References

Allington, G., Valone, T. 2010. Reversal of desertification: the role of physical and chemical soil properties. Journal of Arid Environments 74(8), 973-977.
Attard, E., Recous, S., Chabbi, A., De, B.C., Guillaumaud, N., Labreuche, J., Philippot, L., Schmid, B., ROUX X, L.E. 2011. Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Global Change Biology 17(5), 1975-1989.
Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A., Norton, U., Ravetta, D.A., Schaeffer, S.M. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia141(2), 221-235.
Balesdent, J., Basile-Doelsch, I., Chadoeuf, J., Cornu, S., Derrien, D., Fekiacova, Z., Hatté, C. 2018. Atmosphere–soil carbon transfer as a function of soil depth. Nature 559(7715), 599-602.
Bao, S.D. 2000. Soil and Agricultural Chemistry Analysis. in:Agriculture Publication, Beijing , pp. 355-356.
Barber, N.A., Chantos‐Davidson, K.M., Amel Peralta, R., Sherwood, J.P., Swingley, W.D. 2017. Soil microbial community composition in tallgrass prairie restorations converge with remnants across a 27‐year chronosequence. Environmental Microbiology 19(8), 3118-3131.
Bastin, J.-F., Berrahmouni, N., Grainger, A., Maniatis, D., Mollicone, D., Moore, R., Patriarca, C., Picard, N., Sparrow, B., Abraham, E.M. 2017. The extent of forest in dryland biomes. Science 356(6338), 635-638.
Castro, H.F., Classen, A.T., Austin, E.E., Norby, R.J., Schadt, C.W. 2010. Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology76(4), 999-1007.
D’Odorico, P., Caylor, K., Okin, G.S., Scanlon, T.M. 2007. On soil moisture–vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. Journal of Geophysical Research: Biogeosciences 112(G4).
D’Odorico, P., Bhattachan, A., Davis, K.F., Ravi, S., Runyan, C.W. 2013. Global desertification: drivers and feedbacks. Advances in water resources 51, 326-344.
D’Odorico, P., Rosa, L., Bhattachan, A., Okin, G.S. 2019. Desertification and Land Degradation. in: Dryland Ecohydrology , Springer, pp. 573-602.
Daum, D., Schenk, M.K. 1997. Evaluation of the acetylene inhibition method for measuring denitrification in soilless plant culture systems.Biology and Fertility of Soils 24(1), 111-117.
de Carvalho, T.S., Jesus, E.d.C., Barlow, J., Gardner, T.A., Soares, I.C., Tiedje, J.M., Moreira, F.M.d.S. 2016. Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria. Ecology 97(10), 2760-2771.
de Vries, F.T., Griffiths, R.I., Bailey, M., Craig, H., Girlanda, M., Gweon, H.S., Hallin, S., Kaisermann, A., Keith, A.M., Kretzschmar, M. 2018. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications 9(1), 3033.
Delgado-Baquerizo, M., Bardgett, R.D., Vitousek, P.M., Maestre, F.T., Williams, M.A., Eldridge, D.J., Lambers, H., Neuhauser, S., Gallardo, A., García-Velázquez, L. 2019. Changes in belowground biodiversity during ecosystem development. Proceedings of the National Academy of Sciences 116(14), 6891-6896.
Delgado-Baquerizo, M., Eldridge, D.J., Ochoa, V., Gozalo, B., Singh, B.K., Maestre, F.T. 2017. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology letters 20(10), 1295-1305.
Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C., Gaitan, J.J., Encinar, D., Berdugo, M., Campbell, C.D., Singh, B.K. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications 7, 10541. 10.1038/ncomms10541
DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G.L. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology72(7), 5069-5072.
Eilers, K.G., Debenport, S., Anderson, S., Fierer, N. 2012. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil.Soil Biology and Biochemistry 50, 58-65.
Falkowski, P.G., Fenchel, T., Delong, E.F. 2008. The microbial engines that drive Earth’s biogeochemical cycles. Science 320(5879), 1034-1039.
Fierer, N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology 15(10), 579.
Fierer, N., Morse, J.L., Berthrong, S.T., Bernhardt, E.S., Jackson, R.B. 2007. Environmental controls on the landscape‐scale biogeography of stream bacterial communities. Ecology 88(9), 2162-2173.
Fierer, N., Schimel, J.P., Holden, P.A. 2003. Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry 35(1), 167-176.
Fukami, T., Dickie, I.A., Wilkie, J.P., Paulus, B.C., Park, D., Roberts, A., Buchanan, P.K., Allen, R.B. 2010. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities.Ecology Letters 13(6), 675-684.
Goldfarb, K.C., Karaoz, U., Hanson, C.A., Santee, C.A., Bradford, M.A., Treseder, K.K., Wallenstein, M.D., Brodie, E.L. 2011. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Frontiers in microbiology 2, 94.
Graham, E.B., Wieder, W.R., Leff, J.W., Weintraub, S.R., Townsend, A.R., Cleveland, C.C., Philippot, L., Nemergut, D.R. 2014. Do we need to understand microbial communities to predict ecosystem function? A comparison of statistical models of nitrogen cycling processes.Soil Biology and Biochemistry 68, 279-282.
Guo-dong, D. 2004. Study on Indicative Feature and Cover Classification of Vegetation in Regional Desertification Assessment-Taking Mu Us Sandland as an Example. Journal of Soil Water Conservation 18(1), 158-161.
Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G.W. 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7464), 567-570.
Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., Wei, G. 2018. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems.Microbiome 6(1), 146.
Legendre, P., De Cáceres, M. 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning.Ecology letters 16(8), 951-963.
Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C., Schleper, C. 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature442(7104), 806-809.
Levy-Booth, D.J., Prescott, C.E., Grayston, S.J. 2014. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biology and Biochemistry 75, 11-25.
Li, C., Yan, K., Tang, L., Jia, Z., Li, Y. 2014. Change in deep soil microbial communities due to long-term fertilization. Soil Biology and Biochemistry 75, 264-272.
Li, D., Zhang, X., Greenc, S.M., Dungaitc, J.A.J., Wen, X., Tang, Y., Guo, Z., Yang, Y., Sun, X., Quinec, T.A. 2018. Nitrogen functional gene activity in soil profiles under progressive vegetative recovery after abandonment of agriculture at the Puding Karst Critical Zone Observatory, SW China. Soil Biology and Biochemistry 125, 93-102.
Li, J., Delgado-Baquerizo, M., Wang, J.-T., Hu, H.-W., Cai, Z.-J., Zhu, Y.-N., Singh, B.K. 2019. Fungal richness contributes to multifunctionality in boreal forest soil. Soil Biology and Biochemistry 136, 107526.
Lozano, Y.M., Hortal, S., Armas, C., Pugnaire, F.I. 2014. Interactions among soil, plants, and microorganisms drive secondary succession in a dry environment. Soil Biology and Biochemistry 78, 298-306.
Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F.T., Mace, G., Whittingham, M.J., Fischer, M. 2018. Redefining ecosystem multifunctionality. Nature Ecology & Evolution 2(3), 427-436.
Naether, A., Foesel, B.U., Naegele, V., Wüst, P.K., Weinert, J., Bonkowski, M., Alt, F., Oelmann, Y., Polle, A., Lohaus, G. 2012. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Applied and Environmental Microbiology 78(20), 7398-7406.
Neilson, J.W., Califf, K., Cardona, C., Copeland, A., Van Treuren, W., Josephson, K.L., Knight, R., Gilbert, J.A., Quade, J., Caporaso, J.G. 2017. Significant impacts of increasing aridity on the arid soil microbiome. MSystems 2(3), e00195-16.
Nilsson, R.H., Anslan, S., Bahram, M., Wurzbacher, C., Baldrian, P., Tedersoo, L. 2019. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nature Reviews Microbiology 17(2), 95-109.
Petersen, D.G., Blazewicz, S.J., Firestone, M., Herman, D.J., Turetsky, M., Waldrop, M. 2012. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environmental Microbiology 14(4), 993-1008.
Powell, J.R., Karunaratne, S., Campbell, C.D., Yao, H., Robinson, L., Singh, B.K. 2015. Deterministic processes vary during community assembly for ecologically dissimilar taxa. Nature Communications 6, 8444.
Ravi, S., Breshears, D.D., Huxman, T.E., D’Odorico, P. 2010. Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology 116(3-4), 236-245.
Schermelleh-Engel, K., Moosbrugger, H., Müller, H. 2003. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. MPR-online 8(2), 23-74.
Schimel, D.S. 2010. Drylands in the earth system. Science327(5964), 418-419.
Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N.S., Wijesundera, R., Ruiz, L.V., Vasco-Palacios, A.M., Thu, P.Q., Suija, A. 2014. Global diversity and geography of soil fungi. Science346(6213), 1256688.
Upton, R.N., Checinska Sielaff, A., Hofmockel, K.S., Xu, X., Polley, H.W., Wilsey, B.J. 2020. Soil depth and grassland origin cooperatively shape microbial community co‐occurrence and function. Ecosphere11(1), e02973.
Wagg, C., Bender, S.F., Widmer, F., van der Heijden, M.G. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences 111(14), 5266-5270.
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden, M.G. 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nature communications 10(1), 1-10.
Wang, H., Deng, N., Wu, D., Hu, S., Kou, M. 2017. Long-termnet transformation and quantitative molecular mechanisms of soil nitrogen during natural vegetation recovery of abandoned farmland on the Loess Plateau of China. Science of The Total Environment 607, 152-159.
Wang, H., Li, X., Xiao, J., Ma, M., Tan, J., Wang, X., Geng, L. 2019a. Carbon fluxes across alpine, oasis, and desert ecosystems in northwestern China: The importance of water availability. Science of the Total Environment 697, 133-978.
Wang, Y., Dungait, J.A., Xing, K., Green, S.M., Hartley, I., Tu, C., Quine, T.A., Tian, J., Kuzyakov, Y. 2019b. Persistence of soil microbial function at the rock‐soil interface in degraded karst topsoils.Land Degradation & Development 31, 251-265.
Ward, D., Trinogga, J., Wiegand, K., du Toit, J., Okubamichael, D., Reinsch, S., Schleicher, J. 2018. Large shrubs increase soil nutrients in a semi-arid savanna. Geoderma 310, 153-162.
Wardle, D.A. 2013. Communities and ecosystems: linking the aboveground and belowground components (MPB-34) . Princeton University Press.
Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Dietrich, M., Herbold, C.W., Eichorst, S.A., Woebken, D., Richter, A. 2019. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology and Biochemistry 136, 107521.
Zhi, W., Yuan, L., Ji, G., He, C. 2015. Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands. Environmental science and technology 49(7), 4575-4583.
Zhou, Y., Boutton, T.W., Wu, X.B. 2018. Soil phosphorus does not keep pace with soil carbon and nitrogen accumulation following woody encroachment. Global Change Biology 24(5), 1992-2007.