References
Bargmann B.O.R., Laxalt A.M., ter Riet B., van Schooten B., Merquiol E.,
Testerink C., Haring M.A., Bartels D. & Munnik T. (2009). Multiple PLDs
required for high salinity and water deficit tolerance in plants.Plant and Cell Physiology , 50, 78-89.
Bradshaw H.D., Jr. (2005). Mutations in CAX1 produce phenotypes
characteristic of plants tolerant to serpentine soils. New
Phytologist , 167, 81-88.
Caballero F., Botella M.A., Rubio L., Fernandez J.A., Martinez V. &
Rubio F. (2012). A Ca2+-sensitive system mediates
low-affinity K+ uptake in the absence of AKT1 in
Arabidopsis plants. Plant and Cell Physiology , 53, 2047-2059.
Clough S.J. & Bent A.F. (1998). Floral dip: a simplified method forAgrobacterium -mediated transformation of Arabidopsis
thaliana . Plant Journal , 16, 735-743.
Conn S.J., Conn V., Tyerman S.D., Kaiser B.N., Leigh R.A. & Gilliham M.
(2011). Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are
important for magnesium partitioning within Arabidopsis thalianamesophyll vacuoles. New Phytologist , 190, 583-594.
Coskun D., Britto D.T. & Kronzucker H.J. (2014). The physiology of
channel-mediated K+ acquisition in roots of higher
plants. Physiologia Plantarum , 151, 305-312.
deVrije T. & Munnik T. (1997). Activation of phospholipase D by
calmodulin antagonists and mastoparan in carnation petals. Journal
of Experimental Botany , 48, 1631-1637.
Diem B. & Godbold D.L. (1993). Potassium, calcium and magnesium
antagonism in clones of Populus trichocarpa . Plant and
Soil , 155, 411-414.
Ding Y., Luo W. & Xu G. (2006). Characterisation of magnesium nutrition
and interaction of magnesium and potassium in rice. Annals of
Applied Biology , 149, 111-123.
Fageria V.D. (2001). Nutrient interaction in crop plants. Journal
of Plant Nutrition , 24, 1269-1290.
Fan L., Zheng S.Q., Cui D.C. & Wang X.M. (1999). Subcellular
distribution and tissue expression of phospholipase D, D b, and D g in
Arabidopsis. Plant Physiology , 119, 1371-1378.
Guo K.M., Babourina O., Christopher D.A., Borsic T. & Rengel Z. (2010).
The cyclic nucleotide-gated channel AtCNGC10 transports
Ca2+ and Mg2+ in Arabidopsis.Physiologia Plantarum , 139, 303-312.
Guo L., Mishra G., Taylor K. & Wang X. (2011). Phosphatidic acid binds
and stimulates Arabidopsis sphingosine kinases. Jounal of
Biological Chemistry , 286, 13336-13345.
Guo W. (2017) Magnesium homeostasis mechanisms and magnesium use
efficiency in plants. In: Plant Macronutrient Use Efficiency , pp.
197-213.
Guo W., Cong Y., Hussain N., Wang Y., Liu Z., Jiang L., Liang Z. & Chen
K. (2014). The remodeling of seedling development in response to
long-term magnesium toxicity and regulation by ABA-DELLA signaling in
Arabidopsis. Plant Cell Physiology , 55, 1713-1726.
Guo W.L., Nazim H., Liang Z.S. & Yang D.F. (2016). Magnesium deficiency
in plants: An urgent problem. Crop Journal , 4, 83-91.
Held K., Pascaud F., Eckert C., Gajdanowicz P., Hashimoto K.,
Corratgé-Faillie C., Offenborn J.N., Lacombe B., Dreyer I., Thibaud
J.-B. & Kudla J. (2011). Calcium-dependent modulation and plasma
membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6
calcium sensor/protein kinase complex. Cell Research , 21,
1116-1130.
Hermans C., Conn S.J., Chen J., Xiao Q. & Verbruggen N. (2013). An
update on magnesium homeostasis mechanisms in plants.Metallomics , 5, 1170-1183.
Hite R.K., Butterwick J.A. & MacKinnon R. (2014). Phosphatidic acid
modulation of Kv channel voltage sensor function. Elife , 3,
eLife.04366.
Hoagland D.R. & Arnon D.I. (1950). The water-culture method for growing
plants without soil. California Agricultural Experiment Station
Circular , 347, 1-39.
Hong Y., Zhao J., Guo L., Kim S.-C., Deng X., Wang G., Zhang G., Li M.
& Wang X. (2016). Plant phospholipases D and C and their diverse
functions in stress responses. Progress in Lipid Research , 62,
55-74.
Hong Y., Zheng S. & Wang X. (2008). Dual functions of phospholipase Dα1
in plant response to drought. Molecular Plant , 1, 262-269.
Hong Y.Y., Devaiah S.P., Bahn S.C., Thamasandra B.N., Li M.Y., Welti R.
& Wang X.M. (2009). Phospholipase Dε and phosphatidic acid enhance
Arabidopsis nitrogen signaling and growth. Plant Journal , 58,
376-387.
Horie T., Brodsky D.E., Costa A., Kaneko T., Lo Schiavo F., Katsuhara M.
& Schroeder J.I. (2011). K+ transport by the OsHKT2;4
transporter from rice with atypical Na+ transport
properties and competition in permeation of K+ over
Mg2+ and Ca2+ ions. Plant
Physiology , 156, 1493-1507.
Hou Q., Ufer G. & Bartels D. (2016). Lipid signalling in plant
responses to abiotic stress. Plant, Cell and Environment , 39,
1029-1048.
Huber D.M. & Jones J.B. (2013). The role of magnesium in plant disease.Plant and Soil , 368, 73-85.
Chen H., Yu X., Zhang X., Yang L., Huang X., Zhang J., Pritchard H.W. &
Li W. (2018a). Phospholipase Dα1-mediated phosphatidic acid change is a
key determinant of desiccation-induced viability loss in seeds.Plant Cell and Environment , 41, 50-63.
Chen Z.C., Peng W.T., Li J. & Liao H. (2018b). Functional dissection
and transport mechanism of magnesium in plants. Seminars in Cell
and Developmental Biology , 74, 142-152.
Cheng N.H., Pittman J.K., Barkla B.J., Shigaki T. & Hirschi K.D.
(2003). The Arabidopsis cax1 mutant exhibits impaired ion
homeostasis, development, and hormonal responses and reveals interplay
among vacuolar transporters. Plant Cell , 15, 347-364.
Choudhury S.R. & Pandey S. (2017). Phosphatidic acid binding inhibits
RGS1 activity to affect specific signaling pathways in Arabidopsis.Plant Journal , 90, 466-477.
Janda M., Lamparova L., Zubikova A., Burketova L., Martinec J. &
Krckova Z. (2019). Temporary heat stress suppresses PAMP-triggered
immunity and resistance to bacteria in Arabidopsis thaliana .Molecular Plant Pathology , 20, 1005-1012.
Katagiri T., Takahashi S. & Shinozaki K. (2001). Involvement of a novelArabidopsis phospholipase D, AtPLDδ, in dehydration-inducible
accumulation of phosphatidic acid in stress signalling. Plant
Journal , 26, 595-605.
Kolesnikov Y.S., Nokhrina K.P., Kretynin S.V., Volotovski I.D., Martinec
J., Romanov G.A. & Kravets V.S. (2012). Molecular structure of
phospholipase D and regulatory mechanisms of its activity in plant and
animal cells. Biochemistry (Moscow) , 77, 1-14.
Krckova Z., Kocourkova D., Danek M., Brouzdova J., Pejchar P., Janda M.,
Pokotylo I., Ott P.G., Valentova O. & Martinec J. (2018). TheArabidopsis thaliana non-specific phospholipase C2 is involved in
the response to Pseudomonas syringae attack. Annals of
Botany , 121, 297-310.
Lerchner A., Mansfeld J., Kuppe K. & Ulbrich-Hofmann R. (2006). Probing
conserved amino acids in phospholipase D (Brassica oleracea var.
capitata) for their importance in hydrolysis and transphosphatidylation
activity. Protein Engineering, Design & Selection , 19, 443-452.
Li L., Kim B.-G., Cheong Y.H., Pandey G.K. & Luan S. (2006). A
Ca2+ signaling pathway regulates a
K+ channel for low-K response in Arabidopsis .Proceedings of the National Academy of Sciences of the United
States of America , 103, 12625-12630.
Li L., Tutone A.F., Drummond R.D., Gardner R.C. & Luan S. (2001). A
novel family of magnesium transport genes in Arabidopsis. Plant
Cell , 13, 2761-2775.
Liu L.L., Ren H.M., Chen L.Q., Wang Y. & Wu W.H. (2013). A protein
kinase, calcineurin B-Like protein-interacting protein kinase9,
interacts with calcium sensor calcineurin B-Like protein3 and regulates
potassium homeostasis under low-potassium stress in Arabidopsis.Plant Physiology , 161, 266-277.
Maathuis F.J.M. & Amtmann A. (1999). K+ nutrition and
Na+ toxicity: The basis of cellular
K+/Na+ ratios. Annals of
Botany , 84, 123-133.
McLoughlin F., Arisz S.A., Dekker H.L., Kramer G., de Koster C.G.,
Haring M.A., Munnik T. & Testerink C. (2013). Identification of novel
candidate phosphatidic acid-binding proteins involved in the salt-stress
response of Arabidopsis thaliana roots. Biochemical
Journal , 450, 573-581.
McLoughlin F., Galvan-Ampudia C.S., Julkowska M.M., Caarls L., van der
Does D., Laurière C., Munnik T., Haring M.A. & Testerink C. (2012). The
Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in
maintenance of root system architecture during salt stress. Plant
Journal , 72, 436-449.
Mengutay M., Ceylan Y., Kutman U.B. & Cakmak I. (2013). Adequate
magnesium nutrition mitigates adverse effects of heat stress on maize
and wheat. Plant and Soil , 368, 57-72.
Mishra G., Zhang W., Deng F., Zhao J. & Wang X. (2006). A bifurcating
pathway directs abscisic acid effects on stomatal closure and opening in
Arabidopsis. Science , 312, 264-266.
Mogami J., Fujita Y., Yoshida T., Tsukiori Y., Nakagami H., Nomura Y.,
Fujiwara T., Nishida S., Yanagisawa S., Ishida T., Takahashi F.,
Morimoto K., Kidokoro S., Mizoi J., Shinozaki K. & Yamaguchi-Shinozaki
K. (2015). Two distinct families of protein kinases are required for
plant growth under high external Mg2+ concentrations
in Arabidopsis. Plant Physiology , 167, 1039-1057.
Nakamura S., Mano S., Tanaka Y., Ohnishi M., Nakamori C., Araki M., Niwa
T., Nishimura M., Kaminaka H., Nakagawa T., Sato Y. & Ishiguro S.
(2010). Gateway Binary Vectors with the Bialaphos Resistance Gene,bar , as a Selection Marker for Plant Transformation.BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY , 74, 1315-1319.
Nieves-Cordones M., Martinez V., Benito B. & Rubio F. (2016).
Comparison between Arabidopsis and Rice for main Pathways of
K+ and Na+ uptake by roots.Frontiers in Plant Science , 7, 992.
Niu Y., Chen P., Zhang Y., Wang Z., Hu S., Jin G., Tang C. & Guo L.
(2018). Natural variation among Arabidopsis thaliana accessions
in tolerance to high magnesium supply. Scientific Reports , 8,
13640.
Novák D., Vadovič P., Ovečka M., Šamajová O., Komis G., Colcombet J. &
Šamaj J. (2018). Gene expression pattern and protein localization of
Arabidopsis phospholipase Dα1 revealed by advanced light-sheet and
super-resolution microscopy. Frontiers in Plant Science , 9.
Oda K., Kamiya T., Shikanai Y., Shigenobu S., Yamaguchi K. & Fujiwara
T. (2016). The Arabidopsis Mg transporter, MRS2-4, is essential for Mg
homeostasis under both low and high Mg conditions. Plant Cell
Physiology , 57, 754-763.
Pandey G.K., Cheong Y.H., Kim B.G., Grant J.J., Li L.G. & Luan S.
(2007). CIPK9: a calcium sensor-interacting protein kinase required for
low-potassium tolerance in Arabidopsis. Cell Research , 17,
411-421.
Pathak A.N. & Kalra Y.P. (1971). Antagonism between potassium, calcium
and magnesium in several varieties of hybrid corn. Zeitschrift für
Pflanzenernährung und Bodenkunde , 130, 118-124.
Pejchar P., Potocký M., Novotná Z., Veselková Š., Kocourková D.,
Valentová O., Schwarzerová K. & Martinec J. (2010). Aluminium ions
inhibit the formation of diacylglycerol generated by
phosphatidylcholine-hydrolysing phospholipase C in tobacco cells.New Phytologist , 188, 150-160.
Pilot G., Lacombe B., Gaymard F., Cherel I., Boucherez J., Thibaud J.B.
& Sentenac H. (2001). Guard cell inward K+ channel
activity in arabidopsis involves expression of the twin channel subunits
KAT1 and KAT2. Journal of Biological Chemistry , 276, 3215-3221.
Pokotylo I., Kravets V., Martinec J. & Ruelland E. (2018). The
phosphatidic acid paradox: Too many actions for one molecule class?
Lessons from plants. Progress in Lipid Research , 71, 43-53.
Pyo Y.J., Gierth M., Schroeder J.I. & Cho M.H. (2010). High-affinity
K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital
for seedling establishment and postgermination growth under
low-potassium conditions. Plant Physiology , 153, 863-875.
Ragel P., Ródenas R., García-Martín E., Andrés Z., Villalta I.,
Nieves-Cordones M., Rivero R.M., Martínez V., Pardo J.M., Quintero F.J.
& Rubio F. (2015). The CBL-interacting protein kinase CIPK23 regulates
HAK5-mediated high-affinity K+ uptake in Arabidopsis
roots. Plant Physiology , 169, 2863-2873.
Rubio F., Aleman F., Nieves-Cordones M. & Martinez V. (2010). Studies
on Arabidopsis athak5 , atakt1 double mutants disclose the
range of concentrations at which AtHAK5, AtAKT1 and unknown systems
mediate K+ uptake. Physiologia Plantarum , 139,
220-228.
Ruelland E., Kravets V., Derevyanchuk M., Martinec J., Zachowski A. &
Pokotylo I. (2015). Role of phospholipid signalling in plant
environmental responses. Environmental And Experimental Botany ,
114, 129-143.
Santa-Maria G.E., Oliferuk S. & Moriconi J.I. (2018). KT-HAK-KUP
transporters in major terrestrial photosynthetic organisms: A twenty
years tale. Journal of Plant Physiology , 226, 77-90.
Senbayram M., Gransee A., Wahle V. & Thiel H. (2015). Role of magnesium
fertilisers in agriculture: plant–soil continuum. Crop and
Pasture Science , 66, 1219-1229.
Shabala S. & Hariadi Y. (2005). Effects of magnesium availability on
the activity of plasma membrane ion transporters and light-induced
responses from broad bean leaf mesophyll. Planta , 221, 56-65.
Shaul O., Hilgemann D.W., de-Almeida-Engler J., Van Montagu M., Inze D.
& Galili G. (1999). Cloning and characterization of a novel
Mg2+/H+ exchanger. EMBO
Journal , 18, 3973-3980.
Shen L., Tian Q., Yang L., Zhang H., Shi Y., Shen Y., Zhou Z., Wu Q.,
Zhang Q. & Zhang W. (2020). Phosphatidic acid directly binds with rice
potassium channel OsAKT2 to inhibit its activity. Plant Journal ,
102, 649-665.
Sun Y., Kong X., Li C., Liu Y. & Ding Z. (2015). Potassium retention
under salt stress is associated with natural variation in salinity
tolerance among Arabidopsis a ccessions. PLoS ONE , 10,
e0124032-e0124032.
Sung T.C., Roper R.L., Zhang Y., Rudge S.A., Temel R., Hammond S.M.,
Morris A.J., Moss B., Engebrecht J. & Frohman M.A. (1997). Mutagenesis
of phospholipase D defines a superfamily including a trans -Golgi
viral protein required for poxvirus pathogenicity. EMBO Journal ,
16, 4519-4530.
Takáč T., Vadovič P., Pechan T., Luptovčiak I., Šamajová O. & Šamaj J.
(2016). Comparative proteomic study of Arabidopsis mutants mpk4and mpk6 . Scientific Reports , 6, 28306.
Tang H.X., Vasconcelos A.C. & Berkowitz G.A. (1996). Physical
association of KAB1 with plant K+ channel α subunits.Plant Cell , 8, 1545-1553.
Tang R.J. & Luan S. (2017). Regulation of calcium and magnesium
homeostasis in plants: from transporters to signaling network.Current Opinion in Plant Biology , 39, 97-105.
Tang R.J., Zhao F.G., Garcia V.J., Kleist T.J., Yang L., Zhang H.X. &
Luan S. (2015). Tonoplast CBL-CIPK calcium signaling network regulates
magnesium homeostasis in Arabidopsis. Proceedings of the National
Academy of Sciences , 112, 3134-3139.
Testerink C. & Munnik T. (2005). Phosphatidic acid: a multifunctional
stress signaling lipid in plants. Trends in Plant Science , 10,
368-375.
Umezawa T., Sugiyama N., Takahashi F., Anderson J.C., Ishihama Y., Peck
S.C. & Shinozaki K. (2013). Genetics and phosphoproteomics reveal a
protein phosphorylation network in the abscisic acid signaling pathway
in Arabidopsis thaliana . Science Signaling , 6, rs8.
Vergnolle C., Vaultier M.N., Taconnat L., Renou J.P., Kader J.C.,
Zachowski A. & Ruelland E. (2005). The cold-induced early activation of
phospholipase C and D pathways determines the response of two distinct
clusters of genes in Arabidopsis cell suspensions. Plant
Physiology , 139, 1217-1233.
Visscher A.M., Paul A.L., Kirst M., Guy C.L., Schuerger A.C. & Ferl
R.J. (2010). Growth performance and root transcriptome remodeling of
Arabidopsis in response to Mars-like levels of magnesium sulfate.PLoS ONE , 5, e12348.
Wang C., Zien C.A., Afitlhile M., Welti R., Hildebrand D.F. & Wang X.
(2000). Involvement of phospholipase D in wound-induced accumulation of
jasmonic acid in Arabidopsis. Plant Cell , 12, 2237-2246.
Wang X.M., Guo L., Wang G.L. & Li M.Y. (2014) PLD: Phospholipase Ds in
Plant Signaling. In: Phospholipases in Plant Signaling (ed X.
Wang), pp. 3-26. Springer-Verlag Berlin, Berlin.
Wang Z., Hassan M.U., Nadeem F., Wu L., Zhang F. & Li X. (2019).
Magnesium fertilization improves crop yield in most production systems:
A Meta-analysis. Front in Plant Science , 10, 1727.
Yamanaka T., Nakagawa Y., Mori K., Nakano M., Imamura T., Kataoka H.,
Terashima A., Iida K., Kojima I., Katagiri T., Shinozaki K. & Iida H.
(2010). MCA1 and MCA2 that mediate Ca2+ uptake have
distinct and overlapping roles in Arabidopsis. Plant Physiology ,
152, 1284-1296.
Yan Y.W., Mao D.D., Yang L., Qi J.L., Zhang X.X., Tang Q.L., Li Y.P.,
Tang R.J. & Luan S. (2018). Magnesium transporter MGT6 plays an
essential role in maintaining magnesium homeostasis and regulating high
magnesium tolerance in Arabidopsis. Frontiers in Plant Science ,
9, 274.
Yang Y., Tang R.J., Mu B., Ferjani A., Shi J., Zhang H., Zhao F., Lan
W.Z. & Luan S. (2018). Vacuolar proton pyrophosphatase is required for
high magnesium tolerance in Arabidopsis . International
Journal of Molecular Sciences , 19, 3617.
Yao H.Y. & Xue H.W. (2018). Phosphatidic acid plays key roles
regulating plant development and stress responses. Journal of
Integrative Plant Biology , 60, 851-863.
Zhang L., Li G., Wang M., Di D., Sun L., Kronzucker H.J. & Shi W.
(2018). Excess iron stress reduces root tip zone growth through nitric
oxide-mediated repression of potassium homeostasis in Arabidopsis.New Phytologist , 219, 259-274.
Zhang L., Wen A., Wu X., Pan X., Wu N., Chen X., Chen Y., Mao D., Chen
L. & Luan S. (2019). Molecular identification of the magnesium
transport gene family in Brassica napus . Plant Physiology
and Biochemistry , 136, 204-214.
Zhang Q., Lin F., Mao T.L., Nie J.N., Yan M., Yuan M. & Zhang W.H.
(2012). Phosphatidic acid regulates microtubule organization by
interacting with MAP65-1 in response to salt stress in Arabidopsis.Plant Cell , 24, 4555-4576.
Zhang W.H., Qin C.B., Zhao J. & Wang X.M. (2004). Phospholipase
Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and
regulates abscisic acid signaling. Proceedings of the National
Academy of Sciences of the United States of America , 101, 9508-9513.
Zhang Y.Y., Zhu H.Y., Zhang Q., Li M.Y., Yan M., Wang R., Wang L.L.,
Welti R., Zhang W.H. & Wang X.M. (2009). Phospholipase Dα1 and
phosphatidic acid regulate NADPH oxidase activity and production of
reactive oxygen species in ABA-mediated stomatal closure inArabidopsis . Plant Cell , 21, 2357-2377.
Zhao J. (2015). Phospholipase D and phosphatidic acid in plant defence
response: from protein-protein and lipid-protein interactions to hormone
signalling. Journal of Experimental Botany , 66, 1721-1736.
Zhao J., Wang C., Bedair M., Welti R., W. Sumner L., Baxter I. & Wang
X. (2011). Suppression of phospholipase Dγs confers increased aluminum
resistance in Arabidopsis thaliana . PLoS ONE , 6.
Zhao J. & Wang X.M. (2004). Arabidopsis phospholipase Da1
interacts with the heterotrimeric G-protein a-subunit through a motif
analogous to the DRY motif in G-protein-coupled receptors. Journal
of Biological Chemistry , 279, 1794-1800.