Data availability statement
Data sharing is not applicable to this article as no new data were analyzed in this study.

References

Alvarez, Julio, Javier Bezos, Maria Luisa de la Cruz, Carmen Casal, Beatriz Romero, Lucas Domínguez, Lucía de Juan, and Andrés Pérez. 2014. “Bovine Tuberculosis: Within-Herd Transmission Models to Support and Direct the Decision-Making Process.” Bovine Tuberculosis97:S61–68.
Alvarez, Julio, Andrés Perez, Javier Bezos, Sergio Marqués, Anna Grau, Jose Luis Saez, Olga Mínguez, Lucía de Juan, and Lucas Domínguez. 2012. “Evaluation of the Sensitivity and Specificity of Bovine Tuberculosis Diagnostic Tests in Naturally Infected Cattle Herds Using a Bayesian Approach.” Veterinary Microbiology 155(1):38–43.
Bezos, Javier, Julio Álvarez, Beatriz Romero, Lucía de Juan, and Lucas Domínguez. 2014. “Bovine Tuberculosis: Historical Perspective.”Bovine Tuberculosis 97, Supplement:S3–4.
Bezos, Javier, Carmen Casal, Beatriz Romero, Bjoern Schroeder, Roland Hardegger, Alex J. Raeber, Lissette López, Paloma Rueda, and Lucas Domínguez. 2014. “Current Ante-Mortem Techniques for Diagnosis of Bovine Tuberculosis.” Bovine Tuberculosis 97, Supplement:S44–52.
Brooks-Pollock, Ellen, Gareth O. Roberts, and Matt J. Keeling. 2014. “A Dynamic Model of Bovine Tuberculosis Spread and Control in Great Britain.” Nature 511(7508):228–31.
Casal, Carmen, Alberto Díez-Guerrier, Julio Álvarez, Sabrina Rodriguez-Campos, Ana Mateos, Richard Linscott, Edmond Martel, John C. Lawrence, Clare Whelan, John Clarke, Amanda O’Brien, Lucas Domínguez, and Alicia Aranaz. 2014. “Strategic Use of Serology for the Diagnosis of Bovine Tuberculosis after Intradermal Skin Testing.”Veterinary Microbiology 170(3–4):342–51.
Ciaravino, G., A. García-Saenz, S. Cabras, A. Allepuz, J. Casal, I. García-Bocanegra, A. De Koeijer, S. Gubbins, J. L. Sáez, D. Cano-Terriza, and S. Napp. 2018. “Assessing the Variability in Transmission of Bovine Tuberculosis within Spanish Cattle Herds.”Epidemics 23:110–20.
Ciaravino, Giovanna, Patricia Ibarra, Ester Casal, Sergi Lopez, Josep Espluga, Jordi Casal, Sebastian Napp, and Alberto Allepuz. 2017. “Farmer and Veterinarian Attitudes towards the Bovine Tuberculosis Eradication Programme in Spain: What Is Going on in the Field?”Frontiers in Veterinary Science 4:202–202.
Conlan, Andrew J. K., Trevelyan J. McKinley, Katerina Karolemeas, Ellen Brooks Pollock, Anthony V. Goodchild, Andrew P. Mitchell, Colin P. D. Birch, Richard S. Clifton-Hadley, and James L. N. Wood. 2012. “Estimating the Hidden Burden of Bovine Tuberculosis in Great Britain.” PLOS Computational Biology 8(10):e1002730.
DIEA. 2018. “Anuario Estadístico.”
Gillespie, Daniel T. 2001. “Approximate Accelerated Stochastic Simulation of Chemically Reacting Systems.” The Journal of Chemical Physics 115(4):1716–33.
Good, Margaret, Douwe Bakker, Anthony Duignan, and Daniel M. Collins. 2018. “The History of In Vivo Tuberculin Testing in Bovines: Tuberculosis, a ‘One Health’ Issue.” Frontiers in Veterinary Science 5:59–59.
Gormley, E., M. B. Doyle, T. Fitzsimons, K. McGill, and J. D. Collins. 2006. “Diagnosis of Mycobacterium Bovis Infection in Cattle by Use of the Gamma-Interferon (Bovigam®) Assay.” 4th International Conference on Mycobacterium Bovis 112(2):171–79.
Gormley, E., M. B. Doyle, K. McGill, E. Costello, M. Good, and J. D. Collins. 2004. “The Effect of the Tuberculin Test and the Consequences of a Delay in Blood Culture on the Sensitivity of a Gamma-Interferon Assay for the Detection of Mycobacterium Bovis Infection in Cattle.”Veterinary Immunology and Immunopathology 102(4):413–20.
Halasa, Tariq, and Salome Dürr. 2017. “Editorial: Modeling Disease Spread and Control.” Frontiers in Veterinary Science 4:199.
Kao R. R., Roberts M. G., and Ryan T. J. 1997. “A Model of Bovine Tuberculosis Control in Domesticated Cattle Herds.” Proceedings of the Royal Society of London. Series B: Biological Sciences264(1384):1069–76.
Kao, Szu-Yu Zoe, Kimberly VanderWaal, Eva A. Enns, Meggan E. Craft, Julio Alvarez, Catalina Picasso, and Scott J. Wells. 2018. “Modeling Cost-Effectiveness of Risk-Based Bovine Tuberculosis Surveillance in Minnesota.” Preventive Veterinary Medicine 159:1–11.
Keeling, Matt J., and P. Rohani. 2008. Modelling Infectious Diseases in Human and Animals. Princeton University Press.
Kruskal, William H., and W. Allen Wallis. 1952. “Use of Ranks in One-Criterion Variance Analysis.” Journal of the American Statistical Association 47(260):583–621.
MGAP, Ministerio de Ganaderia Agricultura y Pesca. 1989. “Legislacion Sanitaria Animal.”
More, S. J., B. Radunz, and R. J. Glanville. 2015. “Lessons Learned during the Successful Eradication of Bovine Tuberculosis from Australia.” Veterinary Record 177(9):224–32.
Morris, Roger S. 2015. “Diseases, Dilemmas, Decisions—Converting Epidemiological Dilemmas into Successful Disease Control Decisions.”Preventive Veterinary Medicine 122(1):242–52.
OIE. 2016. “World Animal Health_OIE.” http://www.oie.int/wahis_2/public/wahid.php/Wahidhome/Home.
Palmer, M. V., W. R. Waters, T. C. Thacker, R. Greenwald, J. Esfandiari, and K. P. Lyashchenko. 2006. “Effects of Different Tuberculin Skin-Testing Regimens on Gamma Interferon and Antibody Responses in Cattle Experimentally Infected with Mycobacterium Bovis.”Clinical and Vaccine Immunology 13(3):387–94.
Perez, Andres M., Michael P. Ward, and Viviana Ritacco. 2002. “Simulation-Model Evaluation of Bovine Tuberculosis-Eradication Strategies in Argentine Dairy Herds.” Preventive Veterinary Medicine 54(4):351–60.
Picasso, C., Julio Alvarez, Kimberly L. VanderWaal, Federico Fernandez, Andres Gil, Scott J. Wells, and Andres Perez. 2017. “Epidemiological Investigation of Bovine Tuberculosis Outbreaks in Uruguay (2011–2013).” Preventive Veterinary Medicine 138:156–61.
Picasso Risso, Catalina. 2016. “Epidemiological Investigation of Bovine Tuberculosis Outbreaks in Uruguay (2011–2013).” University of Minnesota, Twin Cities.
Picasso-Risso, C., A. Gil, A. Nunez, A. Suanes, V. Macchi, X. Salaberry, J. Alvarez, and A. Perez. 2019. “Diagnostic Interaction between Bovine Tuberculosis (BTB) and Johne’s Disease in BTB Highly Prevalent Dairy Farms of Uruguay.” Veterinary and Animal Science 100052.
Picasso-Risso, Catalina, Andres Perez, Andres Gil, Alvaro Nunez, Ximena Salaberry, Alejandra Suanes, and Julio Alvarez. 2019. “Modeling the Accuracy of Two In-Vitro Bovine Tuberculosis Tests Using a Bayesian Approach.” Frontiers in Veterinary Science 6:261.
Radunz, B., and Lepper A. W. D. 1985. “Suppression of Skin Reactivity to Bovine Tuberculin in Repeat Tests.” Australian Veterinary Journal 62(6):191–94.
Rossi, Gianluigi, Pascale Aubry, Caroline Dube, and Rebecca L. Smith. 2019. “The Spread of Bovine Tuberculosis in Canadian Shared Pastures: Data, Model, and Simulations.” Transboundary and Emerging Diseases 66(1):562.
de la Rua-Domenech, R., A. T. Goodchild, H. M. Vordermeier, R. G. Hewinson, K. H. Christiansen, and R. S. Clifton-Hadley. 2006a. “Ante Mortem Diagnosis of Tuberculosis in Cattle: A Review of the Tuberculin Tests, γ-Interferon Assay and Other Ancillary Diagnostic Techniques.”Research in Veterinary Science 81(2):190–210.
de la Rua-Domenech, R., A. T. Goodchild, H. M. Vordermeier, R. G. Hewinson, K. H. Christiansen, and R. S. Clifton-Hadley. 2006b. “Ante Mortem Diagnosis of Tuberculosis in Cattle: A Review of the Tuberculin Tests, γ-Interferon Assay and Other Ancillary Diagnostic Techniques.”Research in Veterinary Science 81(2):190–210.
Schiller, Irene, H. Martin Vordermeier, W. Ray Waters, Adam O. Whelan, Michael Coad, Eamonn Gormley, Bryce M. Buddle, Mitchell Palmer, Tyler Thacker, Jim McNair, Michael Welsh, R. Glyn Hewinson, and Bruno Oesch. 2010. “Bovine Tuberculosis: Effect of the Tuberculin Skin Test on in Vitro Interferon Gamma Responses.” Veterinary Immunology and Immunopathology 136(1–2):1–11.
Smith, Rebecca L, Ynte H. Schukken, Zhao Lu, Rebecca M. Mitchell, and Yrjo T. Grohn. 2013. “Development of a Model to Simulate Infection Dynamics of Mycobacterium Bovis in Cattle Herds in the United States.”Journal of the American Veterinary Medical Association243(3):411–23.
Smith, Rebecca L., Loren W. Tauer, Ynte H. Schukken, Zhao Lu, and Yrjo T. Grohn. 2013. “Minimization of Bovine Tuberculosis Control Costs in US Dairy Herds.” Preventive Veterinary Medicine112(3–4):266–75.
VanderWaal, KL, Eva A. Enns, Catalina Picasso, Julio Alvarez, Andres Perez, Federico Fernandez, Andres Gil, Meggan Craft, and Scott Wells. 2017. “Optimal Surveillance Strategies for Bovine Tuberculosis in a Low-Prevalence Country.” Scientific Reports 7(1):4140.
Verteramo Chiu, Leslie J., Loren W. Tauer, Rebecca L. Smith, and Yrjo T. Grohn. 2019. “Assessment of the Bovine Tuberculosis Elimination Protocol in the United States.” Journal of Dairy Science102(3):2384–2400.
Vordemeier, Martin, Anthony V. Goodchild, Adam Whelan, Katie Ewer, Richard S. Clifton-Hadley, John Williams, and R. Glyn Hewinson. 2006. “The Bovigam Assay as Ancillary Test to the Tuberculin Skin Test.”Government Veterinary Journal 16:72–80.
WAHIS_OIE. 2014. “Animal Health Situation.” http://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Animalsituation.
Waters, W. R., B. M. Buddle, H. M. Vordermeier, E. Gormley, M. V. Palmer, T. C. Thacker, J. P. Bannantine, J. R. Stabel, R. Linscott, E. Martel, F. Milian, W. Foshaug, and J. C. Lawrence. 2011. “Development and Evaluation of an Enzyme-Linked Immunosorbent Assay for Use in the Detection of Bovine Tuberculosis in Cattle.” Clinical and Vaccine Immunology : CVI 18(11):1882–88.

Tables and Figures legends

Table 1.

Control strategies evaluated by the model.

Table 2.

Sensitivity and specificity estimates used for modeling each bTB-testing strategy

Table 3.

Median (med), 2.5(q2.5), 25(q25), 75(q75), and 97.5 (q97.5) percentiles for the 500 simulations of the time (years and months) and the number of tests necessary to reach bTB-eradication, and to reach the officially tuberculosis-free (OTF) status for the status quo and the six alternative control strategies. The columns 3 to 12 show the eradication estimates for the complete herd (adults and calves), and the adult animals solely. The last five columns indicate the estimates for OTF. Colors represent four different time categories: <3 years (green), 3 to 6 years (grey), >6 to 9 years (coral), and >9 years (red) or its respective months and number of tests performed in that period.

Table 4.

bTB-prevalence estimates at the end of the 6, 12, 24 months of simulating control strategies.

Figure 1.

Diagram representing the bTB-transmission compartments (Figure 1a) including calves (top row) and adults (second row), and equations driving the control strategies dynamics (Figure 1b). The number of animals in each bTB-compartment is indicated as susceptible (S), occult (O), reactors in subgroup Ra and Rb, and infectious (I). Transmission rates between infectious and susceptible stages are represented by β, and the duration of the occult, reactors a, and reactors b stages are represented by λ1, λ2a, λ2b. The equations for the probability of testing positive to the control strategies included sensitivity (Se ), specificity (Sp ), and correlation coefficients between negative (ρD ) and positive (ρDc ) results, respectively.

Figure 2.

Median, 5th, and 95th percentile estimates of bTB-prevalence per month simulated for the model output of 500 iterations in a 500-size herd, with the application of status quo(Skin_series) and six alternative strategies. The red vertical line indicates when 50% of the simulations reached bTB-eradication for each strategy, and the shadow shows the range of months in which eradication is reached for 90% of the iterations.

Figure 3.

Median, and 95th percentile estimates of bTB-prevalence simulated for the model output of 500 iterations in a 500-size herd, with the application of status quo (Skin_series) and six alternative strategies. Simulated estimates for bTB-prevalence in adults, representing 75% of the herd population (pink), and estimates for calves representing 25% of the population (turquoise) are shown per month.

Figure 4.

Median and 95th percentile of the proportion of animals testing positive (pink), and testing true positive (turquoise) thestatus quo (0.Skin_series) and the six alternative control scenario per month.

Appendix: Supplementary material

Figure S1.

Figure S2.