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ABSTRACT. In this work, we introduce the concept of double quantum integrals for the interval-
valued functions of two variables. We offer several new inclusions of the Hermite-Hadamard type
for co-ordinated convex interval-valued functions using the newly defined integrals. Moreover, we
prove trapezoidal type inequalities for interval-valued functions of two variables using the ideas of
the Pompeiu—Hausdorff distance between the intervals. It is also revealed that the results offered in
this work are the generalization of several existing results.

1. INTRODUCTION

Many studies have recently been carried out in the field of g-analysis, starting with Euler due to a
high demand for mathematics that models quantum computing g-calculus appeared as a connection
between mathematics and physics. It has a lot of applications in different mathematical areas such
as number theory, combinatorics, orthogonal polynomials, basic hypergeometric functions, and other
sciences quantum theory, mechanics, and the theory of relativity [13-16,18]. Apparently, Euler was the
founder of this branch of mathematics, by using the parameter ¢ in Newton’s work of infinite series.
Later, Jackson was the first to develop g-calculus that known without limits calculus in a systematic
way [13]. In 1908-1909, Jackson defined the general g-integral and ¢-difference operator [16]. In 1969,
Agarwal described the g-fractional derivative for the first time [1]. In 1966-1967, Al-Salam introduced a
g-analogues of the Riemann-Liouville fractional integral operator and g-fractional integral operator [2].
In 2004, Rajkovic gave a definition of the Riemann-type g-integral which was generalized of Jackson
g-integral. In 2013, Tariboon introduced ,D,-difference operator [6].

Many integral inequalities well known in classical analysis such as Holder inequality, Simpson’s in-
equality, Newton’s inequality, Hermite-Hadamard inequality and Ostrowski inequality, Cauchy-Bunyakovsky-
Schwarz, Gruss, Gruss- Cebysev, and other integral inequalities have been proved and applied for ¢-
calculus using classical convexity. Many mathematicians have done studies in g-calculus analysis, the
interested reader can check [9-11,17,20,22,23,28-31].

A formal definition for co-ordinated convex function may be stated as follows:

Definition 1. A function ® : A — R is called co-ordinated convex on A, for all (z,u), (y,v) € A and
7,0 € [0, 1], if it satisfies the following inequality:

(1.1) O(te+(1—7) y,ou+(1—0) v)

< 10 ®(z,u)+7(1 —0)P(z,0) + 0(1 — 7)P(y,u) + (1 — 7)(1 — 0)P(y, v).

The mapping ® is a co-ordinated concave on A if the inequality (1.1) holds in reversed direction for
all 7,0 € [0,1] and (z,u), (y,v) € A.

In [12], Dragomir proved the following inequalities which are Hermite-Hadamard type inequalities
for co-ordinated convex functions on the rectangle from the plane R2.
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Theorem 1. Suppose that ® : A — R is co-ordinated convex, then we have the following inequalities:
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The above inequalities are sharp. The inequalities in (1.2) hold in reverse direction if the mapping ®
s a co-ordinated concave mapping.

2. INTERVAL CALCULUS

We give notation and preliminary information about the interval analysis in this section. Let the
space of all closed intervals of R denoted by I, and K be a bounded element of I, we have the
representation

K:[E,ﬂ:{TG]R:E §T§E}

where k., k € R and k < k. The length of the interval K = [E, E] can be stated as L (K) =k — k. The
numbers k and k are called the left and the right endpoints of interval K, respectively. When k = k,
the interval K is said to be degenerate and we use the form K = k = [k, k]. Also, we can say that K is
positive if £ > 0, or we can say that K is negative if £ < 0. The sets of all closed positive intervals of
R and closed negative intervals of R are denoted by Ij and I, respectively. The Pompeiu-Hausdorft
distance between the intervals K and M is defined by

(2.1) dH(K,M):dH([E,ﬂ,[m,m]):max{|E—m\,

(I,,d) is known to be a complete metric space (see, [7]).
The absolute value of K is denoted by |K]|, is the maximum of the absolute values of its endpoints:

| K| = max {[k], [E[}

Now, we mention the definitions of fundamental interval arithmetic operations for the intervals K and
M as follows:

K+M = [k+mk+m],
K-M = [minU maxU] where U = {Em,&m, Em,%m},

K/M = [minV,maxV] where V = {k/m,k/m, k/m,k/m} and 0 ¢ M.
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Scalar multiplication of the interval K is defined by
[k, k], p> 0

pk = p[k,k] = {0}, p=0;

(pk, pk] . p <0,
where 11 € R.
The opposite of the interval K is

where p = —1.
The subtraction is given by

K-M=K+(-M)=[k—m,k—m).

In general, — K is not additive inverse for K, i.e. K — K # 0.
The definitions of operations cause a great many algebraic features which allows I, to be quasilinear
space (see, [26]). These properties can be listed as follows (see, [7,24-27]):

(Associativity of addition) (K + M)+ N = K + (M + N) for all K, M, N € I,,
(Additivity element) K +0=0+ K = K for all K € I,

(Commutativity of addition) K + M = M + K for all K, M € I,

(Cancellation law) K + N =M + N = K = M for all K, M,N € I,,
(Associativity of multiplication) (K - M)-N = K - (M - N) for all K, M,N € I,
(Commutativity of multiplication) K - M = M - K for all K, M € I,

(Unity element) K -1=1-K for all K € I,

(Associativity law) A(pK) = (Ap) K for all K € I, and all A\, u € R,

(First distributivity law) A(K + M) = AK + AM for all K, M € I, and all A € R,

(1
(2
(3
4
(5
(6
(7
(8
9
(10) (Second distributivity law) (A + p)K = AK + pK for all K € I, and all A, x € R.

)
)
)
)
)
)
)
)
)
0

In addition to all these features, the distributive law is not always true for intervals. As an example,
K=[1,2],M =[2,3] and N = [-2,—1].

K- (M +N) = [0,4],
whereas
K-M+K-N=[-2,5].

Definition 2. [23] For the intervals K and M, we state the gH-difference of K and M as the interval
T such that

K=M+T,
KogM=T<¢ or
T=K+(-M).

It looks beyond dispute that

k—m,k—m|, if L(K)<L(M).

Particularly, if M = m € R is a constant, we have

Kos M= [Efm,ﬁfm].

K@gM:{

Moreover, another set feature is the inclusion C that is defined by
KCM<«=k<mandk <.

Throughout this paper, 0 < ¢,¢1,q2 < 1 and A = [, 8] % [,6] € R?. For condensation, interval
valued quantum calculus denoted by Ig-calculus.

In [35], Zhao et al. gave the notions about the co-ordinated convex interval-valued functions and
inclusions of Hermite-Hadamard type.
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Definition 3. [35] A function ® = [®,®] : A — I is said to be co-ordinated convex interval-valued
function, if the following inclusion holds:

O(re+ (1 —1)y,ou+ (1 —o)w)
D 710®P(z,u)+7(1—0)P(z,w) +0(l —7)P(y,u) + (1 —0)(1 —7)P(y, w),
for all (x,y), (u,w) € A and o,7 € [0,1].
Lemma 1. [35] A function ® : A — I,Y+ is an interval-valued convexr on co-ordinates if and only if

there exist two functions @, : [v,0] = LI, ®,(w) = ®(z,w) and &, : [a,f] — L}, ®,(u) = (y,u)
are interval-valued convex.

It is easy to prove that an interval-valued convex function is an interval-valued co-ordinated convex,
but the converse may not be true. For this, we can see the following example.

Example 1. An interval-valued function @ : [0,1]> — L defined as ®(z,y) = [zy, (6 —e*)(6 —e¥)] is
an interval-valued convex on co-ordinates but it is not an interval-valued convex on [0,1]2.

Theorem 2. [35] If & = [@,@ A > I,j is a co-ordinated convex interval-valued function on A,
then the following inclusions hold:

(2.2) @(O“LB,M)
2 2
1 1 P y+6\ 1 % [a+B .
) 3 /3—04/&@(“’ 5 >du+5—7 7@( 5 ,v>dv
1 b 0 I, g1
A / lu,)dvd
1 1 1P
2 1 m/a <I>(u,fy)d1u+m/a ®(u,8)d u
1 ; 1 ;
+5—7/7 (v, v)d v+5_v/7 o(B,v)d ”1
L @(a,y) + B(0,0) + B(5,7) + B(5,5)
= 4 .

For more recent inclusions of Hermite-Hadamard type for co-ordinated convex interval-valued func-
tions one can read [19].
3. NOTATIONS AND PRELIMINARIES OF ¢-CALCULUS
In this section, we review some necessary definitions and related inequalities about g-calculus.

Definition 4. [33] For a continuous function ® : [, 8] — R, the g~ derivative of ® at u € [a, f] is
characterized by the expression

P(u) —P(qut(1—q) )
(1—q)(u—0) ’
Since ® : [a, 8] = R is a continuous function, therefoe, we can state:

ady® (@) :1}1&}1 adg® (u) .

(3.1) adg® (u) =

u % Q.

The function ® is said to be qo- differentiable on [, 8] if odq® (w) exists for allu € [a, B]. If « =0
in (3.1), then ody® (u) =dq® (u) , where dq® (u) is the familiar g-derivative of ® at u € [a, f]
defined by the expression (see, [18])

P (u) — ®(qu)

(3.2) de® (u) = “Ogu u # 0.
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Definition 5. [33] Let ® : o, 5] — R be a continuous function. Then, the q,-definite integral on
[a, B] is defined as

u

(3.3) [o@) adir =0 =) "B @t (- a")a)

o n=0

foru € |a, f].

We have to give the following notation which will be used many times in the next sections (see, [18]):

In [6], Alp et al. proved the following ¢,-Hermite-Hadamard inequalities for convex functions on
quantum integral:

Theorem 3. Let @ : [a, 5] — R be a convex differentiable function on [a, 8] and 0 < g < 1. Then,
q-Hermite-Hadamard inequalities

(3.4) P <qu2]+5> < ﬁi /B<I>(u) g < 22

On the other hand, Bermudo et al. gave the following new definition and related Hermite-Hadamard
type inequalities:

Definition 6. [8/ Let @ : [a, 5] — R be a continuous function. Then, the ¢°-definite integral on [, 3]
1s defined as

ﬁ o0
/<I><T> Bdgr =(1—q) (B—u) S q"® (¢"u+ (1 - ¢") §)
w n=0

foru € |a, B].

Theorem 4. [8] If @ : [o, 5] — R be a convex differentiable function on [a, f] and 0 < g < 1. Then,
q-Hermite-Hadamard inequalities

B
a+qpB 1 ® (o) + 42 (B)
(35) P ( [2]q > < 5 —a O/‘b (u) ﬁdqu < T

In [21], Latif et al. defined go,-integral and derivatives for two variables functions and proved
associated inequalities as follows:

Definition 7. Suppose that ® : A — R is continuous function. Then, the definite go-integral on A
1s defined by

[[200) sduo adyr = 1-a)(-a)@-a)w-2)

oo o0

XYY areE® (qfu+ (1—af) a, g5 + (1 —g5") )

n=0m=0

for (u,v) € A.
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Definition 8. [21] Let ® : A — R be a continuous function of two variables. Then the partial
q1-derivatives, qa-derivatives and q1qgo-derivatives at (u,v) € A can be given as follows:

ozalq)(uav) _ (D(Q1u+(1_q1)aav)_q)(uvv)
O 0 —a) (u—0) U h
82(:[)('LL,U) _ CI)(U,QQU-I-(].—QQ)’}/)—(I)(U,’U)
e T—0) (0 —7) VT
@, ’Yagl,qzq)(uﬂ)) 1

I R ICE IO I R S

—@ (qu+ (1 —q1)a,v) =@ (u,qav + (1 —q2)y) + @ (w,v)], u#a, v#7.

For more details related to ¢-integrals for the functions of two variables (see, [21]).
If we set r = 1 in [21, Theorem 6], then we can deduce the following Theorem.

Theorem 5. [21] Let ® : A — R be a twice partially q1q2-differentiable function on A. If the partial

2
O"'YB(II‘IZ(I)

3 2 is co-ordinated convex
aUq) T v0Uqy 0

o 0 0 ® . ) .
q192-derivative % 18 continuous and integrable on A and
aUqg) T ~

q2 0

on A. Then, we have following inequality:

(36) |Ot7’YIQI7 q2 (04,6,776) ((I))|
0192 (8 — @) (6 — ) a0, ® (@, 7) 05,4, 2 (@, 0)
B [2}(11 [2],12 Aln) Ale) a0, T 40q,0 TBla)Ale) a0, T 40g,0
®(8,7) @ (8,6)
210410, 05,0, ® (8,9)
TB(a)A (C]1) aaqﬂ' +0g,0 +B(a)B(e) a0q, T 40g,0

where

Q1Q2<I) (Oé ’Y) + CI1<I> (Oé76) + Q2q) (57’7) + @ (576>

OéﬁLh: q2 (01757’7, 5) ((I)) =

2], 2,
sy )1 j/éq) g,V adgu
[H e a>/ﬁ‘“ K dql“%(”/jq’(""” adyyu
ot [ o) s [ 860 ]
and
q (1+3¢> +2¢°) _a(1tdgte)

Ag) =

)

3], [21; 3], (21

q

Recently, Budak et al. gave the following definitions of g2, qg and ¢”° integrals:
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Definition 9. [10] Suppose that ® : A — R is continuous function. Then the following ¢°, q,f and
¢%° integrals on A are defined by

()
(3.7) //@(T,U) Sdy,o  adyT
= 1-q)(1—-¢g)u—0a)(d-v)
x> D> ara® (qfu+ (1-gf)a, g5 + (1 - ¢5") 8)

n=0m=0

B w
(3.8) //@(770) ~dg,0 qulr
= 1-q)Q-g)B-uw-7)

XN gt ® (qfu+ (1—qf) B g5 v + (1= ¢5) )

n=0m=0
and
B 6
(3.9) //fl)('r,o) 5dq20 ’qulT
= 1-q)(1—gq)B—u)(0—v)
XD > atas® (qfu+ (1—qf) B, a5'v + (1 — ¢5) )
n=0m=0

respectively, for (u,v) € A.

Theorem 6. [3] Let ® : A C R? — R be a twice partially q1qz-differentiable function on A such
P97 4, ®(r0)

that partial g1q2-derivative 1387—753? is continuous and integrable on A. Then we have following
a1 a2

3 . i B, 592 d(r,0) | . .
inequality provided that |—551%2——1| is co-ordinated convex on A
BOqy T 90450

(310) |,87 61(]1’ q2 (Oé, Ba’yaé) ((I))|

192 (6 - a) (6 - ’Y) 5 6831#12(1)(&’ 7) . 6831:Q2(I)(a’ 6)
= [2}(11 [2]q2 B(ql)B(q2) BaqlT 681120_ +B(q1)A(q2) BaqlT 681120_
7092 L ®(5,7) 8092 L ®(B,0)
q1,92 ’ q1,92 ’
+A(q1) B (q2) B0, T 0,0 + A(q1) A(g2) B0y 900 ||

where

b 6‘[‘117 q2 (av 637,5) (@)

(o) +@®(B,7) + 2P (a,8) + q12® (B, 6) ” 5

B [2]‘11 [2]112 - [2]q1 (5 - 7) /y ® <va) 5d¢12v
1 4 q 8

_WA ® (a,v) Odg,v — WL ® (u,8) Pdyu

1 B P 1 B ré 5 s
e ® (u, du+—//¢u,v dg,u °dg,v
o, ) et e [ [ 2w Y

and A(q), B(q) are defined in Theorem 5 and 0 < q1,q2 < 1.

Theorem 7. [3] Let ® : A C R? — R be a twice partially q1qz-differentiable function on A such
552 _®(1,0)
@ "4q1,492

that partial q1q2-derivative Dt 0,0

s continuous and integrable on A. Then we have following
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5 52
29,4, 2(7,9)

inequality provided that P REE

18 co-ordinated convex on A

(3-11) |6 q1, qz( B, )( )‘

q142 (5 - a) (5 - 7) agagl,qQ (ﬂa 7) ?1831 q2 (65 5)
= [Q}ql [2]q2 B(a)B(a) a0q, T °0g,0 TBl@)Ale) a0q, T °0g,0
502 ®(a,7) 092  ®(a,d)
@ ~q1,92 ) @~ q1,92 )
+A(q1) B (q2) —aaqlT 5000 + A(q1) A(ge) 7aaq17— Ak
where
60(‘[9717 q2 (o, B,7,9) (@)
§
_ a1® () + 0192 (2, 0) + 2 (8,7) + 22 (8,9) Q / & (0, v) *dyo
2], 121, 2], 6—=7) J,
1 J 5 A
- d(B,v d2v— / D (u U
[21q1<6—7>ﬁ (8:0) o .

_WLﬁQ(u ) dqlu+m// (U,v) adg,u *dgyv

and A(q), B(q) are defined in Theorem 5 and 0 < q1,¢2 < 1.

Theorem 8. [3] Let ® : A C R? — R be a twice partially q1qz-differentiable function on A such
Boz . ®(r, . . . .
that partial q1qo-derivative Wg? is continuous and integrable on A. Then we have following
vy

H <11 4, ®(1,9)

inequality provided that 18 co-ordinated conver on A

BOq 1T 7040
(312) |€I¢h, q2 (04,5,776) ((I))|
ng2 (B— ) (5—7) 507 0. ® (@,9) 50 0. ® (@)
S e, |P@B@) Gy e | PR AW\,
502 @ (B,9) (8,7)
q1,92 ) ’Y ql q2
+A(q1) B (q2) | B0 100 + A(q1) A(ge) B0t 00,0 ||

where

’eI‘Zl, q2 (0‘7677a 5) ((b)

0PN+ () +ap®(3,)+a®B.5)  a ’

- 2],, 2., [2],, (0—7) L (5:0)
1 0 A

_[Q]ql (6_’}/) /’Y @(a,'l}) ’YdQQU L @ B U

>

1 /5 B
—_— D (u,d Bdlu—l——/ / @ (u,v) Pdgu dg,v
2, G- O e GG . ot ol
and A(q), B(q) are defined in Theorem 5 and 0 < q1,¢q2 < 1.

4. Iq1q2-INTEGRALS FOR THE FUNCTIONS OF TWO VARIABLES

In this section, we recall some necessary notions and integral inclusions about Ig-calculus. Further-
more, we are interested to give the notions Iq;gq-integrals for the functions of two variables.

Definition 10. [23] For a continuous interval-valued function ® = [Q, 6] o, 8] = L, the Iqq-
derivative of ® at u € [a, B] is defined by

D (u) 0y ®(qu+(1—9q) )
(1-¢q)(u—a) ’

(4.1) oDy ® (u) = u # a.
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Since & = [<I> T | = I, is continuous function, we can state as:
oDy ® (o) = uh_r)r(ll aDg® (u).

The function ® is said to be Ig-differentiable on [a, 8], if oDq® (u) exist for all u € [, f]. If we
set o =0 in (4.1), then ¢Dy® (o) = Dy® (o), where Dy® (o) is called Iq-Jackson derivative of ® at
u € |, B] defined by the expression:
D (u) &4 © (qu)

(1-q)u
Definition 11. [23] For a continuous interval-valued function ® = [Q, 6] o, B] = L, the Iqq-
definite integral is defined by

Dy® (u) =

(42) [ 20 wtio = 1-0u-a) L @ lu+ (1))

n=0
for all u € [, 0]

Remark 1. Ifwe set « = 0 in (4.2), then we have Iq-Jackson integral defined by the following equation:

/ (o) Od c=(1-qu Zq”@ (¢"u)
0

for all u € [0,00) .

Theorem 9. [253] Let & = [<I> T ] — I+ be a 1q,-differentiable and convex on [, 8]. Then,
the 1q.-Hermite-Hadamard mcluszons are empressed as:

qo + I 1 - 4% (@) + 2 (B)
(4.3) <I>< 2, )Q B—CV/Q D (u) adyu 2 @, .

In [4], Alp et al. gave the definition of I¢®-integral and proved inclusions of Hermite-Hadamard
type for interval-valued convex functions by using I¢°-integral.

Definition 12. For a continuous interval-valued function ® = [@, @ o, B] = I, the IqP-definite
integral is defined by

8 00
(4.4) /‘®W)“%U=O—qMB—WE:f¢wWw+O—qﬂ&
u n=0

for all u € [, 0]

Theorem 10. Let ® = [Q, @ Doy Bl = Ij be an interval-valued conver on [, B]. Then, the
I1¢P-Hermite-Hadamard inclusions are expressed as:

(4.5) ¢<a+q5>3 ! /ﬂ¢m)@ﬁu2®“”+q®wf

2, )=B-a 2,

Corollary 1. Let & = [Q, 5] oy B] — Lj‘ be an interval-valued convexr on [, 5]. Then we have the

following result
1 qa+ 3 a+qpb IR , 8 o (e) 12 (8)
2l¢< (2], )W( 2], ) = 2(6—a) V © (u) adqu+/a  (u) dqu]Q : ,

Corollary 2. Let & = [<I> T a, f] — IJr be an interval-valued convex on [, 3]. Then we have the

following result
B B
(4.6) @(“*ﬁ /‘®@Qa%u+/i®005%u

2 )9 TR

LB (a)+D(8)
- 2
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Proof. It is enough to see that by the interval-valued convexity of @,
q)<a+ﬂ):q) lqa—l—ﬁ_’_la—i—qﬂ ® qa+ LD a+qp
2 2 2, 2 [2, 2], 2],

Now, on the basis of the techniques that used to introduce the notions of Definitions 7, 9, 11 and
12, we can give the following new definitions of g-integrals for the functions of two variables.

1

1
2

0

Definition 13. Suppose that ® = [@,@ : A — I, is a continuous interval-valued function. Then, the
following definite qq., @, qu and ¢%° integrals on A are defined by

u v
//‘I)(T,a) Wdéza ad{hT
o v

= (1—q1)(1—q2)(u—a)(v—v)

XZ quqz O (qtu+ (1—qp)engsv+ (1 - g5")7),

n=0m=0

u 6
//@(T,J) ‘Sd(lha N

= (1-a)(1-g)(u-0a)@-v)

oo o0

XY@y (qfu+ (1— g o giv + (1 - g5") d),

n=0m=0

B w
//@(T,a) 7de20 5délr
u oy

= (1—q1)(1—lJ2)(ﬂ—U)(7f—’Y)
xZZq?q’{@ (tu+(1—q1)B,¢"v+(1—g3)7)

n=0m=0
and
B 6

//(I)(T,O') ‘Sdézo 5délr

= (1-a)(1-¢)B-u)(0-0)

oo oo

x> > atas® (qiu+ (1—qf) B, a5'v + (1 — ¢5) )

n=0m=0

respectively, for (u,v) € A.

Remark 2. [t is very easy to observe that

B 8 B
//@(7,0) ,yd(lma adélr = //CD(T,U) 5d520 adélT
a v

® (71,0) dla ﬁdl

Il
Pt~

(1 Ao d'r

by the taking the limits q1,q2 — 17 (see, [34]).
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5. SOME NEW Iq;¢o-HERMITE-HADAMARD INCLUSIONS

In this section, we deal with the Hermite-Hadamard type inclusions for co-ordinated convex interval-
valued functions using the newly defined Iq;go-integrals in the last section.

Theorem 11. Let & = [@, 6] A — I,Y+ be a co-ordinated convez interval-valued function on A. The
following inclusions of Hermite-Hadamard type hold for q.~-integral:

51 o QIQ+B’Q2'Y+5
(5.1) < 2, o,
1 1 b g2y +6 I’ 1 s G+ I
> 2[5a/a q’(“’ 2], ) adm“*w/w "\, ) et
B8 )
D (Bfa 76— ’Y//Vq)uv dézvadélu
) )
q1 7 1
2 2@, - 7>A¢(“’”> "t 3 qu(a 7/ 2(5:0) 4
8 3
q2 T
o0, G ], 2 et ey [ 2w
B Q1QQ‘I)(C¥7’Y)+Q1‘I)(aa5)+¢hq’(5a ) (535)
- 215, 121, '

Proof. Since ® is a co-ordinated convex interval-valued function on co-ordinates A, therefore, @,
[v,0] = IF, ®,(v) = ®(u,v) is a convex interval-valued function on [y, ] and for all u € [, f]. From
inclusion (4.3), we have

@Y +9 I 1 72y () + Pu(0)
q)“( oI, )257/7 Pel) 20t 27

)

which implies that

G2y +96 1 J 7 @2P(u,vy) + ®(u, )
(5.2) o (u, 2, ) o (5—7[y D (u,v) Hdy,v 2 2, .

Iq;-Integrating (5.2) with respect to u over [, 8] and dividing both sides by 8 — «, we have
1 /,8 q27y + ) [
D | u, ady,
F-a ( 2,
I I
D) @ —a5 ’Y// (u,v) dqzvadqlu

e n _ ’ n T
(5:3) ° @ w—a)/a 2(1:7) adyu+ - Ga . o ud

By using the same process, @, : [a, 8] — Ij, D, (u) = ®(u,v) is a convex interval-valued function on
[a, 5] and v € [, ], we have

5
(5.4) ﬁ/ o (ql[‘;‘]w,v> Ld v
v q1
B §
m/ / (I)(U,U) 'Ydézv adélu
«a Y

q1 0 1 5
2 [Z]lh((s_w/v (I)(Ck,'l}) 'Ydégv + [2](11((5—7)/7 @(6,’0) ,qu,zl)

U

U
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Thus, we can obtain the second and third inclusions in (5.1) by summing the inclusions (5.3) and (5.4).
For the proof of first inclusion in (5.1), again if we use inclusion (4.3), then we have

G+ B goy+6 I Gy +9 I
(5:5) q’( 2, B, ) = /sfa/a q’(“’ 2L, ) oot

qa+p qy+o 1 0 g+ B I
(5.6) <I>< [2]q1 , qu ) D 5_7/7 <I>< [2]q1 ,v) ydg,v

Hence, after summing the inclusions (5.5) and (5.6), we obtain first inclusion in (5.1). Finally, from
the right part of (4.3), we get

(5.7) et /jq,(u,,y) w2 o q@(a,y[;]z 2(8.7)
> 21, <1ﬂ—a> [ ot a2 R B
(5.9) o 5 - /jq)w . 2{;1]% QQ@(Q,’[Y;]:Zq)(a,é)’
(5.10) m /jw, ol o 2{;}@ qzq>(67v[2)];:‘1>(6,5)
and after summing the inclusions (5.7)-(5.10) the proof is finished. O

Theorem 12. Let ® = [@, 5] A — I;“ be a co-ordinated conver interval-valued function on A. The
following inclusions of Hermite-Hadamard type hold for ¢’ -integral:

qaa+ B v+ qo
(5.11) <1>< o, )

) 5
Q /@av 5djv+ /‘bﬁ, oql
lh 6 ’Y q1 5 ’Y)
Y Y
. 8
+— [ D (u,y) odlu + s /fI) dl
2], </a—a>/ (u:7) ady, oy
5 q@(@ﬁ)+qqu¢(a,5)+¢>(5,7)+qQ<I>(6, J)
B [2]q1 [2](12

for all q1,92 € (0,1).

Proof. Following arguments similar to those in the proof of Theorem 11 by taking into account the
double inclusion (4.5), the desired inclusion (5.11) can be attained. O
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Theorem 13. Let @ = [@, 5] A — I,Y+ be a co-ordinated convez interval-valued function on A. The
following inclusions of Hermite-Hadamard type hold for qg—integml:

a+qfB q@y+0
(5.12) o < , )
[2]% [2]!12
[ 5 . 3
Q2+ a+q

2 - D | u, Bal w + /<I> , dl v

=t ( 2, ) ot )t T, )
o vy

1 ; W ’
“ 27, <6—v>/‘1’<“’”> et R (=) = /‘I’

g .
—|—2[2](12q(25_a)/<1>(u,7) Pl g /¢ ) Al
- ©@®(@,7) + @Oécu 6[)2]+ q[liﬁ) (8,7) + o (5, 9)

ar 2o,

for all q1,¢2 € (0,1).

Proof. Following arguments similar to those in the proof of Theorem 11 by taking into account the
double inclusion (4.5), the desired inclusion (5.12) can be attained. O

Theorem 14. Let ® = [@, 6] A — Ii be a co-ordinated convex interval-valued function on A. The
following inclusions of Hermite-Hadamard type hold for ¢°°-integral:

(5.13) o <Oé+Q1ﬁ 7+Q25>

J U
N =
| ——
)
| | —
-
T~
®
K
Q\/\
= S
S~
<>
KH
=
>
IS8
~
)
IS8
~

B—a)G—7)
1 ° 5 I q1 0 Sql o
= 2[2]q1<6—v>A¢(“”) TV 3] (5 w/ ®(Br0) “dy,
e /ﬁq’( ) Pyt /B‘I’ ",
o é(a77)+q2©(a75)+Q1¢(637)+Q1QQ¢(635)
B [2]111 [2]612 .

Proof. Following arguments similar to those in the proof of Theorem 11 by taking into account the
double inclusion (4.5), the desired inclusion (5.13) can be attained. O

Remark 3. If we take the limits g — 1~ and qo — 17 in Theorems 11, 12, 13, and 14, then each
Theorem reduces to Theorem 2.

Remark 4. If ® = ® in Theorems 11, 12, 13, and 14, then Theorems 11, 12, 13, and 14 reduces to
Theorem 2 in [5], Theorems 3.4, 8.5, and 3.6 in [10], respectively.

On the other hand, summing up the results in Theorems 11, 12, 13, and 14 yields the next corollary:
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Corollary 3. Let & = [@, 6] A — I,JYr be a co-ordinated convex interval-valued function on A. Then
we have,

1 aqp+ B yq2 +0 qa+ B v+ g
— [ P
1 ( 2, Pl )* ( 2, B, )
> 01+Q15,Q27+5 o CH—Q15’7+Q25
' ( 2 B ) O\ R,
1 Yq2 + 0 v+ q26 I
53 —a) q’(“’ 2, )”’(“’ 2, ] oy

I
'qulu

)

)or(e i)
am+ﬁw>+¢<a+mﬁv> e

) )

5 -
1
P
+8(5—7)/_ ( 2, 2], )| e
5 -
1 qao+ a+aqf 5 I
P , P ; d
+8(57)/ _ ( 2, )" ( 2],

) 0
1
>0 — ) d! o d!
= 8((5—’7) / (Ot,'U) Y qgv +/ (57”) v qgv
2l Y
)

)
—|—/<I>(oz,v) ‘Sdézv —|—/<I>(ﬁ,v) 5dézv
2t 8!
B
+¥ /@(u'y) dlu—i—/(I)(u(S) d! u
8(6—01) ) « q1 b « q1

(03 (03

8
+/@WA)WQL+ ® (u,8) Pdl u
5 @) + @ (@,0) + @ (5,7) + P (5,9)
= 4

™

for qi,q2 € (0,1).

Remark 5. By taking the limits ¢ — 1= and qo — 1~ in Corollary 3, then Corollary 3 reduces to
Theorem 2.

Remark 6. If ® = ® in Corollary 3, then Corollary 3 reduces to Corollary 3.1 in [10].
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Corollary 4. Let & = [@, 6] A — I,JYr be a co-ordinated convex interval-valued function on A. Then
we have,

(5.14) <I>(O‘+ﬂ W)
5 1 ﬁ@ v+0 . i Y+6\ 5.1
D) m / <u, 5 ) alg, u +/<I><u, 5 dqlu]
5 s
+ﬁ /@(a;ﬂ,v) Wdézv —l—/(I)(a;B,U) 5dézv
v v

) 6 s 5 s
2 A ! 1 5 g1 I
T4(B-a)(d—7) //é(uw) Fdg, v adg u +//<I>(u,v) div odlu
v v

«

_|_
Q\Q
2e—

o

—~

RS

<

S~—

2

S8

Qo
V)
<
=)
QU
[~
<

+
Q\E
Q\o}

&

=

<

S~—

>
QU
Q o~
N

4

™

QU

S =
<
1

+— /‘I’(u,’y) adh u +/<I>(u,6) adh u

(03 [e3%

B B
—|—/<I>(u77) Bdélu + [ @ (u,0) ﬁdélu]
5 @) + @ (@,0) + @ (5,7) + P (5,9)
- 4

for qi,q92 € (0,1).

Proof. By the first inclusion in (4.6), we have

B B
(5.15) @<a;ﬂ,7;§>92(51_a) {/¢<u7;5) ol +/<b(u,7;5> ﬂd{hu}

and

4 0

+8 746 1 +8 +8
(5.16) @(a2 ,72 )22(57) /(b(aQ ,v) vdL v +/<I>(a2 ,v) 0! v

ol Y

By the inclusion (5.15) and (5.16), we have the first inclusion in (5.14).
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Since @ is a co-ordinated convex interval-valued function, we have

B
1 v+90

e

B
_ 1 lgy+d  lgy+9d I
= 2(ﬂg)/@<u,2 2] +2 B adg u

q2 q2
[e3

> 4(ﬂ1a)j <1><u,qz[;]::5>+cb<u, @{;];5) wdl
B
(5.18) 2(61_@/¢<u,7;‘5> Pal r
1 / Lgy+6  1goy+9
B 2w—ay[¢<“2 2, 2o, )ﬁ#f
1 / QY +9 g2y +0
2 4(5_0[)&/[@ (u, 2., >—|-<I><u, o, > ﬁdélu,
)
(5.19) ﬁ/@ O‘;B,v) Ll v
Y

5
— ; laq:l—’—ﬁ la—i_qlﬁ T
o 2(57)/q)(2 [2]q1 +2 [2]111 7U> ’qu2v
Y

aq + B a+qfB
2, ”>+®< 2, ”)”%”

U
S
>
I -
2
2~
B

and
1 . I5)
o+
.2 — | ® Sqt
(5 O) 2(5_7)/ ( 9 7'U> dqQ’U
¥

s
1 1 1
_ /®<QQ1+5+0+9157U> 5l o

2 [2]1 2 [2}111 -

1 ; B B
1 aqr + v a+q ol Sdl v
s /o () o (F)

By adding the inclusions (5.17)-(5.20) and by using second inclusion in Corollary 3, we obtain the
second inclusion in (5.14). O

Remark 7. By taking the limits ¢ — 1= and qo — 1= in Corollary 4, then Corollary 4 reduces to
Theorem 2.

Remark 8. If ® = ® in Corollary 4, then Corollary 4 reduces to Corollary 3.2 in [10].
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6. 1q1q2-TRAPEZOIDAL TYPE INEQUALITIES

In this section, we offer some new inequalities of trapezoidal type for the ¢;g¢o-differentiable co-
ordinated convex functions.

a0y 0o @ o054, ®
Theorem 15. Let ® = [®,®] : A — I be a function such that | 11032 ’ and na2® | b

a0y T 40450 a0qy T 40g50
are co-ordinated convex functions on A. Then, the following qiqs-trapezoidal type inequality holds for
the interval-valued functions

6.1) dy (I, 11,)
q1q2 (B — ) (0 —7) 0y 0 ® (@, 7) 02 4, ® (@, 0)
< o], 2L, A(q1) A(g2) m + B (q1) A(q2) m
) 1)
B (@) Alan)| 2222 O ) ) a;ﬂg)]
a¥qr ' YYqz a¥qr’ YYq2
where
B8 6
o - 7102® (a,7) + (1P (a,0) + 2@ (B,7) + P (B,0) 1 & (u Ao d
: 2, 2, * ﬁ—a)(5—v)/a / (t2)
I, = q2/5<1>(u'y) dlu—i— 5(1) L
? [2]q2 (6760 «@ ’ “n q2 67 a

o ’ av) d ot o o dl
T, e e g (67>A B ]

A _ q(1+3q2+2q3),B _a(l+49+4%)
“ By T B,

and dg is the Pompeiu—Hausdorff distance between the intervals.

Proof. Applying the definition of the Pompeiu-Hausdorff distance between the intervals, we have

(6.2) dp (I, 113)
= max {|I; — L[, |TT; —IIy|}.

2

Considering the co-ordinated convexity of % and from inequality (3.6), we obtain that
(6.3) |1, — 1L
< o0 | A |22 ) )25 )
+B(ax) Alan) 2002 ) 4 B ) B )| W]

I
(¥=’Yaq1q2q>
a0qy T 950

Similarly, using the co-ordinated convexity of and inequality (3.6), we find that

(6.4) I, — 10, |
4192 (ﬁ - 04) (5 - 7) O‘:Vaglqz6 (a’ 'Y) ‘3¢7'Y6§1<126 (a’ 5)
A A -1 |+ B A - -
B [Q}ql [2]q2 (@) Alez) aOq T 404, 0 T B (@) Ae) aOq T 40450
D (8,7) @ (8,0)
B A QIQ2 B B q142 .
+B(g2) A(q1) |~ —oﬁqﬁ D0 + B(q1) B(q2) |~ —aaqlT D0
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From (6.2)-(6.4), we get that

dg (111, 115)
= max{|ﬂ1—ﬂ2|7’ﬁ1—ﬁ2|}
q142 (6 - Oé) (6 B '7) 77831%@(0[ ,Y) a:’Yaglihf (a 6)
< A A LI & L L A
a = { [2]111 [2]q2 (ql) (Q2) a(117— 8(120 + B (Q1) (qQ) 048(117_ ’Ya(I2U
2 (8,7) 2 (8,0)
(I1112 Q1QQ
+B (q2) A(q1) —aaqlr B0 + B(q1) B (¢2) —aaqlr 90 ||
q1492 (ﬁ B a) (5 - ’7) 831!127( ”Y) 8311127 (a’ 6)
[2]q1 [2]q2 A(ql)A(qQ) aaqﬂ' ~+0q,0 +B(q1)A(q2) 068‘117- +0q,0
@ (3,7) (3,9)
f11¢I2 f11q2
+B(q2) A(q) |= a@qlT 9,0 + B(q1) B (q2) —oﬁqlf O
@ B-a)(6-9) oy O, P (00, 7) a0, ® (@, 0)
B [2]q1 [2]q2 Ale) 4(@) a0g, T vaqza +B(Q1)A(q2) aathT vaqza
(B ’Y) a,y (5 6)
B A 111112 B B 1<12
+B (g2) Aqr) | aaqlT 00 + B (q1) B (q2) —aaqlT 00
because
tI1L]2 ( ) — max 0‘77831!12@ (a’ ’Y) 0"7831%6 (a’ 7)
6 O a0 T 4000 || 00T 4040 ’
a 4192 ( ) — max aqu]zq) (a 5) aqwzq) (a 5)
004, T +0g, a6q17' 70,0 | a8q17' 04,0 ’
8 q142 (ﬂ’ ) — max qmz—(ﬂ 7) qlq2 (ﬂ’ )
a0, T 10g,0 aaq17 04,0 aaLnT 704y 0
and
fI1q2 (ﬂ 5) — max q1q2 (6 5) qqu (6 6)
a‘ZIT +0g, 0 aaqﬂ' v0g,0 , aathT 40,0 .

So, the proof is completed. O

Similarly, we can write the following Theorems by the help of Theorem 6, Theorem 7, and Theorem
8.

B, §92

— 8
Theorem 16. Let & = [0, D] : A — I be a function such that ’Baqlfq{;g:;

. 8621 ?®

B0q, T 90qy0 both

and

are co-ordinated convex functions on A. Then, the following q1qs-trapezoidal type inequality holds for
the interval-valued functions

dg (I3,114)
q142 (ﬁ — 04) (6 - ’Y) o 6831 q2 (a’ 7) o 6831 q2 (a’ 6)
B B 55 o5n |+ B A —
N [2}q1 [2](12 (2) B (2) ﬁaQIT aq20 B (@) A2) BaqlT aq20
5002 (8,7 B 092, ®(B,0)
41,92 ) q1,92 ?
+A(q1) B (g2) TF9, r 0,0 +A(q1) Alg) 0, 00
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where
P (a,7) + @ ®(B,7) + 2@ (,9) + q1q2® (5, 0) 1 8 o e
A [2}111 qu * (5 - a) ((5 ’y) / /y (I)(U,U) dql dq27
— ; B U B I u L B " 5 y
n [[% ey ), o Pl 2, e [, 2w %,

I N L S Y LI
+[2]q1(5_7)/7 © (o, v) °dy, +[2]q1(5—7)/7 o (8,v) dqzl

and dg 1is the Pompeiu—Hausdorff distance between the intervals.

5 02 5 92

Theorem 17. Let & = [@,@ A — Ij be a function such that ‘ 204,052 ’ and o410, % ‘ both

5 )
a0¢y T %0450 a0qy T °0g50

are co-ordinated conver functions on A. Then, the following q1qs-trapezoidal type inequality holds for
the interval-valued functions

dy (115, I1s)
0g2 (B— ) (5 =) L2070, ®(8,7) 002, 4, ®(8,0)
B B ’— B A _— -
B [2}111 [2]q2 (2) B (2) a0g, T aq20 T B(a)Ae) aOq T 3q20
552 ( 7) 4 52
@ 7q1,92 @, a~q1,92 — \" "/ qz
+A(q1) B (g2) T Dy + A(q1) A(qe) T anG ]
where
. — 01®(@,7) + 1¢2® (2, 0) + @ (B,7) + 2P (B,9) " /5/ dI sl
7 2], 2], (B - o’

I T S N
o [[Z]qz (ﬁ_a)/a ® (7)ot 2l,, (ﬁ—a)/a ® (u,0) ady,u

a [ 5 g1 R 51
=, P et gy [ #60) d]

and dg 1is the Pompeiu—Hausdorff distance between the intervals.

B 92 582 )
AL | gnd | g2 both
Og1 T ~0gy0

ﬁaql'r ,yaqzo

Theorem 18. Let = [Q,@ A > Lj‘ be a function such that

are co-ordinated convex functions on A. Then, the following qiqs-trapezoidal type inequality holds for
the interval-valued functions

dp (Tl7,1lg)
q192 (5_0‘) (5_7) ,8821 2 (a’é) 5821 2 ( ’7)
= [2}(11 [2]112 B (q1) B(g2) m + B (q1) A(g2) m
682172 (ﬁ’é) 5821 2 (5)7)
+A(q1) B (¢2) m +A(q) Al(g) M]’
where
@@ () + P (,0) + q192® (B, ) + 1 ® (B, 6) 1 e 8 I I
I, = [Q]ql [2]% +(ﬁ—a)(5 ’y)/ /7 D (u,v) Pdg,u Hdg,v
B B
N B 1 Bal u
" [qu G, 2 Pt 2, G ), o) ",
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and dg is the Pompeiu—Hausdorff distance between the intervals.

Remark 9. If ® = ® in Theorems 15, 16, 17, and 18, then Theorems 15, 16, 17, and 18 reduces to
Theorems 5, 6, 7, and 8, respectively.

Remark 10. If ® = ® and q1,q2 — 1~ in Theorems 15, 16, 17, and 18, then all results reduces
to [32, Theorem 2].

7. CONCLUSION

In this research, we have defined the double quantum integrals for the interval-valued functions of
two variables. We have proved some new Hermite-Hadamard type inclusions for co-ordinated convex
interval-valued functions using the newly defined double quantum integrals. Furthermore, we have
derived new inequalities of trapezoidal type for the interval-valued functions of two variables. It is also
proved that the results given in this paper are transformed into some existing results by considering
the interval-valued function ® such that ® = ® and ¢;,¢2 — 1~ in the main results of this paper.
It is an interesting and new problem that the upcoming researchers can prove the midpoint inequal-
ities, Ostrowski’s inequalities, Newton’s inequalities, and Simpson’s inequalities for different kinds of
interval-valued convexities using the Pompeiu—Hausdorff distance between the intervals in their future
research.
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