References
1. Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan,
China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med.2020;382(13):1199-1207.
2. WHO. Coronavirus disease (COVID-2019) situation reports. 2020;
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
Accessed May 28, 2020.
3. Tsang TK, Wu P, Lin Y, Lau EHY, Leung GM, Cowling BJ. Effect of
changing case definitions for COVID-19 on the epidemic curve and
transmission parameters in mainland China: a modelling study.Lancet Public Health. 2020;5(5):e289-e296.
4. Bai Y, Yao L, Wei T, et al. Presumed Asymptomatic Carrier
Transmission of COVID-19. JAMA. 2020.
5. Dong X, Cao YY, Lu XX, et al. Eleven faces of coronavirus disease
2019. Allergy. 2020.
6. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal
origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452.
7. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network
analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci U S A.2020;117(17):9241-9243.
8. Wang Q, Zhang Y, Wu L, et al. Structural and Functional Basis of
SARS-CoV-2 Entry by Using Human ACE2. Cell. 2020;181(4):894-904
e899.
9. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry
Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven
Protease Inhibitor. Cell. 2020;181(2):271-280 e278.
10. Radzikowska U, Ding M, Tan G, et al. Distribution of ACE2, CD147,
cyclophilins, CD26 and other SARS-CoV-2 associated molecules in various
human tissues and immune cells in health and disease. Submitted.2020.
11. Sungnak W, Huang N, Becavin C, et al. SARS-CoV-2 entry factors are
highly expressed in nasal epithelial cells together with innate immune
genes. Nat Med. 2020;26(5):681-687.
12. Ziegler CGK, Allon SJ, Nyquist SK, et al. SARS-CoV-2 Receptor ACE2
Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is
Detected in Specific Cell Subsets across Tissues. Cell. 2020.
13. Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13
human tissues identify cell types and receptors of human coronaviruses.Biochem Biophys Res Commun. 2020;526(1):135-140.
14. Radzikowska U, Ding M, others a, Sokolowska M. Distribution of ACE2,
CD147, cyclophilins, CD26 and other SARS-CoV-2 associated molecules in
various human tissues and immune cells in health and disease.Allergy. 2020.
15. Whitworth KM, Rowland RRR, Petrovan V, et al. Resistance to
coronavirus infection in amino peptidase N-deficient pigs.Transgenic Res. 2019;28(1):21-32.
16. Holmes RS, Spradling-Reeves KD, Cox LA. Mammalian Glutamyl
Aminopeptidase Genes (ENPEP) and Proteins: Comparative Studies of a
Major Contributor to Arterial Hypertension. J Data Mining Genomics
Proteomics. 2017;8(2).
17. Itoyama S, Keicho N, Quy T, et al. ACE1 polymorphism and progression
of SARS. Biochem Biophys Res Commun. 2004;323(3):1124-1129.
18. Trouillet-Assant S, Viel S, Gaymard A, et al. Type I IFN
immunoprofiling in COVID-19 patients. J Allergy Clin Immunol.2020.
19. Chu H, Chan JF, Wang Y, et al. Comparative replication and immune
activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex
vivo study with implications for the pathogenesis of COVID-19.Clin Infect Dis. 2020.
20. DeDiego ML, Nieto-Torres JL, Jimenez-Guardeno JM, et al. Coronavirus
virulence genes with main focus on SARS-CoV envelope gene. Virus
Res. 2014;194:124-137.
21. Karamloo F, Konig R. SARS-CoV-2 immunogenicity at the crossroads.Allergy. 2020;n/a(n/a).
22. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140
patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020.
23. Joob B, Wiwanitkit V. SARS-CoV-2 and HIV. J Med Virol.2020;n/a(n/a).
24. Shah B, Modi P, Sagar SR. In silico studies on therapeutic agents
for COVID-19: Drug repurposing approach. Life Sci.2020;252:117652.
25. Lu J, Cui J, Qian Z, et al. On the origin and continuing evolution
of SARS-CoV-2. National Science Review. 2020.
26. Su Y, Anderson D, Young B, et al. Discovery of a 382-nt deletion
during the early evolution of SARS-CoV-2. bioRxiv. 2020.
27. Zheng S, Fan J, Yu F, et al. Viral load dynamics and disease
severity in patients infected with SARS-CoV-2 in Zhejiang province,
China, January-March 2020: retrospective cohort study. BMJ.2020;369:m1443.
28. Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS-CoV-2
in clinical samples. Lancet Infect Dis. 2020;20(4):411-412.
29. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for
Gastrointestinal Infection of SARS-CoV-2. Gastroenterology.2020;158(6):1831-1833 e1833.
30. Tian Y, Rong L, Nian W, He Y. Review article: gastrointestinal
features in COVID-19 and the possibility of faecal transmission.Aliment Pharmacol Ther. 2020;51(9):843-851.
31. Woo PC, Lau SK, Wong BH, et al. Longitudinal profile of
immunoglobulin G (IgG), IgM, and IgA antibodies against the severe acute
respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients
with pneumonia due to the SARS coronavirus. Clin Diagn Lab
Immunol. 2004;11(4):665-668.
32. Mo H, Zeng G, Ren X, et al. Longitudinal profile of antibodies
against SARS-coronavirus in SARS patients and their clinical
significance. Respirology. 2006;11(1):49-53.
33. Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in
patients with COVID-19. Nat Med. 2020.
34. Wang B, Wang L, Kong X, et al. Long-term coexistence of SARS-CoV-2
with antibody response in COVID-19 patients. J Med Virol. 2020.
35. Yongchen Z, Shen H, Wang X, et al. Different longitudinal patterns
of nucleic acid and serology testing results based on disease severity
of COVID-19 patients. Emerg Microbes Infect. 2020;9(1):833-836.
36. Huang AT, Garcia-Carreras B, Hitchings MDT, et al. A systematic
review of antibody mediated immunity to coronaviruses: antibody
kinetics, correlates of protection, and association of antibody
responses with severity of disease. medRxiv.2020:2020.2004.2014.20065771.
37. Grzelak L, Temmam S, Planchais C, et al. SARS-CoV-2 serological
analysis of COVID-19 hospitalized patients, pauci-symptomatic
individuals and blood donors. medRxiv.2020:2020.2004.2021.20068858.
38. Carsetti R, Quintarelli C, Quinti I, et al. The immune system of
children: the key to understanding SARS-CoV-2 susceptibility? The
Lancet Child & Adolescent Health. 2020;4(6):414-416.
39. Nickbakhsh S, Mair C, Matthews L, et al. Virus-virus interactions
impact the population dynamics of influenza and the common cold.Proc Natl Acad Sci U S A. 2019.
40. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H.
Tissue distribution of ACE2 protein, the functional receptor for SARS
coronavirus. A first step in understanding SARS pathogenesis. J
Pathol. 2004;203(2):631-637.
41. Bunyavanich S, Do A, Vicencio A. Nasal Gene Expression of
Angiotensin-Converting Enzyme 2 in Children and Adults. JAMA.2020.
42. Wen W, Su W, Tang H, et al. Immune cell profiling of COVID-19
patients in the recovery stage by single-cell sequencing. Cell
Discov. 2020;6:31.
43. Kwok KO, Lai F, Wei WI, Wong SYS, Tang JWT. Herd immunity -
estimating the level required to halt the COVID-19 epidemics in affected
countries. J Infect. 2020;80(6):e32-e33.
44. Vultaggio A, Agache I, Akdis CA, et al. Considerations on
Biologicals for Patients with allergic disease in times of the COVID-19
pandemic: an EAACI Statement. Allergy. 2020.
45. Blauvelt A, Simpson EL, Tyring SK, et al. Dupilumab does not affect
correlates of vaccine-induced immunity: A randomized, placebo-controlled
trial in adults with moderate-to-severe atopic dermatitis. J Am
Acad Dermatol. 2019;80(1):158-167 e151.
46. Jackson DJ, Busse WW, Bacharier LB, et al. Association of
respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor
ACE2. J Allergy Clin Immunol. 2020;in press.
47. Dhawale VS, Amara VR, Karpe PA, Malek V, Patel D, Tikoo K.
Activation of angiotensin-converting enzyme 2 (ACE2) attenuates allergic
airway inflammation in rat asthma model. Toxicol Appl Pharmacol.2016;306:17-26.
48. Roisman GL, Danel CJ, Lacronique JG, Alhenc-Gelas F, Dusser DJ.
Decreased expression of angiotensin-converting enzyme in the airway
epithelium of asthmatic subjects is associated with eosinophil
inflammation. J Allergy Clin Immunol. 1999;104(2 Pt 1):402-410.
49. Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and
mechanisms of immunopathological changes in COVID-19. Allergy.2020.
50. Lindsley AW, Schwartz JT, Rothenberg ME. Eosinophil responses during
COVID-19 infections and coronavirus vaccination. J Allergy Clin
Immunol. 2020.
51. Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19
Autopsies, Oklahoma, USA. Am J Clin Pathol. 2020;153(6):725-733.
52. Brockow K, Ardern-Jones MR, Mockenhaupt M, et al. EAACI position
paper on how to classify cutaneous manifestations of drug
hypersensitivity. Allergy. 2019;74(1):14-27.
53. Jesenak M, Schwarze J. Lung eosinophils-A novel ”virus sink” that is
defective in asthma? Allergy. 2019;74(10):1832-1834.
54. Jesenak M, Banovcin P, Diamant Z. COVID-19, chronic inflammatory
respiratory diseases and eosinophils - Observationsfrom reported
clinical case series. Allergy. 2020;n/a(n/a).
55. Zhang M, Guogang, X., Fengming, D.; Han, L; Dongning, Y.; Hongzhou,
L. The role of peripheral blood eosinophil counts in COVID-19Allergy. 2020.
56. Hassani M, Leijte G, Bruse N, et al. Differentiation and activation
of eosinophils in the human bone marrow during experimental human
endotoxemia. J Leukoc Biol. 2020.
57. Du Y, Tu L, Zhu P, et al. Clinical Features of 85 Fatal Cases of
COVID-19 from Wuhan: A Retrospective Observational Study. Am J
Respir Crit Care Med. 2020.
58. Huang C, Wang Y, Li X, et al. Clinical features of patients infected
with 2019 novel coronavirus in Wuhan, China. Lancet.2020;395(10223):497-506.
59. Ulrich H, Pillat MM. CD147 as a Target for COVID-19 Treatment:
Suggested Effects of Azithromycin and Stem Cell Engagement. Stem
Cell Rev Rep. 2020:1-7.
60. Herbinger KH, Hanus I, Beissner M, et al. Lymphocytosis and
Lymphopenia Induced by Imported Infectious Diseases: A Controlled
Cross-Sectional Study of 17,229 Diseased German Travelers Returning from
the Tropics and Subtropics. Am J Trop Med Hyg.2016;94(6):1385-1391.
61. Qu R, Ling Y, Zhang YH, et al. Platelet-to-lymphocyte ratio is
associated with prognosis in patients with coronavirus disease-19.J Med Virol. 2020.
62. Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell
responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and
unexposed individuals. Cell. 2020.
63. Ng OW, Chia A, Tan AT, et al. Memory T cell responses targeting the
SARS coronavirus persist up to 11 years post-infection. Vaccine.2016;34(17):2008-2014.
64. Diao B, Wang C, Tan Y, et al. Reduction and Functional Exhaustion of
T Cells in Patients With Coronavirus Disease 2019 (COVID-19).Front Immunol. 2020;11:827.
65. Ma Y, Jiang J, Gao Y, et al. Research progress of the relationship
between pyroptosis and disease. Am J Transl Res.2018;10(7):2213-2219.
66. Tan L, Wang Q, Zhang D, et al. Lymphopenia predicts disease severity
of COVID-19: a descriptive and predictive study. Signal Transduct
Target Ther. 2020;5(1):33.
67. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG.
Into the eye of the cytokine storm. Microbiol Mol Biol Rev.2012;76(1):16-32.
68. Behrens EM, Koretzky GA. Review: Cytokine Storm Syndrome: Looking
Toward the Precision Medicine Era. Arthritis Rheumatol.2017;69(6):1135-1143.
69. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine
Storm’ in COVID-19. J Infect. 2020;80(6):607-613.
70. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and
potential vaccines: Lessons learned from SARS and MERS epidemic.Asian Pac J Allergy Immunol. 2020;38(1):1-9.
71. Yang Y, Shen C, Li J, et al. Exuberant elevation of IP-10, MCP-3 and
IL-1ra during SARS-CoV-2 infection is associated with disease severity
and fatal outcome. medRxiv. 2020:2020.2003.2002.20029975.
72. Ritchie AI, Singanayagam A. Immunosuppression for hyperinflammation
in COVID-19: a double-edged sword? Lancet. 2020;395(10230):1111.
73. Poston JT, Patel BK, Davis AM. Management of Critically Ill Adults
With COVID-19. JAMA. 2020.
74. Matthay MA, Aldrich JM, Gotts JE. Treatment for severe acute
respiratory distress syndrome from COVID-19. Lancet Respir Med.2020;8(5):433-434.
75. Brough HA, Kalayci O, Sediva A, et al. Managing childhood allergies
and immunodeficiencies during respiratory virus epidemics - the 2020
COVID-19 pandemic. Pediatr Allergy Immunol. 2020.
76. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in
patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020.
77. Michalovich D, Rodriguez-Perez N, Smolinska S, et al. Obesity and
disease severity magnify disturbed microbiome-immune interactions in
asthma patients. Nat Commun. 2019;10(1):5711.
78. Wu Q, Zhou L, Sun X, et al. Altered Lipid Metabolism in Recovered
SARS Patients Twelve Years after Infection. Sci Rep.2017;7(1):9110.
79. Huppert LA, Matthay MA, Ware LB. Pathogenesis of Acute Respiratory
Distress Syndrome. Semin Respir Crit Care Med. 2019;40(1):31-39.
80. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular
Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl
J Med. 2020.
81. Sokolowska M LZ, Agache and others, Untersmayer, E. Immunology of
COVID-19: mechanisms, clinical outcome, diagnostics and perspectives –
a report of the 1
European Academy of Allergy and Clinical Immunology (EAACI)Submitted. 2020.
82. Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not?Crit Care. 2020;24(1):154.
83. Fan E, Brodie D, Slutsky AS. Acute Respiratory Distress Syndrome:
Advances in Diagnosis and Treatment. JAMA. 2018;319(7):698-710.
84. Ozdemir C, Kucuksezer UC, Tamay ZU. Is BCG vaccination affecting the
spread and severity of COVID-19? Allergy. 2020;n/a(n/a).
85. Gursel M, Gursel I. Is global BCG vaccination-induced trained
immunity relevant to the progression of SARS-CoV-2 pandemic?Allergy. 2020;n/a(n/a).
86. Hamiel U, Kozer E, Youngster I. SARS-CoV-2 Rates in BCG-Vaccinated
and Unvaccinated Young Adults. JAMA. 2020.
87. Curtis N, Sparrow A, Ghebreyesus TA, Netea MG. Considering BCG
vaccination to reduce the impact of COVID-19. Lancet.2020;395(10236):1545-1546.
88. WHO. Bacille Calmette-Guerin (BCG) vaccination and COVID-19. 2020;
https://www.who.int/news-room/commentaries/detail/bacille-calmette-gu%C3%A9rin-(bcg)-vaccination-and-covid-19.
Accessed April 29, 2020.
89. Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P.
Hyperinflammatory shock in children during COVID-19 pandemic.Lancet. 2020;395(10237):1607-1608.
90. Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe
Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2
epidemic: an observational cohort study. Lancet. 2020.
91. Viner RM, Whittaker E. Kawasaki-like disease: emerging complication
during the COVID-19 pandemic. Lancet. 2020.
92. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, et al. Hematological
findings and complications of COVID-19. Am J Hematol. 2020.
93. Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus
Disease 2019 in China. N Engl J Med. 2020;382(18):1708-1720.
94. Lechner M, Chandrasekharan D, Jumani K, et al. Anosmia as a
presenting symptom of SARS-CoV-2 infection in healthcare workers - A
systematic review of the literature, case series, and recommendations
for clinical assessment and management. Rhinology. 2020.
95. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for
mortality of adult inpatients with COVID-19 in Wuhan, China: a
retrospective cohort study. Lancet. 2020;395(10229):1054-1062.
96. Sethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for
SARS-CoV-2. JAMA. 2020.
97. Nalla AK, Casto AM, Huang MW, et al. Comparative Performance of
SARS-CoV-2 Detection Assays using Seven Different Primer/Probe Sets and
One Assay Kit. J Clin Microbiol. 2020:JCM.00557-00520.
98. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different
Types of Clinical Specimens. JAMA. 2020.
99. WHO. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in
suspected human cases. 2020;
https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-in-suspected-human-cases-20200117
Accessed May 24, 2020.
100. Padoan A, Sciacovelli L, Basso D, et al. IgA-Ab response to spike
glycoprotein of SARS-CoV-2 in patients with COVID-19: A longitudinal
study. Clin Chim Acta. 2020;507:164-166.
101. Udugama B, Kadhiresan P, Kozlowski HN, et al. Diagnosing COVID-19:
The Disease and Tools for Detection. ACS Nano.2020;14(4):3822-3835.
102. WHO. Advice on the use of point-of-care immunodiagnostic tests for
COVID-19. 2020;
https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-covid-19
Accessed May 24, 2020.
103. Pan Y, Li X, Yang G, et al. Serological immunochromatographic
approach in diagnosis with SARS-CoV-2 infected COVID-19 patients.J Infect. 2020.
104. Lu X, Wang L, Sakthivel SK, et al. US CDC Real-Time Reverse
Transcription PCR Panel for Detection of Severe Acute Respiratory
Syndrome Coronavirus 2. Emerg Infect Dis. 2020;26(8).
105. Zhang JJ, Cao YY, Dong X, et al. Distinct characteristics of
COVID-19 patients with initial rRT-PCR-positive and rRT-PCR-negative
results for SARS-CoV-2. Allergy. 2020;n/a(n/a).
106. Control ECfDPa. Guidance for discharge and ending isolation in the
context of widespread community transmission of COVID-19. 2020;
https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-guidance-discharge-and-ending-isolation-first%20update.pdf.
Accessed May 21, 2020.
107. Malipiero G, Paoletti G, Puggioni F, et al. An academic allergy
unit during COVID-19 pandemic in Italy. J Allergy Clin Immunol.2020.
108. Pfaar O KL, Jutel M, Akdis CA, Bousquet J, Breiteneder H, et al. .
COVID-19 pandemic: Practical considerations on the organization of an
allergy clinic – an EAACI/ARIA Position Paper. Allergy. 2020;In
press.
109. Portnoy J, Waller M, Elliott T. Telemedicine in the Era of
COVID-19. J Allergy Clin Immunol Pract. 2020;8(5):1489-1491.
110. Kiecolt-Glaser JK, Heffner KL, Glaser R, et al. How stress and
anxiety can alter immediate and late phase skin test responses in
allergic rhinitis. Psychoneuroendocrinology. 2009;34(5):670-680.
111. WHO. Infection prevention and control during health care when novel
coronavirus (nCoV) infection is suspected. 2020;
https://www.who.int/publications-detail/infection-prevention-and-control-during-health-care-when-novel-coronavirus-(ncov)-infection-is-suspected-20200125.
Accessed May 24, 2020.
112. Zhang Y, Zhang L. Management Practice of Allergic Rhinitis in China
During the COVID-19 Pandemic. Allergy Asthma Immunol Res.2020;12(4):738-742.
113. CDC. Interim Guidelines for Biosafety and COVID-19. 2020;
cdc.gov/coronavirus/2019-ncov/lab/lab-biosafety-guidelines.html.
Accessed May 24, 2020.
114. Hui Du XD, Jin-jin Zhang, Yi-yuan Cao, Mubeccel Akdis, Pei-qi
Huang,Hong-wei Chen,Ying Li, Guang-hui Liu, Cezmi A Akdis, Xiao-xia
Lu, Ya-dong Gao. Clinical characteristics of 182 pediatric COVID-19
patients with different severities and allergic status. Allergy.2020.
115. OSHA. COVID-19 - Control and Prevention. 2020;
https://www.osha.gov/SLTC/covid-19/controlprevention.html.
Accessed May 24, 2020.
116. Bousquet J, Akdis C, Jutel M, et al. Intranasal corticosteroids in
allergic rhinitis in COVID-19 infected patients: An ARIA-EAACI
statement. Allergy. 2020.
117. Leonardi A, Fauquert JL, Doan S, et al. Managing ocular allergy in
the time of COVID-19. Allergy. 2020;n/a(n/a).
118. Klimek L, Jutel M, Akdis C, et al. Handling of allergen
immunotherapy in the COVID-19 pandemic: An ARIA-EAACI statement.Allergy. 2020.
119. Fokkens WJ, Lund VJ, Hopkins C, et al. European Position Paper on
Rhinosinusitis and Nasal Polyps 2020. Rhinology. 2020;58(Suppl
S29):1-464.
120. Pellegrino R, Cooper KW, Di Pizio A, Joseph PV, Bhutani S, Parma V.
Corona Viruses and the Chemical Senses: Past, Present, and Future.Chem Senses. 2020.
121. Bilinska K, Jakubowska P, Von Bartheld CS, Butowt R. Expression of
the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the
Olfactory Epithelium: Identification of Cell Types and Trends with Age.ACS Chem Neurosci. 2020.
122. Hopkins C, Surda P, Whitehead E, Kumar BN. Early recovery following
new onset anosmia during the COVID-19 pandemic - an observational cohort
study. J Otolaryngol Head Neck Surg. 2020;49(1):26.
123. Van Gerven L, Hellings PW, Cox T, Fokkens WJ, Hopkins C. Personal
protection and delivery of rhinologic and endoscopic skull base
procedures during the COVID-19 outbreak: ERS endorsed advises.Rhinology. 2020;58(3).
124. WHO. Rational Use of Personal Protective Equipment for Coronavirus
Disease 2019 (COVID-19). 2020;
https://apps.who.int/iris/bitstream/handle/10665/331215/WHO-2019-nCov-IPCPPE_use-2020.1-eng.pdf.
Accessed May 24, 2020.
125. WHO. Clinical management of severe acute respiratory infection when
COVID-19 is suspected. 2020;
https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected.
Accessed May 24, 2020.
126. Simon F, Haggard M, Rosenfeld RM, et al. International consensus
(ICON) on management of otitis media with effusion in children.Eur Ann Otorhinolaryngol Head Neck Dis. 2018;135(1S):S33-S39.
127. Rosenfeld RM, Schwartz SR, Pynnonen MA, et al. Clinical practice
guideline: Tympanostomy tubes in children. Otolaryngol Head Neck
Surg. 2013;149(1 Suppl):S1-35.
128. Society BT. Advice for Healthcare Professionals Treating People
with Asthma (adults)
in relation to COVID-19. 2020;
https://www.brit-thoracic.org.uk/document-library/quality-improvement/covid-19/bts-advice-for-healthcare-professionals-treating-patients-with-asthma/
Accessed May 21, 2020.
129. Moiseev S, Avdeev, S., Brovko, M. et al. . Low prevalence of
bronchial asthma and chronic obstructive lung disease among intensive
care unit patients with COVID-19. Allergy. 2020.
130. Farsi A, Carli, G., Cecchi, L. et al. . Is asthma proctective
against COVID-19? 2020.
131. Peters MC, Sajuthi S, Deford P, et al. COVID-19 Related Genes in
Sputum Cells in Asthma: Relationship to Demographic Features and
Corticosteroids. Am J Respir Crit Care Med. 2020.
132. Johnston SL. Asthma and COVID-19: is asthma a risk factor for
severe outcomes? Allergy. 2020.
133. Asthma GIf. COVID-19: GINA ANSWERS TO FREQUENTLY ASKED QUESTIONS ON
ASTHMA MANAGEMENT. 2020;
https://ginasthma.org/covid-19-gina-answers-to-frequently-asked-questions-on-asthma-management/.
Accessed May 21, 2020.
134. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of
coronaviruses on inanimate surfaces and their inactivation with biocidal
agents. J Hosp Infect. 2020;104(3):246-251.
135. Llewellin P, Sawyer G, Lewis S, et al. The relationship between
FEV1 and PEF in the assessment of the severity of airways obstruction.Respirology. 2002;7(4):333-337.
136. Goyal M, Goel A, Bhattacharya S, Verma N, Tiwari S. Circadian
variability in airways characteristics: A spirometric study.Chronobiol Int. 2019;36(11):1550-1557.
137. Matricardi PM, Dramburg S, Alvarez-Perea A, et al. The role of
mobile health technologies in allergy care: An EAACI position paper.Allergy. 2020;75(2):259-272.
138. Morais-Almeida M, Aguiar R, Martin B, et al. COVID-19, asthma, and
biologic therapies: What we need to know. World Allergy Organ J.2020:100126.
139. Chiappetta S, Sharma AM, Bottino V, Stier C. COVID-19 and the role
of chronic inflammation in patients with obesity. Int J Obes
(Lond). 2020.
140. Kruglikov IL, Scherer PE. The role of adipocytes and adipocyte-like
cells in the severity of COVID-19 infections. Obesity (Silver
Spring). 2020.
141. Kim HY, Lee HJ, Chang YJ, et al. Interleukin-17-producing innate
lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated
airway hyperreactivity. Nat Med. 2014;20(1):54-61.
142. Grace J, Mohan A, Lugogo NL. Obesity and adult asthma: diagnostic
and management challenges. Curr Opin Pulm Med. 2019;25(1):44-50.
143. Estebanez A, Perez-Santiago L, Silva E, Guillen-Climent S,
Garcia-Vazquez A, Ramon MD. Cutaneous manifestations in COVID-19: a new
contribution. J Eur Acad Dermatol Venereol. 2020.
144. Recalcati S. Cutaneous manifestations in COVID-19: a first
perspective. J Eur Acad Dermatol Venereol. 2020;34(5):e212-e213.
145. Suchonwanit P, Leerunyakul K, Kositkuljorn C. Cutaneous
manifestations in COVID-19: Lessons learned from current evidence.J Am Acad Dermatol. 2020.
146. Gelincik A BK, Çelik GE, Doña I, Mayorga L, Romano A, Soyer O,
Atanaskovic-Markovic M , Barbaud A, Torres MJ. Diagnosis and management
of the drug hypersensitivity reactions in Coronavirus disease 19.Allergy. 2020:(in press).
147. Wollenberg A, Flohr C, Simon D, et al. European Task Force on
Atopic Dermatitis (ETFAD) statement on severe acute respiratory syndrome
coronavirus 2 (SARS-Cov-2)-infection and atopic dermatitis. J Eur
Acad Dermatol Venereol. 2020.
148. Meding B, Gronhagen CM, Bergstrom A, Kull I, Wrangsjo K, Liden C.
Water Exposure on the Hands in Adolescents: A Report from the BAMSE
Cohort. Acta Derm Venereol. 2017;97(2):188-192.
149. Prescott SL, Larcombe DL, Logan AC, et al. The skin microbiome:
impact of modern environments on skin ecology, barrier integrity, and
systemic immune programming. World Allergy Organ J.2017;10(1):29.
150. Yan Y, Chen H, Chen L, et al. Consensus of Chinese experts on
protection of skin and mucous membrane barrier for health-care workers
fighting against coronavirus disease 2019. Dermatol Ther.2020:e13310.
151. Carugno A, Raponi F, Locatelli AG, et al. No evidence of increased
risk for COVID-19 infection in patients treated with Dupilumab for
atopic dermatitis in a high-epidemic area - Bergamo, Lombardy, Italy.J Eur Acad Dermatol Venereol. 2020.
152. Simpson EL, Paller AS, Siegfried EC, et al. Efficacy and Safety of
Dupilumab in Adolescents With Uncontrolled Moderate to Severe Atopic
Dermatitis: A Phase 3 Randomized Clinical Trial. JAMA Dermatol.2019.
153. Schneeweiss MC, Perez-Chada L, Merola JF. Comparative Safety of
Systemic Immuno-modulatory Medications in Adults with Atopic Dermatitis.J Am Acad Dermatol. 2019.
154. Blauvelt A, de Bruin-Weller M, Gooderham M, et al. Long-term
management of moderate-to-severe atopic dermatitis with dupilumab and
concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year,
randomised, double-blinded, placebo-controlled, phase 3 trial.Lancet. 2017;389(10086):2287-2303.
155. Zhang Y, Cao W, Xiao M, et al. [Clinical and coagulation
characteristics of 7 patients with critical COVID-2019 pneumonia and
acro-ischemia]. Zhonghua Xue Ye Xue Za Zhi. 2020;41(0):E006.
156. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic
Treatments for Coronavirus Disease 2019 (COVID-19): A Review.JAMA. 2020.
157. Xu X, Ong YK, Wang Y. Role of adjunctive treatment strategies in
COVID-19 and a review of international and national clinical guidelines.Mil Med Res. 2020;7(1):22.
158. Thachil J, Tang N, Gando S, et al. ISTH interim guidance on
recognition and management of coagulopathy in COVID-19. J Thromb
Haemost. 2020;18(5):1023-1026.
159. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of
treatment effects. PLoS Med. 2006;3(9):e343.
160. Yam LY, Lau AC, Lai FY, et al. Corticosteroid treatment of severe
acute respiratory syndrome in Hong Kong. J Infect.2007;54(1):28-39.
161. Shang L, Zhao J, Hu Y, Du R, Cao B. On the use of corticosteroids
for 2019-nCoV pneumonia. The Lancet. 2020;395(10225):683-684.
162. NIH. Coronavirus Disease 2019 (COVID-19)
Treatment Guidelines. 2020;
https://www.covid19treatmentguidelines.nih.gov/. Accessed May 24,
2020.
163. Funck-Brentano C, Salem J-E. Chloroquine or hydroxychloroquine for
COVID-19: why might they be hazardous? The Lancet. 2020.
164. Luo P, Liu Y, Qiu L, Liu X, Liu D, Li J. Tocilizumab treatment in
COVID-19: A single center experience. J Med Virol. 2020.
165. Alberici F, Delbarba E, Manenti C, et al. A single center
observational study of the clinical characteristics and short-term
outcome of 20 kidney transplant patients admitted for SARS-CoV2
pneumonia. Kidney Int. 2020.
166. Capra R, De Rossi N, Mattioli F, et al. Impact of low dose
tocilizumab on mortality rate in patients with COVID-19 related
pneumonia. Eur J Intern Med. 2020.
167. Colaneri M, Bogliolo L, Valsecchi P, et al. Tocilizumab for
Treatment of Severe COVID-19 Patients: Preliminary Results from SMAtteo
COvid19 REgistry (SMACORE). Microorganisms. 2020;8(5).
168. Di Giambenedetto S, Ciccullo A, Borghetti A, et al. Off-label Use
of Tocilizumab in Patients with SARS-CoV-2 Infection. J Med
Virol. 2020.
169. Jacobs JP, Stammers AH, St Louis J, et al. Extracorporeal Membrane
Oxygenation in the Treatment of Severe Pulmonary and Cardiac Compromise
in COVID-19: Experience with 32 patients. ASAIO J. 2020.
170. Klopfenstein T, Zayet S, Lohse A, et al. Tocilizumab therapy
reduced intensive care unit admissions and/or mortality in COVID-19
patients. Med Mal Infect. 2020.
171. Mazzitelli M, Arrighi E, Serapide F, et al. Use of subcutaneous
tocilizumab in patients with COVID-19 pneumonia. J Med Virol.2020.
172. Pereira MR, Mohan S, Cohen DJ, et al. COVID-19 in solid organ
transplant recipients: Initial report from the US epicenter. Am J
Transplant. 2020.
173. Piva S, Filippini M, Turla F, et al. Clinical presentation and
initial management critically ill patients with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection in Brescia, Italy. J
Crit Care. 2020;58:29-33.
174. Sciascia S, Apra F, Baffa A, et al. Pilot prospective open,
single-arm multicentre study on off-label use of tocilizumab in patients
with severe COVID-19. Clin Exp Rheumatol. 2020.
175. Toniati P, Piva S, Cattalini M, et al. Tocilizumab for the
treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome
and acute respiratory failure: A single center study of 100 patients in
Brescia, Italy. Autoimmun Rev. 2020:102568.
176. Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19
patients with tocilizumab. Proc Natl Acad Sci U S A.2020;117(20):10970-10975.
177. Xie M, Chen Q. Insight into 2019 novel coronavirus - An updated
interim review and lessons from SARS-CoV and MERS-CoV. Int J
Infect Dis. 2020;94:119-124.
178. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and
diabetes mellitus at increased risk for COVID-19 infection? Lancet
Respir Med. 2020;8(4):e21.
179. Agency EM. EMA gives advice on the use of non-steroidal
anti-inflammatories for COVID-19 2020;
https://www.ema.europa.eu/en/news/ema-gives-advice-use-non-steroidal-anti-inflammatories-covid-19.
Accessed May 20, 2020.
180. Bonini S, Maltese G. COVID-19Clinical trials: quality matters more
than quantity. Allergy. 2020.
181. Zhou M, Zhang X, Qu J. Coronavirus disease 2019 (COVID-19): a
clinical update. Front Med. 2020;14(2):126-135.
182. Mehra MR, Desai SS, Ruschitzka F, Patel AN. Hydroxychloroquine or
chloroquine with or without a macrolide for treatment of COVID-19: a
multinational registry analysis. The Lancet. 2020.
183. McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate
drugs against SARS-CoV-2 and COVID-19. Pharmacol Res.2020;157:104859.
184. Bian H, Zheng Z-H, Wei D, et al. Meplazumab treats COVID-19
pneumonia: an open-labelled, concurrent controlled add-on clinical
trial. medRxiv. 2020:2020.2003.2021.20040691.
185. Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2
Infections in Engineered Human Tissues Using Clinical-Grade Soluble
Human ACE2. Cell. 2020;181(4):905-913 e907.
186. Grein J, Ohmagari N, Shin D, et al. Compassionate Use of Remdesivir
for Patients with Severe Covid-19. N Engl J Med. 2020.
187. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the
Treatment of Covid-19 - Preliminary Report. N Engl J Med. 2020.
188. Blanco JL, Ambrosioni J, Garcia F, et al. COVID-19 in patients with
HIV: clinical case series. Lancet HIV. 2020;7(5):e314-e316.
189. Cao B, Wang Y, Wen D, et al. A Trial of Lopinavir-Ritonavir in
Adults Hospitalized with Severe Covid-19. N Engl J Med.2020;382(19):1787-1799.
190. Ford N, Vitoria M, Rangaraj A, Norris SL, Calmy A, Doherty M.
Systematic review of the efficacy and safety of antiretroviral drugs
against SARS, MERS or COVID-19: initial assessment. J Int AIDS
Soc. 2020;23(4):e25489.
191. Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma
therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A.2020;117(17):9490-9496.
192. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining
antiviral and anti-inflammatory treatments. Lancet Infect Dis.2020;20(4):400-402.
193. Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti
D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical
impact. J Infect. 2020.
194. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved
drug ivermectin inhibits the replication of SARS-CoV-2 in vitro.Antiviral Res. 2020;178:104787.
195. Schmith VD, Zhou JJ, Lohmer LR. The Approved Dose of Ivermectin
Alone is not the Ideal Dose for the Treatment of COVID-19. Clin
Pharmacol Ther. 2020.
196. Geleris J, Sun Y, Platt J, et al. Observational Study of
Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl
J Med. 2020.
197. Borba MGS, Val FFA, Sampaio VS, et al. Effect of High vs Low Doses
of Chloroquine Diphosphate as Adjunctive Therapy for Patients
Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) Infection: A Randomized Clinical Trial. JAMA Netw
Open. 2020;3(4):e208857.
198. Magagnoli J, Narendran S, Pereira F, et al. Outcomes of
hydroxychloroquine usage in United States veterans hospitalized with
Covid-19. medRxiv. 2020:2020.2004.2016.20065920.
199. Khoury M, Cuenca J, Cruz FF, Figueroa FE, Rocco PRM, Weiss DJ.
Current Status of Cell-Based Therapies for Respiratory Virus Infections:
Applicability to COVID-19. Eur Respir J. 2020.
200. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS.
Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor:
molecular mechanisms and potential therapeutic target. Intensive
care medicine. 2020;46(4):586-590.
201. WHO. COVID-19 and the use of angiotensin-converting enzyme
inhibitors and receptor blockers. 2020;
https://www.who.int/news-room/commentaries/detail/covid-19-and-the-use-of-angiotensin-converting-enzyme-inhibitors-and-receptor-blockers.
Accessed May 27, 2020.
202. Soldatov VO, Kubekina MV, Silaeva YY, Bruter AV, Deykin AV. On the
way from SARS-CoV-sensitive mice to murine COVID-19 model. In: Pensoft
Publishers; 2020.
203. Thanh Le T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine
development landscape. Nat Rev Drug Discov. 2020;19(5):305-306.
204. WHO. DRAFT landscape of COVID-19 candidate vaccines 2020;
https://www.who.int/docs/default-source/coronaviruse/novel-coronavirus-landscape-covid-19fbda851295d245e48d8d0a78b35af7ff.pdf?sfvrsn=1720b348_1&download=true.
Accessed May 25, 2020.
205. Wrapp D, De Vlieger D, Corbett KS, et al. Structural Basis for
Potent Neutralization of Betacoronaviruses by Single-Domain Camelid
Antibodies. Cell. 2020.
206. Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking
SARS-CoV-2 infection. Nat Commun. 2020;11(1):2251.
207. Larios Mora A, Detalle L, Gallup JM, et al. Delivery of ALX-0171 by
inhalation greatly reduces respiratory syncytial virus disease in
newborn lambs. MAbs. 2018;10(5):778-795.
208. Grgic H, Hunter DB, Hunton P, Nagy E. Vaccine efficacy against
Ontario isolates of infectious bronchitis virus. Can J Vet Res.2009;73(3):212-216.
209. Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and
immunogenicity of a recombinant adenovirus type-5 vectored COVID-19
vaccine: a dose-escalation, open-label, non-randomised, first-in-human
trial. Lancet. 2020.
210. Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2
Infections and Transmission in a Skilled Nursing Facility. N Engl
J Med. 2020.
211. Gandhi M, Yokoe DS, Havlir DV. Asymptomatic Transmission, the
Achilles’ Heel of Current Strategies to Control Covid-19. N Engl J
Med. 2020.
212. Hains DS, Schwaderer AL, Carroll AE, et al. Asymptomatic
Seroconversion of Immunoglobulins to SARS-CoV-2 in a Pediatric Dialysis
Unit. JAMA. 2020.
213. McAnulty JM, Ward K. Suppressing the Epidemic in New South Wales.N Engl J Med. 2020;382(21):e74.
214. Fauci AS, Lane HC, Redfield RR. Covid-19 - Navigating the
Uncharted. N Engl J Med. 2020;382(13):1268-1269.
215. Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E.
COVID-19, SARS and MERS: are they closely related? Clin Microbiol
Infect. 2020;26(6):729-734.
216. Lu X, Zhang L, Du H, et al. SARS-CoV-2 Infection in Children.N Engl J Med. 2020;382(17):1663-1665.
217. Dong Y, Mo X, Hu Y, et al. Epidemiology of COVID-19 Among Children
in China. Pediatrics. 2020.
218. Parri N, Lenge M, Buonsenso D, Coronavirus Infection in Pediatric
Emergency Departments Research G. Children with Covid-19 in Pediatric
Emergency Departments in Italy. N Engl J Med. 2020.
219. Castagnoli R, Votto M, Licari A, et al. Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and
Adolescents: A Systematic Review. JAMA Pediatr. 2020.
220. Garazzino S, Montagnani C, Donà D, et al. Multicentre Italian study
of SARS-CoV-2 infection in children and adolescents, preliminary data as
at 10 April 2020. Eurosurveillance. 2020;25(18):2000600.
221. Johnston NW, Johnston SL, Norman GR, Dai J, Sears MR. The September
epidemic of asthma hospitalization: school children as disease vectors.J Allergy Clin Immunol. 2006;117(3):557-562.
222. Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats,
dogs, and other domesticated animals to SARS-coronavirus 2.Science. 2020.
223. Livingston E, Bucher K. Coronavirus Disease 2019 (COVID-19) in
Italy. JAMA. 2020.
224. Targher G, Mantovani A, Wang XB, et al. Patients with diabetes are
at higher risk for severe illness from COVID-19. Diabetes Metab.2020.
225. Pareek M, Bangash MN, Pareek N, et al. Ethnicity and COVID-19: an
urgent public health research priority. Lancet.2020;395(10234):1421-1422.
226. Khunti K, Singh AK, Pareek M, Hanif W. Is ethnicity linked to
incidence or outcomes of covid-19? BMJ. 2020;369:m1548.
227. Millett GA, Jones AT, Benkeser D, et al. Assessing Differential
Impacts of COVID-19 on Black Communities. Ann Epidemiol. 2020.
228. Forbes RL, Gibson PG, Murphy VE, Wark PA. Impaired type I and III
interferon response to rhinovirus infection during pregnancy and asthma.Thorax. 2012;67(3):209-214.
229. Qiancheng X, Jian S, Lingling P, et al. Coronavirus disease 2019 in
pregnancy. Int J Infect Dis. 2020;95:376-383.
230. Whitehead CL, Walker SP. Consider pregnancy in COVID-19 therapeutic
drug and vaccine trials. Lancet. 2020;395(10237):e92.
231. Gielen V, Johnston SL, Edwards MR. Azithromycin induces anti-viral
responses in bronchial epithelial cells. Eur Respir J.2010;36(3):646-654.
232. Chico RM, Chandramohan D. Azithromycin plus chloroquine:
combination therapy for protection against malaria and sexually
transmitted infections in pregnancy. Expert Opin Drug Metab
Toxicol. 2011;7(9):1153-1167.
233. Bacharier LB, Guilbert TW, Mauger DT, et al. Early Administration
of Azithromycin and Prevention of Severe Lower Respiratory Tract
Illnesses in Preschool Children With a History of Such Illnesses: A
Randomized Clinical Trial. JAMA. 2015;314(19):2034-2044.
234. Gibson PG, Yang IA, Upham JW, et al. Effect of azithromycin on
asthma exacerbations and quality of life in adults with persistent
uncontrolled asthma (AMAZES): a randomised, double-blind,
placebo-controlled trial. Lancet. 2017;390(10095):659-668.
235. Gibson WT, Evans DM, An J, Jones SJM. ACE 2 Coding Variants: A
Potential X-linked Risk Factor for COVID-19 Disease. bioRxiv.2020:2020.2004.2005.026633.
236. Berghofer B, Frommer T, Haley G, Fink L, Bein G, Hackstein H. TLR7
ligands induce higher IFN-alpha production in females. J Immunol.2006;177(4):2088-2096.
237. Grasselli G, Zangrillo A, Zanella A, et al. Baseline
Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2
Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020.
238. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in
adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020.
239. Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS-CoV-2
in the Icelandic Population. N Engl J Med. 2020.
240. CDC. Weekly Updates by Select Demographic and Geographic
Characteristics. 2020;
https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm#AgeAndSex.
Accessed May 27, 2020.
241. Xie J, Tong Z, Guan X, Du B, Qiu H. Clinical Characteristics of
Patients Who Died of Coronavirus Disease 2019 in China. JAMA Netw
Open. 2020;3(4):e205619.
242. McMichael TM, Currie DW, Clark S, et al. Epidemiology of Covid-19
in a Long-Term Care Facility in King County, Washington. N Engl J
Med. 2020;382(21):2005-2011.
243. Linka K, Peirlinck M, Sahli Costabal F, Kuhl E. Outbreak dynamics
of COVID-19 in Europe and the effect of travel restrictions.Comput Methods Biomech Biomed Engin. 2020:1-8.
244. Shaman J, Goldstein E, Lipsitch M. Absolute humidity and pandemic
versus epidemic influenza. Am J Epidemiol. 2011;173(2):127-135.
245. Miller MA, Viboud C, Balinska M, Simonsen L. The signature features
of influenza pandemics–implications for policy. N Engl J Med.2009;360(25):2595-2598.
246. Neher RA, Dyrdak R, Druelle V, Hodcroft EB, Albert J. Potential
impact of seasonal forcing on a SARS-CoV-2 pandemic. Swiss Med
Wkly. 2020;150:w20224.
247. Hamner L, Dubbel P, Capron I, et al. High SARS-CoV-2 Attack Rate
Following Exposure at a Choir Practice - Skagit County, Washington,
March 2020. MMWR Morb Mortal Wkly Rep. 2020;69(19):606-610.
248. Wilson NM, Norton A, Young FP, Collins DW. Airborne transmission of
severe acute respiratory syndrome coronavirus-2 to healthcare workers: a
narrative review. Anaesthesia. 2020.
249. Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in
two Wuhan hospitals. Nature. 2020.
250. Zhang J, Litvinova M, Liang Y, et al. Changes in contact patterns
shape the dynamics of the COVID-19 outbreak in China. Science.2020:eabb8001.
251. Matrajt L, Leung T. Evaluating the Effectiveness of Social
Distancing Interventions to Delay or Flatten the Epidemic Curve of
Coronavirus Disease. Emerg Infect Dis. 2020;26(8).
252. Epidemiology Working Group for Ncip Epidemic Response CCfDC,
Prevention. [The epidemiological characteristics of an outbreak of
2019 novel coronavirus diseases (COVID-19) in China]. Zhonghua
Liu Xing Bing Xue Za Zhi. 2020;41(2):145-151.
253. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and Surface
Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J
Med. 2020;382(16):1564-1567.
254. Chen J, Qi T, Liu L, et al. Clinical progression of patients with
COVID-19 in Shanghai, China. J Infect. 2020;80(5):e1-e6.
255. Jartti T, Palomares O, Waris M, et al. Distinct regulation of
tonsillar immune response in virus infection. Allergy.2014;69(5):658-667.
256. Cai Q, Huang D, Ou P, et al. COVID-19 in a designated infectious
diseases hospital outside Hubei Province, China. Allergy.2020;n/a(n/a).
257. Riou J, Althaus CL. Pattern of early human-to-human transmission of
Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020.Euro Surveill. 2020;25(4).
258. Endo A, Abbott S, Kucharski AJ, Funk S. Estimating the
overdispersion in COVID-19 transmission using outbreak sizes outside
China. Wellcome Open Research. 2020;5(67).
259. Studdert DM, Hall MA. Disease Control, Civil Liberties, and Mass
Testing - Calibrating Restrictions during the Covid-19 Pandemic. N
Engl J Med. 2020.
260. Ng Y, Li Z, Chua YX, et al. Evaluation of the Effectiveness of
Surveillance and Containment Measures for the First 100 Patients with
COVID-19 in Singapore - January 2-February 29, 2020. MMWR Morb
Mortal Wkly Rep. 2020;69(11):307-311.
261. Guo Y, Li Y, Monroe-Wise A, Yeung SJ, Huang Y. A dynamic
residential community-based quarantine strategy: China’s experience in
fighting COVID-19. Infect Control Hosp Epidemiol. 2020:1.
262. Licari A, Votto M, Brambilla I, et al. Allergy and asthma in
children and adolescents during the COVID outbreak: what we know and how
we could prevent allergy and asthma flares? Allergy. n/a(n/a).
263. Sotgiu G, Gerli AG, Centanni S, et al. Advanced forecasting of
SARS-CoV-2-related deaths in Italy, Germany, Spain, and New York State.Allergy. 2020;n/a(n/a).
264. Yasaka TM, Lehrich BM, Sahyouni R. Peer-to-Peer Contact Tracing:
Development of a Privacy-Preserving Smartphone App. JMIR Mhealth
Uhealth. 2020;8(4):e18936.
265. Parker MJ, Fraser C, Abeler-Dorner L, Bonsall D. Ethics of
instantaneous contact tracing using mobile phone apps in the control of
the COVID-19 pandemic. J Med Ethics. 2020.
266. Stampfli MR, Anderson GP. How cigarette smoke skews immune
responses to promote infection, lung disease and cancer. Nat Rev
Immunol. 2009;9(5):377-384.
267. Patanavanich R, Glantz SA. Smoking is Associated with COVID-19
Progression: A Meta-Analysis. medRxiv.2020:2020.2004.2013.20063669.
268. Szabo G, Saha B. Alcohol’s Effect on Host Defense. Alcohol
Res. 2015;37(2):159-170.
269. Pang M, Bala S, Kodys K, Catalano D, Szabo G. Inhibition of TLR8-
and TLR4-induced Type I IFN induction by alcohol is different from its
effects on inflammatory cytokine production in monocytes. BMC
Immunol. 2011;12:55.
270. Simonnet A, Chetboun M, Poissy J, et al. High prevalence of obesity
in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
requiring invasive mechanical ventilation. Obesity (Silver
Spring). 2020.
271. Campagna M, Rivas C. Antiviral activity of resveratrol.Biochem Soc Trans. 2010;38(Pt 1):50-53.
272. Ellenbogen Y, Jimenez-Saiz R, Spill P, Chu DK, Waserman S, Jordana
M. The Initiation of Th2 Immunity Towards Food Allergens. Int J
Mol Sci. 2018;19(5).
273. Jimenez-Saiz R, Ellenbogen Y, Koenig JFE, et al. IgG1(+) B-cell
immunity predates IgE responses in epicutaneous sensitization to foods.Allergy. 2019;74(1):165-175.
274. Wang M, Tan G, Eljaszewicz A, et al. Laundry detergents and
detergent residue after rinsing directly disrupt tight junction barrier
integrity in human bronchial epithelial cells. J Allergy Clin
Immunol. 2019;143(5):1892-1903.
275. Agache I, Miller R, Gern JE, et al. Emerging concepts and
challenges in implementing the exposome paradigm in allergic diseases
and asthma: a Practall document. Allergy. 2019;74(3):449-463.
276. Garcia-Alvarez L, Fuente-Tomas L, Saiz PA, Garcia-Portilla MP,
Bobes J. Will changes in alcohol and tobacco use be seen during the
COVID-19 lockdown? Adicciones. 2020;32(2):85-89.
277. Shen C, Wang Z, Zhao F, et al. Treatment of 5 Critically Ill
Patients With COVID-19 With Convalescent Plasma. JAMA. 2020.
278. Zhang B, Liu S, Tan T, et al. Treatment With Convalescent Plasma
for Critically Ill Patients With Severe Acute Respiratory Syndrome
Coronavirus 2 Infection. Chest. 2020.
279. Ahn JY, Sohn Y, Lee SH, et al. Use of Convalescent Plasma Therapy
in Two COVID-19 Patients with Acute Respiratory Distress Syndrome in
Korea. J Korean Med Sci. 2020;35(14):e149.
280. Ye M, Fu D, Ren Y, et al. Treatment with convalescent plasma for
COVID-19 patients in Wuhan, China. J Med Virol. 2020;n/a(n/a).
281. Zeng QL, Yu ZJ, Gou JJ, et al. Effect of Convalescent Plasma
Therapy on Viral Shedding and Survival in COVID-19 Patients. J
Infect Dis. 2020.