (solid triangle). Cytoplasmic tubules link the two ER
domains (*). (c) Wild-type AtPIP2;1::eGFP localises to a
distinct continuous ring of expression around the cell perimeter
coinciding with the plasma membrane (PM). GFP signal is also weakly
present in the tonoplast of the vacuole (V). In this example, no
expression is detected in the nER. (d-e) The single
phospho-mimetic S280D mutant commonly shows a continuous ring of PM
localisation along with a substantially stronger GFP signal co-localised
with the ER marker in both the peripheral (open arrow heads) and
internal ER networks (nER). (f) The single phospho-mimetic
S283D mutant shows a clean sharp localisation around the PM with little
to no ER co-localisation. Weak GFP signal is occasionally observed in
the periphery of the vacuoles (V). (g-h) The localisation of
the double phosphorylated mimetic D/D mutant occurs almost exclusively
in the PM with comparably weak signal detectable in the tonoplast of the
vacuole (V) and little to no signal in the ER. (i) The double
A/D mutant localises to the PM. Approximately half the yeast cells
examined also exhibit strong co-localisation to the ER. (j) The
frequency of yeast cells with GFP signal detected in the PM only versus
co-localisation in both the PM and ER. Asterisks (*) denote
statistically significant difference (Fisher’s exact test p ≤ 0.05). N =
WtAtPIP2;1(53), S280A(57), S283S(161), S283A(32), S283D(94), A/A(117),
D/A(64), A/D(139) , D/D(83).