REFERENCES
Bernier, M.-H., Levy, G. J., Fine, P., & Borisover, M. (2013). Organic
matter composition in soils irrigated with treated wastewater: FT-IR
spectroscopic analysis of bulk soil samples. Geoderma, 209-210 ,
233-240. doi:https://doi.org/10.1016/j.geoderma.2013.06.017
Calderón, F., Haddix, M., Conant, R., Magrini-Bair, K., & Paul, E.
(2013). Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy
as a Method of Characterizing Changes in Soil Organic Matter. Soil
Science Society of America Journal 77 (5), 1591-1600.
doi:10.2136/sssaj2013.04.0131
Daliakopoulos, I. N., Tsanis, I. K., Koutroulis, A., Kourgialas, N. N.,
Varouchakis, A. E., Karatzas, G. P., & Ritsema, C. J. (2016). The
threat of soil salinity: A European scale review. Science of The
Total Environment, 573 , 727-739.
doi:https://doi.org/10.1016/j.scitotenv.2016.08.177
de la Paix, M. J., Lanhai, L., Xi, C., Varenyam, A., Nyongesah, M. J.,
& Habiyaremye, G. (2013). Physicochemical properties of saline soils
and aeolian dust. Land Degradation & Development, 24 (6),
539-547. doi:10.1002/ldr.1148
de Oliveira, D. M., Fontes, L. M., & Pasquini, C. (2019). Comparing
laser induced breakdown spectroscopy, near infrared spectroscopy, and
their integration for simultaneous multi-elemental determination of
micro- and macronutrients in vegetable samples. Analytica Chimica
Acta, 1062 , 28-36. doi:https://doi.org/10.1016/j.aca.2019.02.043
Du, C., Goyne, K. W., Miles, R. J., & Zhou, J. (2014). A 1915–2011
microscale record of soil organic matter under wheat cultivation using
FTIR-PAS depth-profiling. Agronomy for Sustainable Development,
34 (4), 803-811. doi:10.1007/s13593-013-0201-6
Duarte, R. M. B. O., Freire, S. M. S. C., & Duarte, A. C. (2015).
Investigating the water-soluble organic functionality of urban aerosols
using two-dimensional correlation of solid-state 13C NMR and FTIR
spectral data. Atmospheric Environment, 116 , 245-252.
doi:https://doi.org/10.1016/j.atmosenv.2015.06.043
Farifteh, J., van der Meer, F., van der Meijde, M., & Atzberger, C.
(2008). Spectral characteristics of salt-affected soils: A laboratory
experiment. Geoderma, 145 (3), 196-206.
doi:https://doi.org/10.1016/j.geoderma.2008.03.011
Forouzangohar, M., Cozzolino, D., Smernik, R. J., Baldock, J. A.,
Forrester, S. T., Chittleborough, D. J., & Kookana, R. S. (2013). Using
the power of C-13 NMR to interpret infrared spectra of soil organic
matter: A two-dimensional correlation spectroscopy approach.Vibrational Spectroscopy, 66 , 76-82.
doi:https://doi.org/10.1016/j.vibspec.2013.02.002
Ilhardt, P. D., Nuñez, J. R., Denis, E. H., Rosnow, J. J., Krogstad, E.
J., Renslow, R. S., & Moran, J. J. (2019). High-resolution elemental
mapping of the root-rhizosphere-soil continuum using laser-induced
breakdown spectroscopy (LIBS). Soil Biology and Biochemistry,
131 , 119-132. doi:https://doi.org/10.1016/j.soilbio.2018.12.029
Kim, G., Kwak, J., Kim, K.-R., Lee, H., Kim, K.-W., Yang, H., & Park,
K. (2013). Rapid detection of soils contaminated with heavy metals and
oils by laser induced breakdown spectroscopy (LIBS). Journal of
Hazardous Materials, 263 , 754-760.
doi:https://doi.org/10.1016/j.jhazmat.2013.10.041
Kira, O., Linker, R., & Shaviv, A. (2014). A Novel Method Combining
FTIR-ATR Spectroscopy and Stable Isotopes to Investigate the Kinetics of
Nitrogen Transformations in Soils. Soil Science Society of America
Journal, 78 (1), 54. doi:10.2136/sssaj2013.08.0358dgs
Kleber, M., & Johnson, M. G. (2010). Chapter 3 - Advances in
understanding the molecular structure of soil organic matter:
implications for interactions in the environment. In D. L. Sparks (Ed.),Advances in Agronomy (Vol. 106, pp. 77-142): Academic Press.
Klein, C., & Hurlbut Jr, C. J. I., New York. (1999). Manual of
Mineralogy. John Wiley & Sons.
Kramida, A., Ralchenko, Yu., Reader, J. and NIST ASD Team. (2018). NIST
Atomic Spectra Database (version 5.6.1),. National Institute of
Standards and Technology . doi:https://doi.org/10.18434/T4W30F
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil
organic matter. Nature, 528 , 60. doi:10.1038/nature16069
Linker, R., Shmulevich, I., Kenny, A., & Shaviv, A. (2005). Soil
identification and chemometrics for direct determination of nitrate in
soils using FTIR-ATR mid-infrared spectroscopy. Chemosphere,
61 (5), 652-658. doi:10.1016/j.chemosphere.2005.03.034
Liu, W., Xu, X., Lu, F., Cao, J., Li, P., Fu, T., Chen, G., & Su, Q.
(2018). Three-dimensional mapping of soil salinity in the southern
coastal area of Laizhou Bay, China. 29 (10), 3772-3782.
doi:10.1002/ldr.3077
Ma, F., Du, C. W., Zhou, J. M., & Shen, Y. Z. (2019). Investigation of
soil properties using different techniques of mid-infrared spectroscopy.European Journal of Soil Science, 70 (1), 96-106.
doi:10.1111/ejss.12741
Madejová, J. (2003). FTIR techniques in clay mineral studies.Vibrational Spectroscopy, 31 (1), 1-10.
doi:https://doi.org/10.1016/S0924-2031(02)00065-6
Madejová, J., & Komadel, P. (2001). Baseline studies of the clay
minerals society source clays: infrared methods. Clays and Clay
Minerals, 49 (5), 372-373.
Movasaghi, Z., Rehman, S., & ur Rehman, D. I. (2008). Fourier Transform
Infrared (FTIR) Spectroscopy of Biological Tissues. Applied
Spectroscopy Reviews, 43 (2), 134-179. doi:10.1080/05704920701829043
Nayak, P. S., & Singh, B. K. (2007). Instrumental characterization of
clay by XRF, XRD and FTIR. Bulletin of Materials Science, 30 (3),
235-238. doi:10.1007/s12034-007-0042-5
Noda, I. (2018). Advances in Two-Dimensional Correlation Spectroscopy
(2DCOS). In Frontiers and Advances in Molecular Spectroscopy (pp.
47-75).
Noda, I., & Ozaki, Y. (2005). Two-dimensional correlation
spectroscopy: applications in vibrational and optical spectroscopy :
John Wiley & Sons.
Pathak, H., & Rao, D. L. N. (1998). Carbon and nitrogen mineralization
from added organic matter in saline and alkali soils. Soil Biology
and Biochemistry, 30 (6), 695-702.
doi:https://doi.org/10.1016/S0038-0717(97)00208-3
Peltre, C., Bruun, S., Du, C., Thomsen, I. K., & Jensen, L. S. (2014).
Assessing soil constituents and labile soil organic carbon by
mid-infrared photoacoustic spectroscopy. Soil Biology and
Biochemistry, 77 , 41-50.
doi:https://doi.org/10.1016/j.soilbio.2014.06.022
Ruan, Q.-X., & Zhou, P. (2008). Sodium ion effect on silk fibroin
conformation characterized by solid-state NMR and generalized 2D
NMR–NMR correlation. Journal of Molecular Structure, 883-884 ,
85-90. doi:https://doi.org/10.1016/j.molstruc.2007.11.055
Rühlmann, M., Büchele, D., Ostermann, M., Bald, I., & Schmid, T.
(2018). Challenges in the quantification of nutrients in soils using
laser-induced breakdown spectroscopy – A case study with calcium.Spectrochimica Acta Part B: Atomic Spectroscopy, 146 , 115-121.
doi:https://doi.org/10.1016/j.sab.2018.05.003
Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation
of Data by Simplified Least Squares Procedures. Analytical
Chemistry, 36 (8), 1627-1639. doi:10.1021/ac60214a047
Sidike, A., Zhao, S., & Wen, Y. (2014). Estimating soil salinity in
Pingluo County of China using QuickBird data and soil reflectance
spectra. International Journal of Applied Earth Observation and
Geoinformation, 26 , 156-175.
doi:https://doi.org/10.1016/j.jag.2013.06.002
Singh, K. (2016). Microbial and Enzyme Activities of Saline and Sodic
Soils. Land Degradation & Development, 27 (3), 706-718.
doi:10.1002/ldr.2385
Six, J., Paustian, K., Elliott, E. T., & Combrink, C. (2000). Soil
Structure and Organic Matter I. Distribution of Aggregate-Size Classes
and Aggregate-Associated Carbon. Soil Science Society of America
Journal, 64 (2), 681-689. doi:10.2136/sssaj2000.642681x
Smidt, E., & Meissl, K. (2007). The applicability of Fourier transform
infrared (FT-IR) spectroscopy in waste management. Waste
Management, 27 (2), 268-276.
doi:https://doi.org/10.1016/j.wasman.2006.01.016
Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., Macdonald,
L. M., & McLaughlin, M. J. (2013). The Performance of Visible, Near-,
and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil
Physical, Chemical, and Biological Properties. Applied
Spectroscopy Reviews, 49 (2), 139-186. doi:10.1080/05704928.2013.811081
Sparks, D. L. (1996). Methods of Soil Analysis. Part 3 , SSSA Book
Series, Madison.
Su, Y. Z., Wang, X. F., Yang, R., & Lee, J. (2010). Effects of sandy
desertified land rehabilitation on soil carbon sequestration and
aggregation in an arid region in China. Journal of Environmental
Management, 91 (11), 2109-2116.
doi:https://doi.org/10.1016/j.jenvman.2009.12.014
Sun, F., Polizzotto, M. L., Guan, D., Wu, J., Shen, Q., Ran, W., Wang,
B., & Yu, G. (2017). Exploring the interactions and binding sites
between Cd and functional groups in soil using two-dimensional
correlation spectroscopy and synchrotron radiation based
spectromicroscopies. Journal of Hazardous Materials, 326 , 18-25.
doi:https://doi.org/10.1016/j.jhazmat.2016.12.019
Sun, F., Yu, G., Polizzotto, M. L., Ran, W., & Shen, Q. (2019). Toward
understanding the binding of Zn in soils by two-dimensional correlation
spectroscopy and synchrotron-radiation-based spectromicroscopies.Geoderma, 337 , 238-245.
doi:https://doi.org/10.1016/j.geoderma.2018.09.032
Suyanto, H., Lie, T. J., Kurniawan, K. H., Kagawa, K., & Tjia, M. O.
(2017). Practical soil analysis by laser induced breakdown spectroscopy
employing subtarget supported micro mesh as a powder sample holder.Spectrochimica Acta Part B: Atomic Spectroscopy, 137 , 59-63.
doi:10.1016/j.sab.2017.09.013
Wu, Y., Shi, X., Li, C., Zhao, S., Pen, F., & Green, T. R. (2017).
Simulation of Hydrology and Nutrient Transport in the Hetao Irrigation
District, Inner Mongolia, China. 9 (3), 169.
Xiao, J., Wen, Y., Yu, G., & Dou, S. (2018). Strategy for Microscale
Characterization of Soil Mineral-Organic Associations by
Synchrotron-Radiation-Based FTIR Technology. Soil Science Society
of America Journal, 82 (6). doi:10.2136/sssaj2018.05.0211
Xiao, Y., Zhao, G., Li, T., Zhou, X., & Li, J. (2019). Soil
salinization of cultivated land in Shandong Province, China—Dynamics
during the past 40 years. Land Degradation & Development, 30 (4),
426-436. doi:10.1002/ldr.3236
Xing, Z., Tian, K., Du, C., Li, C., Zhou, J., & Chen, Z. (2019).
Agricultural soil characterization by FTIR spectroscopy at micrometer
scales: Depth profiling by photoacoustic spectroscopy. Geoderma,
335 , 94-103. doi:https://doi.org/10.1016/j.geoderma.2018.08.003
Xu, Y., Ozaki, Y., Noda, I., & Jung, Y. M. (2018). Chapter 10 - 2D
Correlation Spectroscopy and Its Application in Vibrational and Optical
Spectroscopy. In V. P. Gupta (Ed.), Molecular and Laser
Spectroscopy (pp. 217-240): Elsevier.
Xue, J., & Ren, L. (2017). Assessing water productivity in the Hetao
Irrigation District in Inner Mongolia by an agro-hydrological model.Irrigation Science, 35 (4), 357-382. doi:10.1007/s00271-017-0542-z
Yu, G., Wu, M., Wei, G., Luo, Y., Ran, W., Wang, B., Zhang, J., & Shen,
Q. (2012). Binding of Organic Ligands with Al (III) in Dissolved Organic
Matter from Soil: Implications for Soil Organic Carbon Storage.Environmental Science & Technology, 46 (11), 6102-6109.
doi:10.1021/es3002212
Zaytsev, S. M., Krylov, I. N., Popov, A. M., Zorov, N. B., & Labutin,
T. A. (2018). Accuracy enhancement of a multivariate calibration for
lead determination in soils by laser induced breakdown spectroscopy.Spectrochimica Acta Part B: Atomic Spectroscopy, 140 , 65-72.
doi:10.1016/j.sab.2017.12.005
Zhang, H., Xiang, Y., Irving, L. J., Li, Q., & Zhou, D. (2019).
Nitrogen addition can improve seedling establishment of N-sensitive
species in degraded saline soils. Land Degradation & Development,
30 (2), 119-127. doi:10.1002/ldr.3195
Zovko, M., Romić, D., Colombo, C., Di Iorio, E., Romić, M., Buttafuoco,
G., & Castrignanò, A. (2018). A geostatistical Vis-NIR spectroscopy
index to assess the incipient soil salinization in the Neretva River
valley, Croatia. Geoderma, 332 , 60-72.
doi:https://doi.org/10.1016/j.geoderma.2018.07.005
TABLE 1 Soil properties of the total soil samples