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Abstract

Background. Coronavirus disease 2019 (COVID-19) is expected to continue to cause worldwide fatalities until the World
population develops ‘herd immunity’, or until a vaccine is developed and used as a prevention. However, the vaccine may prove
ineffective due to rapid changes in viral antigenic determinants. Bacillus Calmette—Guérin (BCG) vaccine has been recognized
for its beneficial effects on the immune system, and it is currently in being tested in clinical trials for COVID-19. However,
BCG shortages may affect clinical decisions regarding the prioritization of BCG to protect from viral infections, hence, small-
molecule BCG-mimics will be valuable alternatives. Methods. We developed and applied a systems biology workflow capable
of identifying antiviral drugs and vaccines that can boast immunity and impact viral disease pathways to prevent the fatal
consequences of COVID-19. Results. Our results indicate that BCG and small-molecule BCG-mimics affect the production
and maturation of naive T cells, which results in enhanced long-lasting innate immune responses to tackle novel viruses. Our
workflow identified several antiviral drugs including raltegravir and lopinavir as high confidence BCG mimics. Top hits including
emetine and lopinavir were validated to inhibit the growth of novel coronavirus SARS-CoV-2 in vitro. Conclusions. Herein, we
provide systems biology support for using BCG as a protection measure from the lethal consequences of emergent viruses
including SARS-CoV-2. We also provide systems biology evidence that certain small molecule drugs could mimic the effects of
BCG and serve as alternatives to BCG.

Abbreviations:

BCG: Bacillus Calmette-Guérin

BIND: Biomolecular Interaction Network Database
BioGRID: Biological General Repository for Interaction Datasets
CMap: Connectivity Map

COVID-19: Coronavirus Disease 2019

DIP: Database of Interacting Proteins

FDA: The Food and Drug Administration

GEO : Gene Expression Omnibus

GO: Gene Ontology

KEGG: Kyoto Encyclopedia of Genes and Genomes
Mtb: Mycobacterium tuberculosis

RCTs: Randomized Clinical Trials



STRING: Search Tool for the Retrieval of Interacting Genes/Proteins
WHO: World Health Organization
1 INTRODUCTION

Few months after the declaration of COVID-19 pandemic by the World Health Organization (WHO), the
disease-causing virus is still sweeping the globe, causing more fatalities, failing health care systems, and re-
sulting in severe economic losses. Currently there are no approved drugs to treat COVID-19, and new vaccine
development is expected to take at least 12-18 months, with growing fears of possible failure associated with
rapid changes in viral antigenic determinants. Additionally, the highly specific virus-neutralizing antibodies
in recovered patients may be short lived and ineffective in preventing the disease caused by the emerging
variable strains of the virus. With these uncertainties regarding an eminent specific SARS-CoV-2 vaccine,
we should start thinking about alternatives, such as exploiting the unique capabilities of our innate immune
system.

Recent immuno-oncology success stories indicate that the best cancer-fighting strategies results from un-
leashing the patients’ immune power. And there is an increased awareness that harnessing innate immune
responses, opens up new possibilities for long-term, multifaceted tumor control and infectious disease preven-
tion. Therefore, next generation antiviral vaccines should be capable of boosting innate immune responses
to tackle a wide range of novel pathogens very early after exposure, as single treatments or adjuvants to
traditional vaccines targeting the adaptive immune system.

Accumulating evidence from the biomedical literature indicates that SARS-CoV-mediated pathology, a very
similar pathology to SARS-CoV-2, was mainly caused by ineffective innate immune responses, associated
with a severe reduction in the number of T cells in the blood. Recent evidence indicated that SARS-CoV-2
and Mycobacterium tuberculosis(Mtb ) share unique similarities in terms of host protein interaction partuners,
and both pathogens infect lung tissues. On the other hand, old ‘polypharmacological vaccines’, such as the
BCG vaccine for tuberculosis (TB), has shown promising therapeutic effects on a wide range of infectious
and non-infectious diseases including bladder cancer. Studies showed that BCG’s polypharmacological effects
were not limited to memory T cell immunity, but promoted strong, beneficial, and long-lasting effects on
innate immunity. The WHO has also recognized these beneficial ‘off-target’ effects of BCG, calling for a
further investigation to repurpose for other orphan life-threatening diseases. There are 35 clinical trials
reported on clinicaltrials.gov, testing BCG for non-TB conditions including COVID-19. Additionally, few
recent peer-reviewed reports have pointed to an epidemiological relationship between BCG and COVID-19
without providing substantial evidence. Therefore, the results of the randomized clinical trials (RCTs) will
provide more clues soon.

Herein, we describe a unique drug and vaccine repurposing workflow, and list high confidence proteins and
pharmacological classes of compounds, that work as BCG mimics on the systems level by inducing beneficial
long lasting trained immune response. Thus, BCG mimics can be used as alternatives to BCG in protecting
from COVID-19 and other emergent infectious diseases, or as treatments for bladder cancer and other tumors.

2 METHODS

2.1 Integrative Systems Biology Workflow. We developed and applied a systems biology workflow to
study BCG network pharmacology and prioritize small-molecule BCG mimics and antivirals. Our workflow
(Figurel) incorporates three major components: (1) a module for mining and prioritizing gene signatures
representative of a condition or a biological state; (2) a network-mining module to identify genetic perturba-
tions that induce gene expression profiles that are highly enriched with the genes constituting the condition
gene signature; and (3) a pathway enrichment module to understand the biological processes involved in the
mechanism of action of BCG and highly correlated genetic perturbagens.

2.2 BCG consensus gene signature. A consensus gene signature for BCG vaccine was derived from
gene expression profiles in peripheral blood mononuclear cells (PBMCs) in response to a BCG challenge test
reported by Matsumiya et al , GSE58636 dataset on NCBI Gene Expression Omnibus (GEO). All whole



blood samples were collected from healthy human subjects enrolled in phase 1 trial (clinical trials registration:
NCT01194180). For the purposes of this study we used the gene expression profiles generated from two human
subject groups included in the above trial: group 1 (BCG naive), and group 2 (BCG vaccinated; median
time since vaccination, 10 years). The consensus gene signature we prepared to study network pharmacology
and query the connectivity map consisted of the genes that showed significant differential gene expression in
response to a BCG challenge test (stimulated) in comparison with controls (unstimulated) on days 0 and 14
in both groups 1 and 2.

2.3 Network Building. A systematic search, for nearest neighbor (NN) genes/proteins of the upregula-
ted and downregulated genes in BCG’s gene signature, was conducted in Cytoscape version 3.8.0 using the
STRING protein query application. All retrieved protein-protein interactions (PPIs), including both physical
and functional interactions were retrieved from popular databases such as MINT, HPRD, BIND, DIP, Bio-
GRID, KEGG, Reactome, EcoCyc, NCI-Nature Pathway Interaction Database, and Gene Ontology (GO)
protein complexes. Network building tools in Cytoscape version 3.7.2 were used to generate PPI networks
for BCG-CGS.

2.4 Enrichment Analysis. Enrichment analysis was conducted in Cytoscape and MetaCore to identify
pathways and biological processes associated with BCG-CGS and CMap genetic connections. The significance
of the enrichment was determined by the hypergeometric test. All terms from the ontology are ranked based
on their calculated p-values. Ontology terms with p-values less than the p-value threshold 0.05 are defined
as statistically significant and therefore relevant to the studied list of genes. All terms from the ontology are
ranked according to their calculated p-values.

2.5 The Connectivity Map (CMap). The CMap is a chemogenomics database that catalogs 1.3 Million
profiles of transcriptional responses of human cells to chemical and genetic perturbations. Currently, there
are 27,927 perturbagens (19,911 small molecules, and 7,494 genetic perturbagens) producing 476,251 expres-
sion signatures in 9 human cell lines: PC3, VCAP, A375, A459, HA1E, HCC515, HT29, MCF7, HEPG2.
This database of cellular signatures has been produced using the L1000 platform; a high-throughput gene
expression assay that measures the mRNA transcript abundance of 978 ”landmark” genes from human cells.

2.6 Causal Reasoning. Causal reasoning analysis identify genes and proteins of a ‘topological significance’
in order to make decisions whether these genes/proteins are eligible for targeting in the studied phenotype.
In this study we applied causal reasoning to identify molecular regulators that most likely directly cause
the observed expression changes in transcriptional profiles in response to BCG. In this approach, changes
in gene expression, both direction and effect of edges in the network are taken into account. For each node
(i.e., gene) in causal reasoning network, observed changes in expression are matched with the expected
changes inferred from network structure given the hypothesis that the observed gene expression is decreased
or increased due to its activity. Each node has outgoing activation or inhibition effects on other objects in the
knowledge database, and a key hub with a predicted increase in activity shows increased expression for those
genes that the hub is known to activate, and it shows decreased expression for genes it is known to inhibit.
Each predicted key hub has a prediction P-value which is produced as a result of a binomial test used to
assess the probability of making a given number of supportive data out of all defined differentially expressed
genes (DEGS) in examined data. It is noteworthy that causal reasoning examines both direct neighbors of
differentially expressed genes, and remote (several steps away) regulators. All causal reasoning predictions
were performed in Key Pathway Advisor from Clarivate Analytics, using the Pollard method.

3 RESULTS
3.1 Drug and vaccine repurposing workflow

To study BCG’s polypharmacology and potential beneficial effects of this vaccine in preventing the fatal
consequences of COVID-19; we have devised and implemented a ‘network biology’ workflow (Figure 1) to
interrogate the hypothesis that BCG vaccination may protect from COVID-19 fatalities. This workflow is
based on our drug repurposing chemocentric informatics workflow, which has been validated previously for
small-molecule drug repurposing. The current workflow is tweaked towards vaccine repurposing by employing



novel bioinformatic approaches to computationally model and connect molecular networks in an effort to
understand the underlying ‘network’ biology of vaccines, and pinpoint the regulatory genes and proteins
responsible for causing the observed beneficial multitherapeutic effects. Although we are not the first group
to use network biology approaches to study the transcriptional changes of vaccines, to our knowledge, this
is the first study that uses these approaches to support vaccine repurposing, specifically for COVID-19.

3.3 BCG consensus gene signature

Our workflow starts with the prioritization of a gene signature to study BCG’s network pharmacology. First,
we derived a consensus gene signature (CGS) for BCG based on GEQ’s dataset GSE58636. Details on BCG-
CGS signature are found in table S1 (Supporting Information). Twenty-two differentially-expressed genes
across all 4 experiments (2 Groups x 2 time points discussed in Methods) formed BCG’s consensus gene
signature (BCG-CGS) shown in Figure 2A.

3.4 BCG protein-protein interactions (PPIs)

All 22 genes in BCG-CGS were used as seed nodes to build a protein-protein interaction network for signa-
ture genes (Figure 2B). Interactions were extracted from STRING database and included high confidence
interactions including: physical interactions (e.g., binding), functional interactions (e.g., activation, inhi-
bition, catalysis), or gene co-expression. Two types of networks were generated: 1) high-confidence ‘core’
network restricted to BCG signature genes as network nodes and high confidence (> 0.70) interactions as
network edges, and 2) medium-confidence interaction network obtained from expanding the core network by
20 additional nodes (Figure 3).

Enrichment analysis results performed in Cytoscape, using STRING’s protein-protein interactions, indicated
that BCG-CGS is enriched in inflammatory cytokines and immune response modulators (Figure 2B). Some
signature genes are also involved in the negative control of important viral processes (e.g., (FCN1, TNF and
CCL3), and others are involved in the response to viral infections (e.g., IFNG, RNASE6, IL6 and TNF).
The complete lists of enriched pathways are included in tables S2 and S3 (Supporting Information).

3.5 Identification of key hubs

We identified 291 key hubs using the causal reasoning method which seeks to identify molecular regulators
that will directly cause the observed transcriptional changes in response to BCG vaccination. Key regulators
can be transcriptional factors and proteins with potentially altered activity that explains the transcriptional
changes. Top five statistically significant inhibited key hubs were: HEY1, DSIPI (GILZ), Jaggedl, HAND1
and miR-129-1-3p. And top five statistically significant activated key hubs were: PHF20, TAFII70, Gluta-
redoxin, RUNX2 and NOTCH1 (NICD). Top 30 causal key hubs are shown in table 1 and all identified 291
key hubs are included in table S4 (Supporting Information).

3.6 Identifying BCG ‘mimics’

In order to identify experimentally validated upstream regulators that cause transcriptional changes similar to
those induced by BCG, we queried the Connectivity Map (CMap) database of the Broad Institute with BCG-
CGS and identified proteins and small-molecule drugs that have strong connectivity scores with BCG (Figure
1). The CMap approach enabled us to compare BCG-CGS with ‘experimentally’ predefined signatures of
therapeutic compounds and genetic perturbations (i.e., over expression or knockdown) included in the CMap
and ranked according to a connectivity scores (ranging from 4100 to -100), representing relative similarity
to BCG-CGS. The connectivity score itself is derived using a nonparametric, rank-based, pattern-matching
strategy based on the Kolmogorov-Smirnov statistic. All instances in the database are then ranked according
to their connectivity scores with BCG-CGS; those at the top (+) are most strongly correlated to the query
signature and looked at as BCG mimics, and those at the bottom (-) are most strongly anticorrelated and
can reverse BCG’s gene signature.

Our analysis identified three highly enriched classes of genetic knockdown (KD) perturbagens and one phar-
macological class of drugs that have positive connectivity scores in alveolar A549 cells (i.e., caused similar



transcriptional changes to those induced by BCG in alveolar A549 cells). These hits can be considered as
BCG mimics capable of inducing transcriptional changes similar to those caused by BCG vaccine. Therefore,
we suggest that BCG mimics can be used as alternatives to BCG vaccination to promote long-lasting benefi-
cial effects on immune cells. The three enriched protein classes are: protein phosphatases (with best positive
connection for PPP4C KD), histone deacetylases (with best positive connection for HDAC10 KD followed
by HDAC11 KD), and mediator complex proteins (with best positive connection for MED6 KD followed by
MED7 KD). Additionally, protein kinase C (PKC) activators were enriched as a drug class; and top 3 PKC
activators with highest CMap connectivity scores to BCG-CGS prostratin, phorbol-12-myristate-13-acetate,
and ingenol. It is evident that all of the above 4 classes of proteins share one common feature: they par-
ticipate in the transcriptional and metabolic regulation of immune cells in response to environmental cues
including responses to pathogens. All top-scoring PKC activators from the CMap, are also known to have
antiviral effects or affect T cell activation.

Remarkably, analyzing top ten CMap positive connections with BCG-CGS obtained from nine cell lines
indicated that two compounds are approved antiviral drugs: raltegravir (top 3'¢ positive connection, an
HIV integrase inhibitor) and lopinavir (top 6'" positive connection, an HIV protease inhibitor). More
interestingly, emetine (top 4" positive connection) and lopinavir were recently validated to inhibit SARS-
CoV-2 replication in vitro. We also found evidence in the biomedical literature indicating that MST-312,
narciclasine and verrucarin-a possess antiviral activities. All CMap hits are provided in tables S5 and S8
(Supporting Information).

In order to prioritize high confidence BCG genetic mimics, we integrated hypotheses derived independently
from the CMap with those predicted by causal reasoning, and accepted common hits only (i.e., CMap positive
connections with BCG-CGS that are also predicted as beneficial drug targets by causal reasoning). This
analysis resulted 30 high confidence common hits reported in table S9 (Supporting Information).

3.8 Any validation for functional connections with SARS-CoV-2?7

We tested whether BCG-CGS, CMap positive connections, or predicted key hubs will have any impact on
COVID-19 by identifying overlaps with SARS-CoV-2 interactome, i.e., human proteins that were experimen-
tally validated to interact with SARS-CoV-2 and extracted from two recent reports. This analysis (Figure
4A) validated 3 proteins hits to have physical links to SARS-CoV-2. The three proteins are transcribed by:
BRD4, PRKACA and SIRTS5; they all were positive connections from the CMap, predicted as statistically
significant key hubs, and were also validated SARS-CoV-2 interacting proteins.

Additionally, 14 high-confidence CMap positive connections, were validated to make physical interactions
SARS-CoV-2 proteins. These proteins are: PSEN2, PABPC1, HMOX1, CIT, PLAT, IGF2R, RIPKI1,
NDUFS3, NDUFA5, GGH, NEU1, SCARB1, CSNK2B, F2RL1. And two positive connections, MARK?2
and MARK3, were reported to have interactions with corona viruses. Predicted causal key hubs, SIGMAR1
and GNB1, were also validated to have physical links to SARS-CoV-2, and a third key hub PPIA was known
as human protein interacting with proteins from corona viruses.

Additionally, we mined the biomedical literature to identify evidence for linking BCG small molecule mimics
with SARS-CoV-2, corona viruses or viral infections in general. We found that two out of ten top positive
compound connections (emetine and lopinavir), were recently validated to inhibit SARS-CoV-2 replication in
vitro. Other compounds we found to inhibit the growth of corona viruses, or had general antiviral activities
(Table 2).

4 DISCUSSION

Our results indicate that BCG-CGS, key regulatory hubs and and BCG-mimics identified from the CMap
enrich common biological pathways important for key viral processes such as viral RNA synthesis and
processing, virus-host interactions, positive regulation of viral genome replication, and are also important
for the immune response mounted against the virus. Evidence from the biomedical literature confirms that
BCG has many beneficial ‘off-target’ effects that can protect humans from emerging novel pathogens by



boasting their innate immune responses. Our studies suggest that BCG can potentially reverse or prevent
some of the detrimental consequences, caused by SARS-CoV-2 on vital regulatory processes, by promoting
wide-range transcriptional and metabolic changes that are capable of producing a balanced immune response
against SARS-CoV-2. BCG can accomplish that mainly by increasing the production of thymus-generated
short-lived undifferentiated CD4+ cells known as naive T cells (Thy), and triggering their differentiation
into the long-lived mature naive T cells (MNTs), such as CD44 and CD8+ T cellsThese conclusions are
supported by the enrichment results produced using the ‘Compare Experiment’ algorithm in MetaCore from
Clarivate Analytics, which looks for significant coordinated gene expression effects across all experiments to
test whether the pathway is being up- or down-regulated in a manner that is unlikely to be accounted for by
random chance. The top enriched pathway map, with upregulated genes in response to BCG, is ‘Immune
response T cell subsets: secreted signals’ (Figure 4B). As a validation, a recent study showed that SARS-
CoV-2 reshapes central cellular pathways, such as translation, splicing, carbon metabolism and nucleic acid
metabolism.

A recent publication in Lancet has questioned whether BCG’s effects can last for a long time. Our top
enriched pathway map (Figure 4B) indicates that BCG’s effects can be long-lasting if the effects were exerted
on thymus-generated Thy cells, which can occur to a greater extent very early in life before reaching thymic
involution by puberty. This pathway map indicates that BCG is capable of affecting both the numbers and
the types of produced innate immune cells, as well as their maturation to long-lived memory T cells (i.e.,
what is known as trained immunity). This is very significant in the context of BCG’s protective effects from
SARS-CoV-2 and other emergent novel viruses; where the individual’s ability to eradicate such viruses is
dictated by the number and diversity of naive T cell reservoir And this is a clear indication that BCG protects
individuals from lethality by novel pathogens by priming their trained immunity to fight such pathogens,
including SARS-CoV-2.

Supporting evidence for this hypothesis is found in the literature indicating that the protective effects of the
BCG against TB, can last from 15 to 60 years after vaccination, with longer lasting effects when the vaccine
is administered during the first year of life. A recent study indicated that “school-aged BCG vaccination
offered moderate protection against tuberculosis for at least 20 years, which is much longer than previously
thought”. Another 60-year follow-up study, showed that BCG vaccine efficacy persisted for 50 to 60 years
after a single dose of BCG. These studies serve as additional evidence from the literature supporting our claim
that a single dose of an ‘effective’ BCG vaccination to infants can have a very long duration of protection
against pathogens including SARS-CoV-2.

Our findings provided systems biology support for using BCG to protect from COVID-19. BCG is currently
on WHO'’s List of Essential Medicines; it is considered one of the safest and most effective medicines needed
in a health system. Therefore, we propose BCG administration to all newborns will act as a protection
measure from SARS-CoV-2 and other emerging pathogens. BCG can be given to newborns according to the
regulations known for TB prevention. We also recommend that multiple doses of the vaccine are necessary to
protect adults from COVID-19 since the protective effects of BCG are weaker if the vaccine is given after the
first year of life and especially after puberty. Since this is an approved vaccine for TB, it can directly enter
Phase III testing for the protection from COVID-19 caused fatalities. However, we caution that running
these experiments during an active COVID-19 outbreak, might expose participants to aggravated immune
responses if they contract COVID-19 during the study. We also advise that clinical study design takes
into account several factors that are known to affect the performance of BCG vaccine, such as: the age
of the participants, geographies, ethnicities, route of administration and the mycobacterium strain used
in the vaccine. It is equally important to run experimental validation studies to evaluate the effects of
BCG mimics, in preventing COVID-19 or for treating urological cancers. BCG mimics can solve problems
associated with potential supply shortages of BCG, or even address some of the problems associated with
the use of attenuated live vaccines.
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Table 1. Top twenty key hubs predicted by causal reasoning.

Key Hub Molecular Function Gene Symbol Predicted Activity+ Correct/Total network predic
HEY1 Transcription factor HEY1 - 15/15
PHF20 Binding protein PHF20 + 15/15
DSIPI (GILZ) Transcription factor TSC22D3 - 14/14
TAFII70 Transcription factor TAF6 + 14/14
DSIPI (GILZ) Transcription factor TSC22D3 - 13/13
Glutaredoxin 1 Enzyme GLRX + 13/13
Jaggedl Receptor ligand JAG1 - 13/13
RUNX2 Transcription factor RUNX2 + 13/13
NOTCH1 (NICD) Transcription factor NOTCH1 + 16/17
HAND1 Transcription factor HAND1 - 12/12
PRMT6 Enzyme PRMT6 + 12/12
miR-129-1-3p RNA MIR129-1 - 12/12
SOX10 Transcription factor SOX10 + 12/12
HAND?2 Transcription factor HAND?2 - 12/12
MSK1 Protein kinase RPS6KA5 + 12/12
USP28 Protease USP28 + 15/16
c-Fos Transcription factor FOS + 15/16
UBF Transcription factor UBTF + 11/11
miR-520e-3p RNA MIR520E - 11/11
TMEM119 Protein TMEM119 + 11/11
LRP16 Binding protein MACROD1 + 11/11
LRP16 Binding protein MACROD1 + 14/15
CaMK II gamma  Protein kinase CAMK2G + 11/11
CaMK II gamma  Protein kinase CAMK2G + 14/15
miR-4500 RNA MIR4500 - 14/15
NOTCHI (NICD) Transcription factor NOTCH1 + 14/15
miR-4516 RNA MIR4516 - 11/11



Key Hub Molecular Function Gene Symbol Predicted Activity+ Correct/Total network predic
NDPK B Protein kinase NME2 - 11/11
KLF11 (TIEG2) Transcription factor KLF11 - 11/11
miR-320d RNA MIR320D1 - 14/15

+ Predicted activity of the key hub by causal reasoning is denoted by — if the hub is inhibited, and denoted
by + if the hub is activated.

++ Correct/total network predictions: correct for the genes in the dataset predicted correctly; total for the
total number of genes in the causal reasoning network.

§ Calculation distance: Using causal reasoning one-step key hubs are defined as statistically significant
transcriptional factors that are associated with experimental differential expressed genes regulation. Two-
step and three-step key hubs are distant key hubs that regulate one-step transcriptional factors.

*P -value calcualted for the polynomial test.

Table 2. Small-molecule BCG mimics with potential antiviral effects.

Compound Score+ Description Validation++
prostratin 98.65 PKC activator Antiviral
ingenol 98.52 PKC activator Antiviral
raltegravir 97.85 HIV integrase inhibitor Antiviral
emetine 97.25 Protein synthesis inhibitor SARS-CoV-2
phorbol-12-myristate-13-acetate  96.72 PKC activator Antiviral
mebendazole 95.32 Tubulin inhibitor Antiviral
lopinavir 95.06 HIV protease inhibitor SARS-CoV-2
MST-312 95.04 Telomerase inhibitor Antiviral
narciclasine 94.71 Coflilin signaling pathway activator — Antiviral
verrucarin-a 94.51 Protein synthesis inhibitor Antiviral
anisomycin 94.40 DNA synthesis inhibitor Corona viruses
azacitidine 94.29 DNA methyltransferase inhibitor Antiviral
cytochalasin-b 93.90 Microtubule inhibitor Antiviral
cephaeline 93.88 Protein synthesis inhibitor Antiviral
homoharringtonine 93.42 Protein synthesis inhibitor Antiviral
ruxolitinib 92.81 JAK inhibitor COVID-19 CT§
HU-211 92.64 Glutamate receptor antagonist Unknown
vinblastine 92.36 Microtubule inhibitor Unknown
RO-28-1675 92.12 Glucokinase activator Unknown
vincristine 91.61 Tubulin inhibitor Unknown

+Score refer to the CMap score. It represents the level of similarity between transcriptional effects induced
by BCG and each of the compounds.

++ Validation refers to the presence of any supporting evidence from the biomedical literature that the
predicted BCG mimics have any antiviral activities. Antiviral means there is evidence that the compound
is used as or has antiviral activity; SARS-CoV-2 means that the compound should antiviral activity against
SARS-CoV-2; Corona viruses means that the compound showed antiviral activity against corona viruses
other than SARS-CoV-2.

§ COVID-19 CT: there is evidence that the compound is being tested in clinical trials for COVID-19. There
are 12 Studies found for Ruxolitinib in COVID-19 on clinicaltrials.gov.
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Figure 1. Workflow for drug and vaccine repurposing. A gene signature is identified /derived and a consensus
gene signature is prioritized, all genes are nomenclated according to HUGO Gene Nomenclature Committee
(HGNC). The consensus gene signature is used to query the CMap to identify positive connections capable of
producing gene signatures similar to BCG-CGS. Prioritize genes and compounds that induce transcriptional
changes similar to those induced by BCG: A) key hubs predicted by causal reasoning; B) Positive genes and
compound connections from the connectivity map. Prioritize top enriched pathway map explaining the
biological effects of BCG (gene annotations on the pathway map are assigned by Clarivate Analytics, IFN-
gamma is an alias for INFG, GM-CSF is an alias for CSF2, MIP-1-alpha is an alias for CCL3).
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Figure 2. BCG’s consensus gene signature (BCG-CGS) and highly enriched pathways. (A) A heat map
of the logoFC of the gene expression for differentially expressed genes representing BCG’s consensus gene
signature. Upregulated genes have positive logoFC denoted in red color, and down regulated genes have
negative values for logoFC denoted in blue color. (B) Core network for BCG-CGS showing highly connected
genes in BCG-CGS, deleting all singleton genes. Nodes are color-coded using a split pie chart coloring scheme
indicating pathway/gene set contribution to each node from the top 5 most enriched pathways/gene lists.
All details about pathway/gene set ID are found in Table S2 (Supporting Information).
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Figure 3. High-confidence expanded network for BCG-CGS. Nodes are color-coded using a split pie chart
coloring scheme indicating pathway/gene set contribution to each node from the top 5 most enriched path-
ways/gene lists. Core network is composed of genes in the BCG-CGS that are not singletons. Step 1
expansion, added 10 additional nodes (i.e., genes) to the core network. Step 2 expansion, added another 10
nodes for the first expansion. Step 3 expansion, added another 10 nodes to the second expansion. Expansions
were performed to see which pathways remained most statistically significant, and therefore are considered
high confidence pathways.
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Figure 4. (A) A venn diagram showing overlaps between BCG genetic mimics and key hubs with SARS-
CoV-2 and Corona viruses interactomes. (B) Top “pathway map” with the highest level of enrichment by
genes in BCG-CGS. This map is generated using MetaCore from Clarivate Analytics. Red thermometers
indicate genes overexpressed in response to BCG treatment, and the hight of the red bars is representa-
tive of the differential gene expression level (i.e., logs values of the fold change). The numbers under the
thermometers 1- 5 refer to the experiment number: 1) gene expression on day 1 in response to BCG vacci-
nation to a BCG-naive population on day 1; 2) gene expression on day 1 in response to BCG re-vaccination
to a previously vaccinated population; 3) gene expression on day 1 in response to BCG vaccination to a
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BCG-naive population on day 14; 4) gene expression on day 14 in response to BCG re-vaccination to a
previously vaccinated population, and 5) positive connections from the connectivity map, and the red bar
in the thermometer number 5 represents presence of the gene only.

(D signature ‘ @ Query ‘ () Prioritize Positive Connections Connections and Key Hubs
BCG-CGS » A) Caus Networks » A) Key Hubs B) Positive CMap Connections
Gene  Predicted i .
MMP1 KeyHub  MolecularFunction ¢ T80 L0 Gene Connections Compound Connections
L6 AS29 cell line AS29 cell line
Hen Transcrption factor  HEV1 -
coat | @ © wir2o Sdrgpown w0+ | Score Type Name Score Name
IL1A ®,0e et w2 | | 9993 O SMAD? 9974 bisindolyimaleimide
cCL20 ® ® © OSPIGLZ)  Tamcptonfaer Ts0s - | 993 © TBX2 9051 OM-137
IL1F9 Glutaredoxin1 a + 19993  © EIF4EBP1 | (9947  VU-0365114-2
(@ Jagged1 Pecaptorigand - AGL - | 998t © PRPF6 9946  pyrazolanthrone
CSF2 Q) ressaiatage ﬁ‘é’::fmmm) ::::;‘::Z:: o D 9979 © ANKRDS5 | 9921  S-14506
IFNG O oo Transergtonfactor  HAND1 o1 P78 © SF1 99.01  heliomycin
cCL3 PRMT6. Enzyme PRMT6. + | 978 0O BRC2 9887  CGP-37157
24 CMap Se 9975  © PTMS 9875 1-phenylbiguanide
p Score
ivi 9974  © HDACI0 | 9862  mebendazole
'rl:'gF » B) Connectivity » 100.00 bors o tows P s
FPR3 Map Positive All cell lines Allcell lines
FCNA Connectivity Score Type Name Score v Name
TGFBI =+ 0.00 9981  © RAB31 9865  prostratin
%8| 9970  © AGT 9852 ingenol
Al g B 929 © WNT10B | 9785 raltegravir
RNASES rer 921  © KSR2 9725  emetine
GPR162 i ~ | 9.15  © SHMT2 9672 phorbol-12-myristate-13-acetate
VMO1 | == 0.00 9898  © SMAD7 9532  mebendazole
LYz ) %98 © LN 9506 lopinavir
CCL24 Negative 9896  © GABRA5 | 9504  MST-312
Connectivity 98.66 © ADRB2 9471  narciclasine
CSFIR 98.58 © TIMP2 9451 verrucarin-a
-=-100.00 Score: CM: re

Generation of
memory CD4+ T cells

T

-2

IFN-gamma 154 -6

Fiigp T

P -CS

IL-13

g Yoo
TNF-alpha

(@) Explain Biology: Highly Enriched Pathway Map with BCG-Signature

A 4

T
Lymphotactin
) A

T g‘g’g beta

MIP-1-alpha

(A)

i

L |
Log,FC -7.60 0.00 7.60

G1_T14
G1_TO

G2_T0
G2 T14

(B)

KEGG Pathways
KEGG Pathways
KEGG Pathways
KEGG Pathways
[0 KEGG Pathways

10

CCL3L3

3.19E-14
8.29E-14
1.53E-8
1.93E-8
1.2E-6

Rheumatoid arthritis
Cytokine-cytokine receptor interaction
Salmonella infection

IL-17 signaling pathway
Hematopoietic cell lineage




[0 KEGG Pathways 1.25E-49  Cytokine-cytokine receptor interaction
KEGG Pathways  2.23E-34  Chemokine signaling pathway
KEGG Pathways  4.26-19  IL-17 signaling pathway

KEGG Pathways ~ 6.88E-18  Rheumatoid arthritis
[700 KEGG Pathways  2.05E-14  Salmonella infection
[ KEGGPathways 9.23E-12  TNF signaling pathway
[N KEGG Pathways 1.85E-10  Toll-like receptor signaling pathway

Core network Step 1 expansion' Step 2 expansion Step 3 expansion

First expanded Letwork

i
Second expanded network

Third expanded network (final expanded network)

11



(A)

BCG Mimics/CMap Corona Viruses

Positive Connections Interactome
Key SARS-CoV-2
Hubs Interactome

i

N~

Overlaps with SARS-CoV-2 and
Corona viruses interactomes:
PRKACA  EIF4B  PABPC1 NEU1
SIRT5 RYBP  HMOX1 SCARB1
BRD4 PPIG cIT CSNK2B
SIGMAR1 ATF5  PLAT  F2RL1
GNB1 CAMLG IGF2R  PSEN2
PPIA BCL2L1 RIPK1

TBCB  NDUFS3

DDAH2  NDUFA5

CAV1  GGH

2ll subsets: cell
(B) rface markers g H H
..... v 0 (2X3X8)
IFN-gamma -2 H H H H l MIP 1 alpha
- . ' 80000
TNF-beta TNF-alpha MIP -beta
Differentiation and
v clonal expansion
IL-1 alpha IL-9 of CD8+ T cells Lympholaclln
Naive CD4+ T cell _5
differentiation g
W ] ‘J»J

Th17 113 g T
w IL-10 T CSF IL 21 GM csr-'
e T oﬂéﬂ!ﬁeﬁﬁg 7

06909 IL-25 TNF-alpha  IFN-gamma 17 ILA7F IL- 10 IL- 13
ccl2o =22 \ g

: T

14

8 s ez
X ' ¥ X
T T
I 1122

IL 0
H H H l Generation of
060.06) memory CD4+ T cells
»alpha
0000
IL-1 alpha

HHHH

Memory CD4+ T cell

e 00

-2

IL-13

TH 1L-10

IFN-gamma |4

IL-6

T regulatory cell-mediated modulation of
zell

—_———

T T

IL-17 TGF-beta IL-10

@1'1'

L-10

|L 35 TGF-beta IL-10

WA T

IFN-gamma_ IFN-gamma

IL-17

IFN-gamma

Lympholac(in

beta

iTreg (Th3)
——
Y
Tg TNF-alpha y \ IL-10
TGF-beta
13
' i AR )
110 MIP-1-alpha T
GM-CSF

WG, WA

12




