REFERENCES
Bernier, M.-H., Levy, G. J., Fine, P., & Borisover, M. (2013). Organic matter composition in soils irrigated with treated wastewater: FT-IR spectroscopic analysis of bulk soil samples. Geoderma, 209-210 , 233-240. doi:https://doi.org/10.1016/j.geoderma.2013.06.017
Calderón, F., Haddix, M., Conant, R., Magrini-Bair, K., & Paul, E. (2013). Diffuse-Reflectance Fourier-Transform Mid-Infrared Spectroscopy as a Method of Characterizing Changes in Soil Organic Matter. Soil Science Society of America Journal 77 (5), 1591-1600. doi:10.2136/sssaj2013.04.0131
Daliakopoulos, I. N., Tsanis, I. K., Koutroulis, A., Kourgialas, N. N., Varouchakis, A. E., Karatzas, G. P., & Ritsema, C. J. (2016). The threat of soil salinity: A European scale review. Science of The Total Environment, 573 , 727-739. doi:https://doi.org/10.1016/j.scitotenv.2016.08.177
de la Paix, M. J., Lanhai, L., Xi, C., Varenyam, A., Nyongesah, M. J., & Habiyaremye, G. (2013). Physicochemical properties of saline soils and aeolian dust. Land Degradation & Development, 24 (6), 539-547. doi:10.1002/ldr.1148
de Oliveira, D. M., Fontes, L. M., & Pasquini, C. (2019). Comparing laser induced breakdown spectroscopy, near infrared spectroscopy, and their integration for simultaneous multi-elemental determination of micro- and macronutrients in vegetable samples. Analytica Chimica Acta, 1062 , 28-36. doi:https://doi.org/10.1016/j.aca.2019.02.043
Du, C., Goyne, K. W., Miles, R. J., & Zhou, J. (2014). A 1915–2011 microscale record of soil organic matter under wheat cultivation using FTIR-PAS depth-profiling. Agronomy for Sustainable Development, 34 (4), 803-811. doi:10.1007/s13593-013-0201-6
Duarte, R. M. B. O., Freire, S. M. S. C., & Duarte, A. C. (2015). Investigating the water-soluble organic functionality of urban aerosols using two-dimensional correlation of solid-state 13C NMR and FTIR spectral data. Atmospheric Environment, 116 , 245-252. doi:https://doi.org/10.1016/j.atmosenv.2015.06.043
Farifteh, J., van der Meer, F., van der Meijde, M., & Atzberger, C. (2008). Spectral characteristics of salt-affected soils: A laboratory experiment. Geoderma, 145 (3), 196-206. doi:https://doi.org/10.1016/j.geoderma.2008.03.011
Forouzangohar, M., Cozzolino, D., Smernik, R. J., Baldock, J. A., Forrester, S. T., Chittleborough, D. J., & Kookana, R. S. (2013). Using the power of C-13 NMR to interpret infrared spectra of soil organic matter: A two-dimensional correlation spectroscopy approach.Vibrational Spectroscopy, 66 , 76-82. doi:https://doi.org/10.1016/j.vibspec.2013.02.002
Ilhardt, P. D., Nuñez, J. R., Denis, E. H., Rosnow, J. J., Krogstad, E. J., Renslow, R. S., & Moran, J. J. (2019). High-resolution elemental mapping of the root-rhizosphere-soil continuum using laser-induced breakdown spectroscopy (LIBS). Soil Biology and Biochemistry, 131 , 119-132. doi:https://doi.org/10.1016/j.soilbio.2018.12.029
Kim, G., Kwak, J., Kim, K.-R., Lee, H., Kim, K.-W., Yang, H., & Park, K. (2013). Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS). Journal of Hazardous Materials, 263 , 754-760. doi:https://doi.org/10.1016/j.jhazmat.2013.10.041
Kira, O., Linker, R., & Shaviv, A. (2014). A Novel Method Combining FTIR-ATR Spectroscopy and Stable Isotopes to Investigate the Kinetics of Nitrogen Transformations in Soils. Soil Science Society of America Journal, 78 (1), 54. doi:10.2136/sssaj2013.08.0358dgs
Kleber, M., & Johnson, M. G. (2010). Chapter 3 - Advances in understanding the molecular structure of soil organic matter: implications for interactions in the environment. In D. L. Sparks (Ed.),Advances in Agronomy (Vol. 106, pp. 77-142): Academic Press.
Klein, C., & Hurlbut Jr, C. J. I., New York. (1999). Manual of Mineralogy. John Wiley & Sons.
Kramida, A., Ralchenko, Yu., Reader, J. and NIST ASD Team. (2018). NIST Atomic Spectra Database (version 5.6.1),. National Institute of Standards and Technology . doi:https://doi.org/10.18434/T4W30F
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528 , 60. doi:10.1038/nature16069
Linker, R., Shmulevich, I., Kenny, A., & Shaviv, A. (2005). Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy. Chemosphere, 61 (5), 652-658. doi:10.1016/j.chemosphere.2005.03.034
Liu, W., Xu, X., Lu, F., Cao, J., Li, P., Fu, T., Chen, G., & Su, Q. (2018). Three-dimensional mapping of soil salinity in the southern coastal area of Laizhou Bay, China. 29 (10), 3772-3782. doi:10.1002/ldr.3077
Ma, F., Du, C. W., Zhou, J. M., & Shen, Y. Z. (2019). Investigation of soil properties using different techniques of mid-infrared spectroscopy.European Journal of Soil Science, 70 (1), 96-106. doi:10.1111/ejss.12741
Madejová, J. (2003). FTIR techniques in clay mineral studies.Vibrational Spectroscopy, 31 (1), 1-10. doi:https://doi.org/10.1016/S0924-2031(02)00065-6
Madejová, J., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: infrared methods. Clays and Clay Minerals, 49 (5), 372-373.
Movasaghi, Z., Rehman, S., & ur Rehman, D. I. (2008). Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews, 43 (2), 134-179. doi:10.1080/05704920701829043
Nayak, P. S., & Singh, B. K. (2007). Instrumental characterization of clay by XRF, XRD and FTIR. Bulletin of Materials Science, 30 (3), 235-238. doi:10.1007/s12034-007-0042-5
Noda, I. (2018). Advances in Two-Dimensional Correlation Spectroscopy (2DCOS). In Frontiers and Advances in Molecular Spectroscopy (pp. 47-75).
Noda, I., & Ozaki, Y. (2005). Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy : John Wiley & Sons.
Pathak, H., & Rao, D. L. N. (1998). Carbon and nitrogen mineralization from added organic matter in saline and alkali soils. Soil Biology and Biochemistry, 30 (6), 695-702. doi:https://doi.org/10.1016/S0038-0717(97)00208-3
Peltre, C., Bruun, S., Du, C., Thomsen, I. K., & Jensen, L. S. (2014). Assessing soil constituents and labile soil organic carbon by mid-infrared photoacoustic spectroscopy. Soil Biology and Biochemistry, 77 , 41-50. doi:https://doi.org/10.1016/j.soilbio.2014.06.022
Ruan, Q.-X., & Zhou, P. (2008). Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR–NMR correlation. Journal of Molecular Structure, 883-884 , 85-90. doi:https://doi.org/10.1016/j.molstruc.2007.11.055
Rühlmann, M., Büchele, D., Ostermann, M., Bald, I., & Schmid, T. (2018). Challenges in the quantification of nutrients in soils using laser-induced breakdown spectroscopy – A case study with calcium.Spectrochimica Acta Part B: Atomic Spectroscopy, 146 , 115-121. doi:https://doi.org/10.1016/j.sab.2018.05.003
Savitzky, A., & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36 (8), 1627-1639. doi:10.1021/ac60214a047
Sidike, A., Zhao, S., & Wen, Y. (2014). Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra. International Journal of Applied Earth Observation and Geoinformation, 26 , 156-175. doi:https://doi.org/10.1016/j.jag.2013.06.002
Singh, K. (2016). Microbial and Enzyme Activities of Saline and Sodic Soils. Land Degradation & Development, 27 (3), 706-718. doi:10.1002/ldr.2385
Six, J., Paustian, K., Elliott, E. T., & Combrink, C. (2000). Soil Structure and Organic Matter I. Distribution of Aggregate-Size Classes and Aggregate-Associated Carbon. Soil Science Society of America Journal, 64 (2), 681-689. doi:10.2136/sssaj2000.642681x
Smidt, E., & Meissl, K. (2007). The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Management, 27 (2), 268-276. doi:https://doi.org/10.1016/j.wasman.2006.01.016
Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., Macdonald, L. M., & McLaughlin, M. J. (2013). The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Applied Spectroscopy Reviews, 49 (2), 139-186. doi:10.1080/05704928.2013.811081
Sparks, D. L. (1996). Methods of Soil Analysis. Part 3 , SSSA Book Series, Madison.
Su, Y. Z., Wang, X. F., Yang, R., & Lee, J. (2010). Effects of sandy desertified land rehabilitation on soil carbon sequestration and aggregation in an arid region in China. Journal of Environmental Management, 91 (11), 2109-2116. doi:https://doi.org/10.1016/j.jenvman.2009.12.014
Sun, F., Polizzotto, M. L., Guan, D., Wu, J., Shen, Q., Ran, W., Wang, B., & Yu, G. (2017). Exploring the interactions and binding sites between Cd and functional groups in soil using two-dimensional correlation spectroscopy and synchrotron radiation based spectromicroscopies. Journal of Hazardous Materials, 326 , 18-25. doi:https://doi.org/10.1016/j.jhazmat.2016.12.019
Sun, F., Yu, G., Polizzotto, M. L., Ran, W., & Shen, Q. (2019). Toward understanding the binding of Zn in soils by two-dimensional correlation spectroscopy and synchrotron-radiation-based spectromicroscopies.Geoderma, 337 , 238-245. doi:https://doi.org/10.1016/j.geoderma.2018.09.032
Suyanto, H., Lie, T. J., Kurniawan, K. H., Kagawa, K., & Tjia, M. O. (2017). Practical soil analysis by laser induced breakdown spectroscopy employing subtarget supported micro mesh as a powder sample holder.Spectrochimica Acta Part B: Atomic Spectroscopy, 137 , 59-63. doi:10.1016/j.sab.2017.09.013
Wu, Y., Shi, X., Li, C., Zhao, S., Pen, F., & Green, T. R. (2017). Simulation of Hydrology and Nutrient Transport in the Hetao Irrigation District, Inner Mongolia, China. 9 (3), 169.
Xiao, J., Wen, Y., Yu, G., & Dou, S. (2018). Strategy for Microscale Characterization of Soil Mineral-Organic Associations by Synchrotron-Radiation-Based FTIR Technology. Soil Science Society of America Journal, 82 (6). doi:10.2136/sssaj2018.05.0211
Xiao, Y., Zhao, G., Li, T., Zhou, X., & Li, J. (2019). Soil salinization of cultivated land in Shandong Province, China—Dynamics during the past 40 years. Land Degradation & Development, 30 (4), 426-436. doi:10.1002/ldr.3236
Xing, Z., Tian, K., Du, C., Li, C., Zhou, J., & Chen, Z. (2019). Agricultural soil characterization by FTIR spectroscopy at micrometer scales: Depth profiling by photoacoustic spectroscopy. Geoderma, 335 , 94-103. doi:https://doi.org/10.1016/j.geoderma.2018.08.003
Xu, Y., Ozaki, Y., Noda, I., & Jung, Y. M. (2018). Chapter 10 - 2D Correlation Spectroscopy and Its Application in Vibrational and Optical Spectroscopy. In V. P. Gupta (Ed.), Molecular and Laser Spectroscopy (pp. 217-240): Elsevier.
Xue, J., & Ren, L. (2017). Assessing water productivity in the Hetao Irrigation District in Inner Mongolia by an agro-hydrological model.Irrigation Science, 35 (4), 357-382. doi:10.1007/s00271-017-0542-z
Yu, G., Wu, M., Wei, G., Luo, Y., Ran, W., Wang, B., Zhang, J., & Shen, Q. (2012). Binding of Organic Ligands with Al (III) in Dissolved Organic Matter from Soil: Implications for Soil Organic Carbon Storage.Environmental Science & Technology, 46 (11), 6102-6109. doi:10.1021/es3002212
Zaytsev, S. M., Krylov, I. N., Popov, A. M., Zorov, N. B., & Labutin, T. A. (2018). Accuracy enhancement of a multivariate calibration for lead determination in soils by laser induced breakdown spectroscopy.Spectrochimica Acta Part B: Atomic Spectroscopy, 140 , 65-72. doi:10.1016/j.sab.2017.12.005
Zhang, H., Xiang, Y., Irving, L. J., Li, Q., & Zhou, D. (2019). Nitrogen addition can improve seedling establishment of N-sensitive species in degraded saline soils. Land Degradation & Development, 30 (2), 119-127. doi:10.1002/ldr.3195
Zovko, M., Romić, D., Colombo, C., Di Iorio, E., Romić, M., Buttafuoco, G., & Castrignanò, A. (2018). A geostatistical Vis-NIR spectroscopy index to assess the incipient soil salinization in the Neretva River valley, Croatia. Geoderma, 332 , 60-72. doi:https://doi.org/10.1016/j.geoderma.2018.07.005
TABLE 1 Soil properties of the total soil samples