Future directions and summation
Bat flies are a largely understudied group of blood-feeding arthropods
that play an important role in transmission of bat pathogens. This study
poses several hypotheses to be tested in future research:
- New World nycteribiid bat flies apparently have different primary
symbionts than streblids and Old World nycteribiids. While it is
unlikely that Arsenophonus acts as the primary symbiont in the
nycteribiid flies sequenced for the study, the inferences that we can
make from relative abundances based on metabarcoding are limited.
Future studies examining signatures of gene loss using metagenomic
sequencing or testing which bacteria are present in the bacteriome of
new world nycteribiid flies will provide more information about which
bacterium may be functioning as the primary symbiont.
- The implications of decreasing microbial diversity or changes in the
relative abundance of bacteria on the emergent properties of the
microbiome are unclear (Shade, 2017). Through comparison with network
analysis, we hypothesize that decreasing parasite species richness
contributes to greater microbial network modularity and fewer central
bacteria. However, methods used to generate interaction networks from
bacteria suffer from low precision and accuracy, and results are not
robust to the parameters and data used to construct networks (Röttjers
& Faust, 2018). Establishing null expectations for a healthy
microbiome may help improve assessment of the underlying network and
estimation of emergent properties.
- The downstream impact of habitat fragmentation on mitigating vector
competence of bat flies is not tested here. Further research is needed
to examine how these changes are reflected in the prevalence of bat
pathogens, like Bartonella . This requires more complete
sampling of the bat and bat fly community.
In this study, we tested whether habitat fragment area, isolation, and
distance to a source impact microbiome composition. We found that
parasite species identity explains the majority of microbiome variation
with habitat fragment area explaining less of the variation, but
nevertheless significantly impacting microbiome community composition.
Specifically, decreasing habitat patch size led to a decrease in the
species richness of parasites that caused a decrease in the size of
bacterial interaction networks, leading to highly modular microbiomes in
parasites collected from small habitat patches. We did not find evidence
that the microbiome changes in accordance with island biogeography
theory in response to habitat fragmentation. Instead, it appears that
environmental change impacts the microbiome of parasites though
cascading community-wide effects on relative abundance of bacteria.
Taken together, there is not currently a good null hypothesis for how
microbiome communities change in response to environmental gradients.
Establishing baseline expectations about variation in diversity and
abundance of bacteria has inherent importance to understanding how
pathogen transmission may be impacted by environmental degradation,
especially in arthropod vectors of disease.
Acknowledgements
This research was funded by Richard Gilder Graduate School Dissertation
Research Fellowships to KAS and MRI, and a CAPES “science without
borders” Fellowship to TSMT with additional funding from Queen Mary
University of London to ELC and from The American Museum of Natural
History to SLP.
Literature Cited
Aksoy, E., Telleria, E. L., Echodu, R., Wu, Y., Okedi, L. M., Weiss, B.
L., Aksoy, S., & Caccone, A. (2014). Analysis of multiple tsetse fly
populations in Uganda reveals limited diversity and species-specific gut
microbiota. Applied and Environmental Microbiology, 80(14), 4301–4312.
Alberdi, A., Aizpurua, O., Gilbert, M. T. P., & Bohmann, K. (2018).
Scrutinizing key steps for reliable metabarcoding of environmental
samples. Methods in Ecology and Evolution / British Ecological Society,
9(1), 134–147.
Amato, K. R., Yeoman, C. J., Kent, A., Righini, N., Carbonero, F.,
Estrada, A., Gaskins, H. R., Stumpf, R. M., Yildirim, S., Torralba, M.,
Gillis, M., Wilson, B. A., Nelson, K. E., White, B. A., & Leigh, S. R.
(2013). Habitat degradation impacts black howler monkey (Alouatta
pigra ) gastrointestinal microbiomes. The ISME Journal, 7(7),
1344–1353.
Anderson, M. J. (2014). Permutational Multivariate Analysis of Variance
(PERMANOVA). In N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F.
Ruggeri, & J. L. Teugels (Eds.), Wiley StatsRef: Statistics Reference
Online (Vol. 18, pp. 1–15). John Wiley & Sons, Ltd.
Anderson, M. J., & Walsh, D. C. I. (2013). PERMANOVA, ANOSIM, and the
Mantel test in the face of heterogeneous dispersions: What null
hypothesis are you testing? Ecological Monographs, 83(4), 557–574.
Apprill, A., McNally, S., Parsons, R., & Weber, L. (2015). Minor
revision to V4 region SSU rRNA 806R gene primer greatly increases
detection of SAR11 bacterioplankton. Aquatic Microbial Ecology:
International Journal, 75(2), 129–137.
Avena, C. V., Parfrey, L. W., Leff, J. W., Archer, H. M., Frick, W. F.,
Langwig, K. E., Kilpatrick, A. M., Powers, K. E., Foster, J. T., &
McKenzie, V. J. (2016). Deconstructing the Bat Skin Microbiome:
Influences of the Host and the Environment. Frontiers in Microbiology,
7, 1753.
Becker, C. G., Longo, A. V., Haddad, C. F. B., & Zamudio, K. R. (2017).
Land cover and forest connectivity alter the interactions among host,
pathogen and skin microbiome. Proceedings. Biological Sciences / The
Royal Society, 284(1861). https://doi.org/10.1098/rspb.2017.0582
Bell, T., Ager, D., Song, J.-I., Newman, J. A., Thompson, I. P., Lilley,
A. K., & van der Gast, C. J. (2005). Larger islands house more
bacterial taxa. Science, 308(5730), 1884.
Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J.
I., Knight, R., Mills, D. A., & Caporaso, J. G. (2013).
Quality-filtering vastly improves diversity estimates from Illumina
amplicon sequencing. Nature Methods, 10(1), 57–59.
Brandes, U. (2001). A faster algorithm for betweenness centrality. The
Journal of Mathematical Sociology, 25(2), 163–177.
Breitschwerdt, E. B., & Kordick, D. L. (2000). Bartonella infection in
animals: carriership, reservoir potential, pathogenicity, and zoonotic
potential for human infection. Clinical Microbiology Reviews, 13(3),
428–438.
Brown, J. H. (1971). Mammals on Mountaintops: Nonequilibrium Insular
Biogeography. The American Naturalist, 105(945), 467–478.
Bueno, A. S., & Peres, C. A. (2019). Patch‐scale biodiversity retention
in fragmented landscapes: Reconciling the habitat amount hypothesis with
the island biogeography theory. Journal of Biogeography, 46(3),
621–632.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A.
J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference
from Illumina amplicon data. Nature Methods, 13(7), 581–583.
Carbonero, F., Oakley, B. B., & Purdy, K. J. (2014). Metabolic
flexibility as a major predictor of spatial distribution in microbial
communities. PloS One, 9(1), e85105.
Cariou, M., Duret, L., & Charlat, S. (2017). The global impact ofWolbachia on mitochondrial diversity and evolution. Journal of
Evolutionary Biology, 30(12), 2204–2210.
Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2012). NbClust
Package: finding the relevant number of clusters in a dataset. Journal
of Statistical Software. DOI 10.18637/jss.v061.i06.
Cirimotich, C. M., Ramirez, J. L., & Dimopoulos, G. (2011). Native
microbiota shape insect vector competence for human pathogens. Cell Host
& Microbe, 10(4), 307–310.
Csardi, G., Nepusz, T., & Others. (2006). The igraph software package
for complex network research. InterJournal, Complex Systems, 1695(5),
1–9.
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., & Callahan,
B. J. (2018). Simple statistical identification and removal of
contaminant sequences in marker-gene and metagenomics data. Microbiome,
6(1), 226.
Dedeine, F., Boulétreau, M., & Vavre, F. (2005). Wolbachiarequirement for oogenesis: occurrence within the genus Asobara(Hymenoptera, Braconidae) and evidence for intraspecific variation inA. tabida . Heredity, 95(5), 394–400.
Delmas, E., Besson, M., Brice, M.-H., Burkle, L. A., Dalla Riva, G. V.,
Fortin, M.-J., Gravel, D., Guimarães, P. R., Jr., Hembry, D. H., Newman,
E. A., Olesen, J. M., Pires, M. M., Yeakel, J. D., & Poisot, T. (2019).
Analysing ecological networks of species interactions: Analyzing
ecological networks. Biological Reviews, 94(1), 16–36.
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L.,
Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006).
Greengenes, a chimera-checked 16S rRNA gene database and workbench
compatible with ARB. Applied and Environmental Microbiology, 72(7),
5069–5072.
Dheilly, N. M., Poulin, R., & Thomas, F. (2015). Biological warfare:
Microorganisms as drivers of host–parasite interactions. Infection,
Genetics and Evolution: Journal of Molecular Epidemiology and
Evolutionary Genetics in Infectious Diseases, 34, 251–259.
Dick, C. W., & Dittmar, K. (2014). Parasitic Bat Flies (Diptera:
Streblidae and Nycteribiidae): Host Specificity and Potential as
Vectors. In S. Klimpel & H. Mehlhorn (Eds.), Bats (Chiroptera) as
Vectors of Diseases and Parasites (pp. 131–155). Springer, Berlin,
Heidelberg.
Eisenhofer, R., Minich, J. J., Marotz, C., Cooper, A., Knight, R., &
Weyrich, L. S. (2019). Contamination in Low Microbial Biomass Microbiome
Studies: Issues and Recommendations. Trends in Microbiology, 27(2),
105–117.
Emmons, L., & Feer, F. (1997). Neotropical rainforest mammals: a field
guide. University of Chicago Press.
Feldhaar, H. (2011). Bacterial symbionts as mediators of ecologically
important traits of insect hosts. Ecological Entomology, 36(5),
533–543.
Fernandes, A. D., Reid, J. N., Macklaim, J. M., McMurrough, T. A.,
Edgell, D. R., & Gloor, G. B. (2014). Unifying the analysis of
high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA
gene sequencing and selective growth experiments by compositional data
analysis. Microbiome, 2, 15.
Freeman, L. C. (1978). Centrality in social networks conceptual
clarification. Social Networks, 1(3), 215–239.
Gibson, C. M., & Hunter, M. S. (2010). Extraordinarily widespread and
fantastically complex: comparative biology of endosymbiotic bacterial
and fungal mutualists of insects. Ecology Letters, 13(2), 223–234.
Gilbert, J. A., Jansson, J. K., & Knight, R. (2014). The Earth
Microbiome project: successes and aspirations. BMC Biology, 12, 69.
Gilbert, J. A., Meyer, F., Antonopoulos, D., Balaji, P., Brown, C. T.,
Brown, C. T., Desai, N., Eisen, J. A., Evers, D., Field, D., Feng, W.,
Huson, D., Jansson, J., Knight, R., Knight, J., Kolker, E.,
Konstantindis, K., Kostka, J., Kyrpides, N., … Stevens, R.
(2010). Meeting report: the terabase metagenomics workshop and the
vision of an Earth microbiome project. Standards in Genomic Sciences,
3(3), 243–248.
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J.
(2017). Microbiome Datasets Are Compositional: And This Is Not Optional.
Frontiers in Microbiology, 8, 2224.
Gloor, G. B., & Reid, G. (2016). Compositional analysis: a valid
approach to analyze microbiome high-throughput sequencing data. Canadian
Journal of Microbiology, 62(8), 692–703.
Graciolli, G., & de Carvalho, C. J. B. (2001a). Moscas ectoparasitas
(Diptera, Hippoboscoidea) de morcegos (Mammalia, Chiroptera) do Estado
do Paraná. 11. Streblidae. Chave pictórica para gêneros e espécies 1.
RevIa Bras. Zool, 18(3), 907–960.
Graciolli, G., & de Carvalho, C. J. B. (2001b). Moscas ectoparasitas
(Diptera, Hippoboscoidea, Nycteribiidae) de morcegos (Mammalia,
Chiroptera) do Estado do Paraná, Brasil. I. Basilia, taxonomia e chave
pictórica para as espécies 1. RevIa Bras. Zool., 18, 33–49.
Gustafson, E. J., & Parker, G. R. (1992). Relationships between
landcover proportion and indices of landscape spatial pattern. Landscape
Ecology, 7(2), 101–110.
Hanski, I. (2015). Habitat fragmentation and species richness. Journal
of Biogeography, 42(5), 989–993.
Hiller, T., Brändel, S. D., Honner, B., Page, R. A., & Tschapka, M.
(2020). Parasitization of bats by bat flies (Streblidae) in fragmented
habitats. Biotropica, 72, 617.
Hočevar, T., Demšar, J., & Others. (2016). Computation of graphlet
orbits for nodes and edges in sparse graphs. Journal of Statistical
Software, 71. https://www.jstatsoft.org/article/view/v071i10/v71i10.pdf
Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X.-Y., & Fukatsu, T. (2010).Wolbachia as a bacteriocyte-associated nutritional mutualist.
Proceedings of the National Academy of Sciences of the United States of
America, 107(2), 769–774.
Ingala, M. R., Becker, D. J., Bak Holm, J., Kristiansen, K., & Simmons,
N. B. (2019). Habitat fragmentation is associated with dietary shifts
and microbiota variability in common vampire bats. Ecology and
Evolution, 9(11), 6508–6523.
Itescu, Y. (2019). Are island-like systems biologically similar to
islands? A review of the evidence. Ecography, 42(7), 1298–1314.
Jiggins, F. M. (2003). Male-killing Wolbachia and mitochondrial
DNA: selective sweeps, hybrid introgression and parasite population
dynamics. Genetics, 164(1), 5–12.
Katoh, K., Kuma, K.-I., Toh, H., & Miyata, T. (2005). MAFFT version 5:
improvement in accuracy of multiple sequence alignment. Nucleic Acids
Research, 33(2), 511–518.
Katoh, K., Misawa, K., Kuma, K.-I., & Miyata, T. (2002). MAFFT: a novel
method for rapid multiple sequence alignment based on fast Fourier
transform. Nucleic Acids Research, 30(14), 3059–3066.
Katoh, K., & Toh, H. (2007). PartTree: an algorithm to build an
approximate tree from a large number of unaligned sequences.
Bioinformatics , 23(3), 372–374.
Kircher, M., Sawyer, S., & Meyer, M. (2012). Double indexing overcomes
inaccuracies in multiplex sequencing on the Illumina platform. Nucleic
Acids Research, 40(1), e3.
Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E., & Taylor,
W. W. (2003). Compartments revealed in food-web structure. Nature,
426(6964), 282–285.
Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M.
J., & Bonneau, R. A. (2015). Sparse and compositionally robust
inference of microbial ecological networks. PLoS Computational Biology,
11(5), e1004226.
Lack, J. B., Nichols, R. D., Wilson, G. M., & Van Den Bussche, R. A.
(2011). Genetic signature of reproductive manipulation in the
phylogeography of the bat fly, Trichobius major . The Journal of
Heredity, 102(6), 705–718.
Liu, H., Roeder, K., & Wasserman, L. (2010). Stability Approach to
Regularization Selection (StARS) for High Dimensional Graphical Models.
Advances in Neural Information Processing Systems, 24(2), 1432–1440.
MacArthur, R. H., & Wilson, E. O. (1963). An equilibrium theory of
insular zoogeography. Evolution; International Journal of Organic
Evolution, 17(4), 373–387.
Mahana, D., Trent, C. M., Kurtz, Z. D., Bokulich, N. A., Battaglia, T.,
Chung, J., Müller, C. L., Li, H., Bonneau, R. A., & Blaser, M. J.
(2016). Antibiotic perturbation of the murine gut microbiome enhances
the adiposity, insulin resistance, and liver disease associated with
high-fat diet. Genome Medicine, 8(1), 48.
Martin, M. (2011). Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet.journal, 17(1), 10–12.
Martiny, J. B. H., Bohannan, B. J. M., Brown, J. H., Colwell, R. K.,
Fuhrman, J. A., Green, J. L., Horner-Devine, M. C., Kane, M., Krumins,
J. A., Kuske, C. R., Morin, P. J., Naeem, S., Ovreås, L., Reysenbach,
A.-L., Smith, V. H., & Staley, J. T. (2006). Microbial biogeography:
putting microorganisms on the map. Nature Reviews. Microbiology, 4(2),
102–112.
McGarigal, K., Cushman, S. A., Neel, M. C., & Ene, E. (2002).
FRAGSTATS: spatial pattern analysis program for categorical maps.
http://www.citeulike.org/group/342/article/287784
McMurdie, P. J., & Holmes, S. (2012). Phyloseq: a bioconductor package
for handling and analysis of high-throughput phylogenetic sequence data.
Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing,
235–246.
McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for
reproducible interactive analysis and graphics of microbiome census
data. PloS One, 8(4), e61217.
Mitra, A., Skrzypczak, M., Ginalski, K., & Rowicka, M. (2015).
Strategies for achieving high sequencing accuracy for low diversity
samples and avoiding sample bleeding using illumina platform. PloS One,
10(4), e0120520.
Morse, S. F., Bush, S. E., Patterson, B. D., Dick, C. W., Gruwell, M.
E., & Dittmar, K. (2013). Evolution, multiple acquisition, and
localization of endosymbionts in bat flies (Diptera: Hippoboscoidea:
Streblidae and Nycteribiidae). Applied and Environmental Microbiology,
79(9), 2952–2961.
Morse, S. F., Dick, C. W., Patterson, B. D., & Dittmar, K. (2012). Some
like it hot: evolution and ecology of novel endosymbionts in bat flies
of cave-roosting bats (hippoboscoidea, nycterophiliinae). Applied and
Environmental Microbiology, 78(24), 8639–8649.
Morse, S. F., Olival, K. J., Kosoy, M., Billeter, S., Patterson, B. D.,
Dick, C. W., & Dittmar, K. (2012). Global distribution and genetic
diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae,
Nycteribiidae). Infection, Genetics and Evolution: Journal of Molecular
Epidemiology and Evolutionary Genetics in Infectious Diseases, 12(8),
1717–1723.
Müller, C. L., Bonneau, R., & Kurtz, Z. (2016). Generalized Stability
Approach for Regularized Graphical Models.
http://arxiv.org/abs/1605.07072
Newman, M. E. J. (2006). Finding community structure in networks using
the eigenvectors of matrices. Physical Review. E, Statistical,
Nonlinear, and Soft Matter Physics, 74(3 Pt 2), 036104.
Nikoh, N., Hosokawa, T., Moriyama, M., Oshima, K., Hattori, M., &
Fukatsu, T. (2014). Evolutionary origin of insect-Wolbachianutritional mutualism. Proceedings of the National Academy of Sciences
of the United States of America, 111(28), 10257–10262.
Nováková, E., Hypsa, V., & Moran, N. A. (2009). Arsenophonus , an
emerging clade of intracellular symbionts with a broad host
distribution. BMC Microbiology, 9, 143.
Obame-Nkoghe, J., Rahola, N., Bourgarel, M., Yangari, P., Prugnolle, F.,
Maganga, G. D., Leroy, E.-M., Fontenille, D., Ayala, D., & Paupy, C.
(2016). Bat flies (Diptera: Nycteribiidae and Streblidae) infesting
cave-dwelling bats in Gabon: diversity, dynamics and potential role inPolychromophilus melanipherus transmission. Parasites & Vectors,
9(1), 333.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O’hara, R. B.,
Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2010).
Vegan: community ecology package. R package version 1.17-4. Http://cran.
R-Project. Org>. Acesso Em, 23, 2010.
Parada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base
matters: assessing small subunit rRNA primers for marine microbiomes
with mock communities, time series and global field samples.
Environmental Microbiology, 18(5), 1403–1414.
Patterson, B. D., Dick, C. W., & Dittmar, K. (2007). Roosting habits of
bats affect their parasitism by bat flies (Diptera: Streblidae). Journal
of Tropical Ecology, 23(2), 177–189.
Pilosof, S., Dick, C. W., Korine, C., Patterson, B. D., & Krasnov, B.
R. (2012). Effects of anthropogenic disturbance and climate on patterns
of bat fly parasitism. PloS One, 7(7), e41487.
Pontes, M. H., & Dale, C. (2006). Culture and manipulation of insect
facultative symbionts. Trends in Microbiology, 14(9), 406–412.
Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree
2–approximately maximum-likelihood trees for large alignments. PloS
One, 5(3), e9490.
Regier, Y., O Rourke, F., & Kempf, V. A. J. (2016). Bartonella spp. - a
chance to establish One Health concepts in veterinary and human
medicine. Parasites & Vectors, 9(1), 261.
Reis, N. R., Fregonezi, M. N., Peracchi, A. L., & Shibatta, O. A.
(2013). Morcegos do Brasil: guia de campo. Technical Books Editora.
Röttjers, L., & Faust, K. (2018). From hairballs to
hypotheses-biological insights from microbial networks. FEMS
Microbiology Reviews, 42(6), 761–780.
Ruiz, V. E., Battaglia, T., Kurtz, Z. D., Bijnens, L., Ou, A.,
Engstrand, I., Zheng, X., Iizumi, T., Mullins, B. J., Müller, C. L.,
Cadwell, K., Bonneau, R., Perez-Perez, G. I., & Blaser, M. J. (2017). A
single early-in-life macrolide course has lasting effects on murine
microbial network topology and immunity. Nature Communications, 8(1),
518.
Saldaña-Vázquez, R. A., Castro-Luna, A. A., Sandoval-Ruiz, C. A.,
Hernández-Montero, J. R., & Stoner, K. E. (2013). Population
Composition and Ectoparasite Prevalence on Bats (Sturnira
ludovici ; Phyllostomidae) in Forest Fragments and Coffee Plantations of
Central Veracruz, Mexico. Biotropica, 45(3), 351–356.
Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O.,
Moffatt, M. F., Turner, P., Parkhill, J., Loman, N. J., & Walker, A. W.
(2014). Reagent and laboratory contamination can critically impact
sequence-based microbiome analyses. BMC Biology, 12, 87.
Sassera, D., Epis, S., Pajoro, M., & Bandi, C. (2013). Microbial
symbiosis and the control of vector-borne pathogens in tsetse flies,
human lice, and triatomine bugs. Pathogens and Global Health, 107(6),
285–292.
Shade, A. (2017). Diversity is the question, not the answer. The ISME
Journal, 11(1), 1–6.
Sikes, R. S., Care, A., & of Mammalogists, U. C. of T. A. S. (2016).
2016 Guidelines of the American Society of Mammalogists for the use of
wild mammals in research and education. Journal of Mammalogy, 97(3),
663–688.
Silverman, J. D., Washburne, A. D., Mukherjee, S., & David, L. A.
(2017). A phylogenetic transform enhances analysis of compositional
microbiota data. eLife, 6. https://doi.org/10.7554/eLife.21887
Souto Martins Teixeira, T. (2019). Bats in a fragmented world [Queen
Mary University of London].
https://qmro.qmul.ac.uk/xmlui/handle/123456789/60575
Speer, K. A., Luetke, E., Bush, E., Sheth, B., Gerace, A., Quicksall,
Z., Miyamoto, M., Dick, C. W., Dittmar, K., Albury, N., & Reed, D. L.
(2019). A Fly on the Cave Wall: Parasite Genetics Reveal Fine-Scale
Dispersal Patterns of Bats. Journal of Parasitology.
https://doi.org/10.1645/19-20
Stouffer, D. B., & Bascompte, J. (2010). Understanding food-web
persistence from local to global scales. Ecology Letters, 13(2),
154–161.
Stuckey, M. J., Chomel, B. B., de Fleurieu, E. C., Aguilar-Setién, A.,
Boulouis, H.-J., & Chang, C.-C. (2017). Bartonella , bats and
bugs: A review. Comparative Immunology, Microbiology and Infectious
Diseases, 55(Supplement C), 20–29.
Trowbridge, R. E., Dittmar, K., & Whiting, M. F. (2006). Identification
and phylogenetic analysis of Arsenophonus - andPhotorhabdus -type bacteria from adult Hippoboscidae and
Streblidae (Hippoboscoidea). Journal of Invertebrate Pathology, 91(1),
64–68.
Tsilimigras, M. C. B., & Fodor, A. A. (2016). Compositional data
analysis of the microbiome: fundamentals, tools, and challenges. Annals
of Epidemiology, 26(5), 330–335.
Vanbergen, A. J., Woodcock, B. A., Gray, A., Andrews, C., Ives, S.,
Kjeldsen, T. R., Laize, C. L. R., Chapman, D. S., Butler, A., & O’Hare,
M. T. (2017). Dispersal capacity shapes responses of river island
invertebrate assemblages to vegetation structure, island area, and
flooding. Insect Conservation and Diversity / Royal Entomological
Society of London, 10(4), 341–353.
van der Gast, C. J. (2015). Microbial biogeography: the end of the
ubiquitous dispersal hypothesis? Environmental Microbiology, 17(3),
544–546.
Warren, B. H., Simberloff, D., Ricklefs, R. E., Aguilée, R., Condamine,
F. L., Gravel, D., Morlon, H., Mouquet, N., Rosindell, J., Casquet, J.,
Conti, E., Cornuault, J., Fernández-Palacios, J. M., Hengl, T., Norder,
S. J., Rijsdijk, K. F., Sanmartín, I., Strasberg, D., Triantis, K. A.,
… Thébaud, C. (2015). Islands as model systems in ecology and
evolution: prospects fifty years after MacArthur-Wilson. Ecology
Letters, 18(2), 200–217.
Weiss, B., & Aksoy, S. (2011). Microbiome influences on insect host
vector competence. Trends in Parasitology, 27(11), 514–522.
Weiss, S., Amir, A., Hyde, E. R., Metcalf, J. L., Song, S. J., &
Knight, R. (2014). Tracking down the sources of experimental
contamination in microbiome studies. Genome Biology, 15(12), 564.
Wenzel, R. L. (1976). The streblid batflies of Venezuela (Diptera:
Streblidae). Brigham Young University Science Bulletin, Biological
Series, 20(4), 1.
Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews:
Computational Statistics, 3(2), 180–185.
Wilkinson, D. A., Duron, O., Cordonin, C., Gomard, Y., Ramasindrazana,
B., Mavingui, P., Goodman, S. M., & Tortosa, P. (2016). The Bacteriome
of Bat Flies (Nycteribiidae) from the Malagasy Region: a Community
Shaped by Host Ecology, Bacterial Transmission Mode, and Host-Vector
Specificity. Applied and Environmental Microbiology, 82(6), 1778–1788.
Xia, Y., & Sun, J. (2017). Hypothesis Testing and Statistical Analysis
of Microbiome. Genes & Diseases, 4(3), 138–148.
Yaveroğlu, Ö. N., Malod-Dognin, N., Davis, D., Levnajic, Z., Janjic, V.,
Karapandza, R., Stojmirovic, A., & Pržulj, N. (2014). Revealing the
hidden language of complex networks. Scientific Reports, 4, 4547.
Zinger, L., Boetius, A., & Ramette, A. (2014). Bacterial taxa-area and
distance-decay relationships in marine environments. Molecular Ecology,
23(4), 954–964.
Data Accessibility Statement
All metabarcoding data was uploaded to QIITA (doi to follow), COI
sequences of bat flies were added to GenBank (Accession numbers to
follow), and an R Markdown of all analyses is on Github (link to
follow).
Author Contributions
KAS, TSMT, MRI, NBS, and ELB designed the study; TSMT collected samples
in the field; KAS, AMB, KD, CW, KK, CD, MVV, ACD collected lab-based
data; KAS, TSMT, AMB, MVV, ACD, and SCG analyzed the data; KAS, SLP, and
ELC funded the research; KAS wrote the manuscript; and all authors
contributed to review and editing of the manuscript.