References
Aiello, L.C., & Wheeler, P. (1995). The Expensive-Tissue Hypothesis.Current Anthropology , 36, 199-221.https://doi.org/10.1086/204350
Aitchison, C.W. (1987). Winter energy requirements of soricine shrews.Mammal Review , 17, 25-38.https://doi.org/10.1111/j.1365-2907.1987.tb00046.x
Ashton, K.G. (2002). Patterns of within-species body size variation of
birds: strong evidence for Bergmann’s rule. Global Ecology &
Biogeography , 11, 505–523.https://doi.org/10.1046/j.1466-822X.2002.00313.x
Ashton, K.G., Tracy, M.C., & De Queiroz, A. (2000). Is Bergmann’s rule
valid for mammals? American Naturalist , 156, 390-415.https://doi.org/10.1086/303400
Bielak, T., & Pucek, Z. (1960). Seasonal changes in the brain weight of
the common shrew (Sorex araneus araneus Linnaeus, 1758).Acta Theriologica , 3, 297–300.
Boutin, S., & Lane, J.E. (2014). Climate change and mammals:
evolutionary versus plastic responses. Evolutionary Applications ,
7, 29-41.https://doi.org/10.1111/eva.12121
Canale, C.I., Ozgul, A., Allaine, D., & Cohas, A. (2016). Differential
plasticity of size and mass to environmental change in a hibernating
mammal. Global Change Biology , 22, 3286-3303.https://doi.org/10.1111/gcb.13286
Churchfield, S., Rychlik, L., & Taylor J.R.E. (2012). Food resources
and foraging habits of the common shrew, Sorex araneus : does
winter food shortage explain Dehnel’s phenomenon? Oikos , 121,
1593-1601.https://doi.org/10.1111/j.1600-0706.2011.20462.x
Cleveland, W.S. (1979). Robust locally weighted regression and smoothing
scatterplots. Journal of the American Statistical Association ,
74, 829-836.
Coulianos, C.C., & Johnels, A.G. (1962). Note on the subnivean
wnvironment of small mammals. Arkiv för Zoologi , 15, 363-370.
Coyle, D.R., Nagendra, U.J., Taylor, M.K., Campbell, J.H., Cunard, C.E.,
Joslin, A.H., Mundepi, A., Phillips, C.A., & Callaham, M.A. (2017).
Soil fauna responses to natural disturbances, invasive species, and
global climate change: Current state of the science and a call to
action. Soil Biology & Biochemistry , 110, 116-133.https://doi.org/10.1016/j.soilbio.2017.03.008
Dechmann, D.K.N., La Point, S., Dullin C., Hertel, M., Taylor, J.R.E.,
Zub, K., & Wikelski, M. (2017). Profound seasonal shrinking and
regrowth of the ossified braincase in phylogenetically distant mammals
with similar life histories. Scientific Reports , 7, 42443.https://doi.org/10.1038/srep42443
Dehnel, A. (1949). Studies on the genus Sorex L. Annales
Universitatis Mariae Curie-Skłodowska , Sectio C , 4, 18-102.
Gardner, J.L., Peters, A., Kearney, M.R., Joseph, L., & Heinsohn, R.
(2011). Declining body size: a third universal response to warming?Trends in Ecology and Evolution , 26, 285-291.https://doi.org/10.1016/j.tree.2011.03.005
Hanski, I. (1994). Population biological consequences of body size inSorex . Carnegie Museum Natural History Special
Publication , 18, 15-26.
Hume, I.D., Beiglböck, C., Ruf, T., Frey-Roos, F., Bruns, U., & Arnold,
W. (2002). Seasonal changes in morphology and function of the
gastrointestinal tract of free-living alpine marmots (Marmota
marmota ). Journal of Comparative Physiology B , 172, 197-207.https://doi.org/10.1007/s00360-001-0240-1
Isler, K., & van Schaik, C.P. (2006). Metabolic costs of brain size
evolution. Biology Letters , 2, 557-560.https://doi.org/10.1098/rsbl.2006.0538
Keicher, L., O’Mara, M.T., Voigt, C.C., & Dechmann, D.K.N. (2017).
Stable carbon isotopes in breath reveal fast metabolic incorporation
rates and seasonally variable but rapid fat turnover in the common shrew
(Sorex araneus ). Journal of Experimental Biology , 220,
2834-2841.https://doi.org/10.1242/jeb.159947
Kowalczyk, R., Zalewski, A., Jędrzejewsk,a B., & Jędrzejewski, W.
(2003). Spatial organization and demography of badgers (Meles
meles ) in Białowieża Primeval Forest, Poland, and the influence of
earthworms on badger densities in Europe. Canadian Journal of
Zoology , 81, 74-87.https://doi.org/10.1139/z02-233
Lazáro, J., Dechmann, D.K.N., LaPoint, S., Wikelski, M., & Hertel, M.
(2017). Profound reversible seasonal changes of individual skull size in
a mammal. Current Biology , 27, R1089-R1107.https://doi.org/10.1016/j.cub.2017.08.055
Lazáro, J., Hertel, M., LaPoint, S., Wikelski, M., Stiehler, M., &
Dechmann, D.K.N. (2018). Cognitive skills of common shrews (Sorex
araneus ) vary with seasonal changes in skull size and brain mass.Journal of Experimental Biology , 221, jeb166595.https://doi.org/10.1242/jeb.166595
Lazáro, J., Hertel, M., Muturi, M., & Dechmann, D.K.N. (2019). Seasonal
reversible size changes in the braincase and mass of common shrews are
flexibly modified by environmental conditions. Scientific
Reports , 9, 2489.https://doi.org/10.1038/s41598-019-38884-1
Lazáro, J., Nováková, L., Hertel, M., Taylor, J.R.E., Muturi, M., Zub,
K., & Dechmann, D.K.N. (2021). Geographic patterns in seasonal changes
of body mass, skull and brain size of common shrews. Ecology and
Evolution , 11, 2431-2448.https://doi.org/10.1002/ece3.7238
McNab, B.K. (1991). The energy expenditure of shrews. In J.S. Findley &
T.L. Yates (Eds.), The Biology of the Soricidae (pp. 35-45).The Museum of Southwestern Biology Special Publication 1.
McNab, B.K. (2010). Geographic and temporal correlations of mammalian
size reconsidered: a resource rule. Oecologia , 164, 13-23.https://doi.org/10.1007/s00442-010-1621-5
Mezhzherin, V.A. (1964). Dehnel’s phenomenon and its possible
explanation. Acta Theriologica , 8, 95-114 (in Russian with
English summary).
Naya, D.E., Naya, H., & Cook, J. (2017). Climate change and body size
trends in aquatic and terrestrial endotherms: Does habitat matter?PloS ONE , 12: e0183051.https://doi.org/10.1371/journal.pone.0183051
Nengovhela, A., Denys, C., & Taylor, P.J. (2020). Life history and
habitat do not mediate temporal changes in body size due to climate
warming in rodents. PeerJ , 8: e9792.https://doi.org/10.7717/peerj.9792
Ochocińska, D., & Taylor, J.R.E. (2003). Bergmann’s rule in shrews:
geographical variation of body size in Palearctic Sorex species.Biological Journal of the Linnean Society , 78, 365-381.https://doi.org/10.1046/j.1095-8312.2003.00150.x
Ochocińska, D., & Taylor, J.R.E. (2005). Living at the physiological
limits: field and maximum metabolic rates of the common shrew
(Sorex araneus ). Physiological and Biochemical Zoology ,
78, 808-818.https://doi.org/10.1086/431190
Parmesan, C. (2006). Ecological and evolutionary responses to recent
climate change. Annual Review of Ecology, Evolution, and
Systematics , 37, 637-669.https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
Piersma, T., Gudmundsson, G., & Lilliendahl, K. (1999). Rapid changes
in the size of different functional organ and muscle groups during
refueling in a long-distance migrating shorebird. Physiological
and Biochemical Zoology , 72, 405-415.https://doi.org/10.1086/316680
Pierzgalski, E., Boczoń, A., & Tyszka, J. (2002). Variability of
precipitation and ground water level in the Białowieża National Park.Kosmos , 51, 415-425 [in Polish with English summary].
Poroshin, E.A., Polly, P.D., & Wójcik, J.M. (2010). Climate and
morphological change on decadal scales: Multiannual variation in the
common shrew Sorex araneus in Northeastern Russia. Acta
Theriologica , 55, 193-202.https://doi.org/10.4098/j.at.0001-7051.106.2009
Pucek, Z. (1963). Seasonal changes in the braincase of some
representatives of the genus Sorex from the Palearctic.Journal of Mammalogy , 44, 523-536.https://doi.org/10.2307/1377135
Pucek, Z. (1970). Seasonal and age change in shrews as an adaptive
process. Symposia of the Zoological Society of London , 26,
189-207.
Pucek, Z. (1981). Order Insectivores – Insectivora. In: Keys to
Vertebrates of Poland: Mammals (pp. 62-101). PWN – Polish Scientific
Publishers, Warszawa.
R Core Team. (2016). R: a language and environment for statistical
computing, version 3.3.1. Vienna, Austria. R Foundation for Statistical
Computing.
Sauer, J.R., & Slade, N.A. (1987). Size-based demography of
vertebrates. Annual Review of Ecology and Systematics , 18, 71-90.https://doi.org/10.1146/annurev.es.18.110187.000443
Schaeffer, P.J., O’Mara, M.T., Breiholz, J., Keicher, L., Lázaro, J.,
Muturi, M., & Dechmann, D.K.N. (2020). Metabolic rate in common shrews
is unaffected by temperature, leading to lower energetic costs through
seasonal size reduction. Royal Society Open Science , 7, 191989.https://doi.org/10.1098/rsos.191989
Shchipanov, N.A., Zima, J., & Churchfield, S. (2019). Introducing the
common shrew. In J.B. Searle, P.D. Polly & J. Zima (Eds.),Shrews, Chromosomes and Speciation (pp. 19-67). Cambridge
University Press, Cambridge.
Singh, J., Schädler, M., Demetrio, W., & Brown, G.G., Eisenhauer N.
(2019). Climate change effects on earthworms - a review. Soil
Organisms , 91, 113-137.https://doi.org/10.25674/so91iss3pp114
Taylor, J.R.E. (1998). Evolution of energetic strategies in shrews. In
J.M. Wójcik, & M. Wolsan (Eds.). Evolution of Shrews (pp.
309-346). Mammal Research Institute, Białowieża, Polish Academy od
Sciences.
Taylor, J.R.E, Rychlik, L., & Churchfield, S. (2013). Winter reduction
in body mass in a very small, nonhibernating mammal: Consequences for
heat loss and metabolic rates. Physiological and Biochemical
Zoology , 86, 9-18.https://doi.org/10.1086/668484
Templer, P.H., Schiller, A.F., Fuller, N.W., Socci, A.M., Campbell,
J.L., Drake, J.E., & Kunz, T.H. (2012). Impact of a reduced winter
snowpack on litter arthropod abundance and diversity in a northern
hardwood forest ecosystem. Biology and Fertility of Soils , 48,
413-424.https://doi.org/10.1007/s00374-011-0636-3
Teplitsky, C., & Millien, V. (2014). Climate warming and Bergmann’s
rule through time: is there any evidence? Evolutionary
Applications , 7, 156-168.https://doi.org/10.1111/eva.12129
Villar, C.H., & Naya, D.E. (2018). Climate change and temporal trends
in body size: the case of rodents. Oikos , 127, 1186-1194.https://doi.org/10.1111/oik.04884
Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee,
T.J.C., Fromentin, J.M., Hoegh-Guldberg, O., & Bairlein, F. (2002).
Ecological responses to recent climate change. Nature , 416,
389-395.https://doi.org/10.1038/416389a
Willmott, C.J. (1977). WATBUG: a FORTRAN IV algorithm for calculating
the climatic water budget. CW Thornthwaite Associates Laboratory
of Climatology, Publications in Climatology , 30, 1-55.http://udspace.udel.edu/handle/19716/20487
Yom-Tov, Y., & Geffen, E. (2011). Recent spatial and temporal changes
in body size of terrestrial vertebrates: probable causes and pitfalls.Biological Reviews , 86, 531-541.https://doi.org/10.1111/j.1469-185X.2010.00168.x
Yom-Tov, Y., Leader, N., Yom-Tov, S., & Baagøe, H. J. (2010a).
Temperature trends and recent decline in body size of the stone martenMartes foina in Denmark. Mammalian Biology , 75, 146-150.https://doi.org/10.1016/j.mambio.2008.10.005
Yom-Tov, Y., Roos, A., Mortensen, P., Wiig, Ø., Yom-Tov, S., &
Heggberget, T. M. (2010b). Recent changes in body size of the Eurasian
otter Lutra lutra in Sweden. Ambio , 39, 496-503.https://doi.org/10.1007/s13280-010-0074-8
Yom-Tov, Y., & Yom-Tov, J. (2005). Global warming, Bergmann’s rule and
body size in the masked shrew Sorex cinereus Kerr in Alaska.Journal of Animal Ecology , 74, 803-808.https://doi.org/10.1111/j.1365-2656.2005.00976.x
Yom-Tov, Y., Yom-Tov, S., & Jarrell, G. (2008). Recent increase in body
size of the American marten Martes americana in Alaska.Biological Journal of the Linnean Society , 93, 701-707.https://doi.org/10.1111/j.1095-8312.2007.00950.x