Future directions and summation
Bat flies are a largely understudied group of blood-feeding arthropods that play an important role in transmission of bat pathogens. This study poses several hypotheses to be tested in future research:
  1. New World nycteribiid bat flies apparently have different primary symbionts than streblids and Old World nycteribiids. While it is unlikely that Arsenophonus acts as the primary symbiont in the nycteribiid flies sequenced for the study, the inferences that we can make from relative abundances based on metabarcoding are limited. Future studies examining signatures of gene loss using metagenomic sequencing or testing which bacteria are present in the bacteriome of new world nycteribiid flies will provide more information about which bacterium may be functioning as the primary symbiont.
  2. The implications of decreasing microbial diversity or changes in the relative abundance of bacteria on the emergent properties of the microbiome are unclear (Shade, 2017). Through comparison with network analysis, we hypothesize that decreasing parasite species richness contributes to greater microbial network modularity and fewer central bacteria. However, methods used to generate interaction networks from bacteria suffer from low precision and accuracy, and results are not robust to the parameters and data used to construct networks (Röttjers & Faust, 2018). Establishing null expectations for a healthy microbiome may help improve assessment of the underlying network and estimation of emergent properties.
  3. The downstream impact of habitat fragmentation on mitigating vector competence of bat flies is not tested here. Further research is needed to examine how these changes are reflected in the prevalence of bat pathogens, like Bartonella . This requires more complete sampling of the bat and bat fly community.
In this study, we tested whether habitat fragment area, isolation, and distance to a source impact microbiome composition. We found that parasite species identity explains the majority of microbiome variation with habitat fragment area explaining less of the variation, but nevertheless significantly impacting microbiome community composition. Specifically, decreasing habitat patch size led to a decrease in the species richness of parasites that caused a decrease in the size of bacterial interaction networks, leading to highly modular microbiomes in parasites collected from small habitat patches. We did not find evidence that the microbiome changes in accordance with island biogeography theory in response to habitat fragmentation. Instead, it appears that environmental change impacts the microbiome of parasites though cascading community-wide effects on relative abundance of bacteria. Taken together, there is not currently a good null hypothesis for how microbiome communities change in response to environmental gradients. Establishing baseline expectations about variation in diversity and abundance of bacteria has inherent importance to understanding how pathogen transmission may be impacted by environmental degradation, especially in arthropod vectors of disease.
Acknowledgements
This research was funded by Richard Gilder Graduate School Dissertation Research Fellowships to KAS and MRI, and a CAPES “science without borders” Fellowship to TSMT with additional funding from Queen Mary University of London to ELC and from The American Museum of Natural History to SLP.
Literature Cited
Aksoy, E., Telleria, E. L., Echodu, R., Wu, Y., Okedi, L. M., Weiss, B. L., Aksoy, S., & Caccone, A. (2014). Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Applied and Environmental Microbiology, 80(14), 4301–4312.
Alberdi, A., Aizpurua, O., Gilbert, M. T. P., & Bohmann, K. (2018). Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution / British Ecological Society, 9(1), 134–147.
Amato, K. R., Yeoman, C. J., Kent, A., Righini, N., Carbonero, F., Estrada, A., Gaskins, H. R., Stumpf, R. M., Yildirim, S., Torralba, M., Gillis, M., Wilson, B. A., Nelson, K. E., White, B. A., & Leigh, S. R. (2013). Habitat degradation impacts black howler monkey (Alouatta pigra ) gastrointestinal microbiomes. The ISME Journal, 7(7), 1344–1353.
Anderson, M. J. (2014). Permutational Multivariate Analysis of Variance (PERMANOVA). In N. Balakrishnan, T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri, & J. L. Teugels (Eds.), Wiley StatsRef: Statistics Reference Online (Vol. 18, pp. 1–15). John Wiley & Sons, Ltd.
Anderson, M. J., & Walsh, D. C. I. (2013). PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecological Monographs, 83(4), 557–574.
Apprill, A., McNally, S., Parsons, R., & Weber, L. (2015). Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquatic Microbial Ecology: International Journal, 75(2), 129–137.
Avena, C. V., Parfrey, L. W., Leff, J. W., Archer, H. M., Frick, W. F., Langwig, K. E., Kilpatrick, A. M., Powers, K. E., Foster, J. T., & McKenzie, V. J. (2016). Deconstructing the Bat Skin Microbiome: Influences of the Host and the Environment. Frontiers in Microbiology, 7, 1753.
Becker, C. G., Longo, A. V., Haddad, C. F. B., & Zamudio, K. R. (2017). Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proceedings. Biological Sciences / The Royal Society, 284(1861). https://doi.org/10.1098/rspb.2017.0582
Bell, T., Ager, D., Song, J.-I., Newman, J. A., Thompson, I. P., Lilley, A. K., & van der Gast, C. J. (2005). Larger islands house more bacterial taxa. Science, 308(5730), 1884.
Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., Mills, D. A., & Caporaso, J. G. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10(1), 57–59.
Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology, 25(2), 163–177.
Breitschwerdt, E. B., & Kordick, D. L. (2000). Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clinical Microbiology Reviews, 13(3), 428–438.
Brown, J. H. (1971). Mammals on Mountaintops: Nonequilibrium Insular Biogeography. The American Naturalist, 105(945), 467–478.
Bueno, A. S., & Peres, C. A. (2019). Patch‐scale biodiversity retention in fragmented landscapes: Reconciling the habitat amount hypothesis with the island biogeography theory. Journal of Biogeography, 46(3), 621–632.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581–583.
Carbonero, F., Oakley, B. B., & Purdy, K. J. (2014). Metabolic flexibility as a major predictor of spatial distribution in microbial communities. PloS One, 9(1), e85105.
Cariou, M., Duret, L., & Charlat, S. (2017). The global impact ofWolbachia on mitochondrial diversity and evolution. Journal of Evolutionary Biology, 30(12), 2204–2210.
Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2012). NbClust Package: finding the relevant number of clusters in a dataset. Journal of Statistical Software. DOI 10.18637/jss.v061.i06.
Cirimotich, C. M., Ramirez, J. L., & Dimopoulos, G. (2011). Native microbiota shape insect vector competence for human pathogens. Cell Host & Microbe, 10(4), 307–310.
Csardi, G., Nepusz, T., & Others. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695(5), 1–9.
Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A., & Callahan, B. J. (2018). Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome, 6(1), 226.
Dedeine, F., Boulétreau, M., & Vavre, F. (2005). Wolbachiarequirement for oogenesis: occurrence within the genus Asobara(Hymenoptera, Braconidae) and evidence for intraspecific variation inA. tabida . Heredity, 95(5), 394–400.
Delmas, E., Besson, M., Brice, M.-H., Burkle, L. A., Dalla Riva, G. V., Fortin, M.-J., Gravel, D., Guimarães, P. R., Jr., Hembry, D. H., Newman, E. A., Olesen, J. M., Pires, M. M., Yeakel, J. D., & Poisot, T. (2019). Analysing ecological networks of species interactions: Analyzing ecological networks. Biological Reviews, 94(1), 16–36.
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., & Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology, 72(7), 5069–5072.
Dheilly, N. M., Poulin, R., & Thomas, F. (2015). Biological warfare: Microorganisms as drivers of host–parasite interactions. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 34, 251–259.
Dick, C. W., & Dittmar, K. (2014). Parasitic Bat Flies (Diptera: Streblidae and Nycteribiidae): Host Specificity and Potential as Vectors. In S. Klimpel & H. Mehlhorn (Eds.), Bats (Chiroptera) as Vectors of Diseases and Parasites (pp. 131–155). Springer, Berlin, Heidelberg.
Eisenhofer, R., Minich, J. J., Marotz, C., Cooper, A., Knight, R., & Weyrich, L. S. (2019). Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations. Trends in Microbiology, 27(2), 105–117.
Emmons, L., & Feer, F. (1997). Neotropical rainforest mammals: a field guide. University of Chicago Press.
Feldhaar, H. (2011). Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecological Entomology, 36(5), 533–543.
Fernandes, A. D., Reid, J. N., Macklaim, J. M., McMurrough, T. A., Edgell, D. R., & Gloor, G. B. (2014). Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome, 2, 15.
Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239.
Gibson, C. M., & Hunter, M. S. (2010). Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecology Letters, 13(2), 223–234.
Gilbert, J. A., Jansson, J. K., & Knight, R. (2014). The Earth Microbiome project: successes and aspirations. BMC Biology, 12, 69.
Gilbert, J. A., Meyer, F., Antonopoulos, D., Balaji, P., Brown, C. T., Brown, C. T., Desai, N., Eisen, J. A., Evers, D., Field, D., Feng, W., Huson, D., Jansson, J., Knight, R., Knight, J., Kolker, E., Konstantindis, K., Kostka, J., Kyrpides, N., … Stevens, R. (2010). Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Standards in Genomic Sciences, 3(3), 243–248.
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). Microbiome Datasets Are Compositional: And This Is Not Optional. Frontiers in Microbiology, 8, 2224.
Gloor, G. B., & Reid, G. (2016). Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Canadian Journal of Microbiology, 62(8), 692–703.
Graciolli, G., & de Carvalho, C. J. B. (2001a). Moscas ectoparasitas (Diptera, Hippoboscoidea) de morcegos (Mammalia, Chiroptera) do Estado do Paraná. 11. Streblidae. Chave pictórica para gêneros e espécies 1. RevIa Bras. Zool, 18(3), 907–960.
Graciolli, G., & de Carvalho, C. J. B. (2001b). Moscas ectoparasitas (Diptera, Hippoboscoidea, Nycteribiidae) de morcegos (Mammalia, Chiroptera) do Estado do Paraná, Brasil. I. Basilia, taxonomia e chave pictórica para as espécies 1. RevIa Bras. Zool., 18, 33–49.
Gustafson, E. J., & Parker, G. R. (1992). Relationships between landcover proportion and indices of landscape spatial pattern. Landscape Ecology, 7(2), 101–110.
Hanski, I. (2015). Habitat fragmentation and species richness. Journal of Biogeography, 42(5), 989–993.
Hiller, T., Brändel, S. D., Honner, B., Page, R. A., & Tschapka, M. (2020). Parasitization of bats by bat flies (Streblidae) in fragmented habitats. Biotropica, 72, 617.
Hočevar, T., Demšar, J., & Others. (2016). Computation of graphlet orbits for nodes and edges in sparse graphs. Journal of Statistical Software, 71. https://www.jstatsoft.org/article/view/v071i10/v71i10.pdf
Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X.-Y., & Fukatsu, T. (2010).Wolbachia as a bacteriocyte-associated nutritional mutualist. Proceedings of the National Academy of Sciences of the United States of America, 107(2), 769–774.
Ingala, M. R., Becker, D. J., Bak Holm, J., Kristiansen, K., & Simmons, N. B. (2019). Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecology and Evolution, 9(11), 6508–6523.
Itescu, Y. (2019). Are island-like systems biologically similar to islands? A review of the evidence. Ecography, 42(7), 1298–1314.
Jiggins, F. M. (2003). Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics, 164(1), 5–12.
Katoh, K., Kuma, K.-I., Toh, H., & Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33(2), 511–518.
Katoh, K., Misawa, K., Kuma, K.-I., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066.
Katoh, K., & Toh, H. (2007). PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics , 23(3), 372–374.
Kircher, M., Sawyer, S., & Meyer, M. (2012). Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Research, 40(1), e3.
Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E., & Taylor, W. W. (2003). Compartments revealed in food-web structure. Nature, 426(6964), 282–285.
Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., & Bonneau, R. A. (2015). Sparse and compositionally robust inference of microbial ecological networks. PLoS Computational Biology, 11(5), e1004226.
Lack, J. B., Nichols, R. D., Wilson, G. M., & Van Den Bussche, R. A. (2011). Genetic signature of reproductive manipulation in the phylogeography of the bat fly, Trichobius major . The Journal of Heredity, 102(6), 705–718.
Liu, H., Roeder, K., & Wasserman, L. (2010). Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. Advances in Neural Information Processing Systems, 24(2), 1432–1440.
MacArthur, R. H., & Wilson, E. O. (1963). An equilibrium theory of insular zoogeography. Evolution; International Journal of Organic Evolution, 17(4), 373–387.
Mahana, D., Trent, C. M., Kurtz, Z. D., Bokulich, N. A., Battaglia, T., Chung, J., Müller, C. L., Li, H., Bonneau, R. A., & Blaser, M. J. (2016). Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Medicine, 8(1), 48.
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 17(1), 10–12.
Martiny, J. B. H., Bohannan, B. J. M., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., Horner-Devine, M. C., Kane, M., Krumins, J. A., Kuske, C. R., Morin, P. J., Naeem, S., Ovreås, L., Reysenbach, A.-L., Smith, V. H., & Staley, J. T. (2006). Microbial biogeography: putting microorganisms on the map. Nature Reviews. Microbiology, 4(2), 102–112.
McGarigal, K., Cushman, S. A., Neel, M. C., & Ene, E. (2002). FRAGSTATS: spatial pattern analysis program for categorical maps. http://www.citeulike.org/group/342/article/287784
McMurdie, P. J., & Holmes, S. (2012). Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 235–246.
McMurdie, P. J., & Holmes, S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One, 8(4), e61217.
Mitra, A., Skrzypczak, M., Ginalski, K., & Rowicka, M. (2015). Strategies for achieving high sequencing accuracy for low diversity samples and avoiding sample bleeding using illumina platform. PloS One, 10(4), e0120520.
Morse, S. F., Bush, S. E., Patterson, B. D., Dick, C. W., Gruwell, M. E., & Dittmar, K. (2013). Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae). Applied and Environmental Microbiology, 79(9), 2952–2961.
Morse, S. F., Dick, C. W., Patterson, B. D., & Dittmar, K. (2012). Some like it hot: evolution and ecology of novel endosymbionts in bat flies of cave-roosting bats (hippoboscoidea, nycterophiliinae). Applied and Environmental Microbiology, 78(24), 8639–8649.
Morse, S. F., Olival, K. J., Kosoy, M., Billeter, S., Patterson, B. D., Dick, C. W., & Dittmar, K. (2012). Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 12(8), 1717–1723.
Müller, C. L., Bonneau, R., & Kurtz, Z. (2016). Generalized Stability Approach for Regularized Graphical Models. http://arxiv.org/abs/1605.07072
Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 74(3 Pt 2), 036104.
Nikoh, N., Hosokawa, T., Moriyama, M., Oshima, K., Hattori, M., & Fukatsu, T. (2014). Evolutionary origin of insect-Wolbachianutritional mutualism. Proceedings of the National Academy of Sciences of the United States of America, 111(28), 10257–10262.
Nováková, E., Hypsa, V., & Moran, N. A. (2009). Arsenophonus , an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiology, 9, 143.
Obame-Nkoghe, J., Rahola, N., Bourgarel, M., Yangari, P., Prugnolle, F., Maganga, G. D., Leroy, E.-M., Fontenille, D., Ayala, D., & Paupy, C. (2016). Bat flies (Diptera: Nycteribiidae and Streblidae) infesting cave-dwelling bats in Gabon: diversity, dynamics and potential role inPolychromophilus melanipherus transmission. Parasites & Vectors, 9(1), 333.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., O’hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2010). Vegan: community ecology package. R package version 1.17-4. Http://cran. R-Project. Org>. Acesso Em, 23, 2010.
Parada, A. E., Needham, D. M., & Fuhrman, J. A. (2016). Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environmental Microbiology, 18(5), 1403–1414.
Patterson, B. D., Dick, C. W., & Dittmar, K. (2007). Roosting habits of bats affect their parasitism by bat flies (Diptera: Streblidae). Journal of Tropical Ecology, 23(2), 177–189.
Pilosof, S., Dick, C. W., Korine, C., Patterson, B. D., & Krasnov, B. R. (2012). Effects of anthropogenic disturbance and climate on patterns of bat fly parasitism. PloS One, 7(7), e41487.
Pontes, M. H., & Dale, C. (2006). Culture and manipulation of insect facultative symbionts. Trends in Microbiology, 14(9), 406–412.
Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2–approximately maximum-likelihood trees for large alignments. PloS One, 5(3), e9490.
Regier, Y., O Rourke, F., & Kempf, V. A. J. (2016). Bartonella spp. - a chance to establish One Health concepts in veterinary and human medicine. Parasites & Vectors, 9(1), 261.
Reis, N. R., Fregonezi, M. N., Peracchi, A. L., & Shibatta, O. A. (2013). Morcegos do Brasil: guia de campo. Technical Books Editora.
Röttjers, L., & Faust, K. (2018). From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiology Reviews, 42(6), 761–780.
Ruiz, V. E., Battaglia, T., Kurtz, Z. D., Bijnens, L., Ou, A., Engstrand, I., Zheng, X., Iizumi, T., Mullins, B. J., Müller, C. L., Cadwell, K., Bonneau, R., Perez-Perez, G. I., & Blaser, M. J. (2017). A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nature Communications, 8(1), 518.
Saldaña-Vázquez, R. A., Castro-Luna, A. A., Sandoval-Ruiz, C. A., Hernández-Montero, J. R., & Stoner, K. E. (2013). Population Composition and Ectoparasite Prevalence on Bats (Sturnira ludovici ; Phyllostomidae) in Forest Fragments and Coffee Plantations of Central Veracruz, Mexico. Biotropica, 45(3), 351–356.
Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Moffatt, M. F., Turner, P., Parkhill, J., Loman, N. J., & Walker, A. W. (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology, 12, 87.
Sassera, D., Epis, S., Pajoro, M., & Bandi, C. (2013). Microbial symbiosis and the control of vector-borne pathogens in tsetse flies, human lice, and triatomine bugs. Pathogens and Global Health, 107(6), 285–292.
Shade, A. (2017). Diversity is the question, not the answer. The ISME Journal, 11(1), 1–6.
Sikes, R. S., Care, A., & of Mammalogists, U. C. of T. A. S. (2016). 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy, 97(3), 663–688.
Silverman, J. D., Washburne, A. D., Mukherjee, S., & David, L. A. (2017). A phylogenetic transform enhances analysis of compositional microbiota data. eLife, 6. https://doi.org/10.7554/eLife.21887
Souto Martins Teixeira, T. (2019). Bats in a fragmented world [Queen Mary University of London]. https://qmro.qmul.ac.uk/xmlui/handle/123456789/60575
Speer, K. A., Luetke, E., Bush, E., Sheth, B., Gerace, A., Quicksall, Z., Miyamoto, M., Dick, C. W., Dittmar, K., Albury, N., & Reed, D. L. (2019). A Fly on the Cave Wall: Parasite Genetics Reveal Fine-Scale Dispersal Patterns of Bats. Journal of Parasitology. https://doi.org/10.1645/19-20
Stouffer, D. B., & Bascompte, J. (2010). Understanding food-web persistence from local to global scales. Ecology Letters, 13(2), 154–161.
Stuckey, M. J., Chomel, B. B., de Fleurieu, E. C., Aguilar-Setién, A., Boulouis, H.-J., & Chang, C.-C. (2017). Bartonella , bats and bugs: A review. Comparative Immunology, Microbiology and Infectious Diseases, 55(Supplement C), 20–29.
Trowbridge, R. E., Dittmar, K., & Whiting, M. F. (2006). Identification and phylogenetic analysis of Arsenophonus - andPhotorhabdus -type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea). Journal of Invertebrate Pathology, 91(1), 64–68.
Tsilimigras, M. C. B., & Fodor, A. A. (2016). Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Annals of Epidemiology, 26(5), 330–335.
Vanbergen, A. J., Woodcock, B. A., Gray, A., Andrews, C., Ives, S., Kjeldsen, T. R., Laize, C. L. R., Chapman, D. S., Butler, A., & O’Hare, M. T. (2017). Dispersal capacity shapes responses of river island invertebrate assemblages to vegetation structure, island area, and flooding. Insect Conservation and Diversity / Royal Entomological Society of London, 10(4), 341–353.
van der Gast, C. J. (2015). Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environmental Microbiology, 17(3), 544–546.
Warren, B. H., Simberloff, D., Ricklefs, R. E., Aguilée, R., Condamine, F. L., Gravel, D., Morlon, H., Mouquet, N., Rosindell, J., Casquet, J., Conti, E., Cornuault, J., Fernández-Palacios, J. M., Hengl, T., Norder, S. J., Rijsdijk, K. F., Sanmartín, I., Strasberg, D., Triantis, K. A., … Thébaud, C. (2015). Islands as model systems in ecology and evolution: prospects fifty years after MacArthur-Wilson. Ecology Letters, 18(2), 200–217.
Weiss, B., & Aksoy, S. (2011). Microbiome influences on insect host vector competence. Trends in Parasitology, 27(11), 514–522.
Weiss, S., Amir, A., Hyde, E. R., Metcalf, J. L., Song, S. J., & Knight, R. (2014). Tracking down the sources of experimental contamination in microbiome studies. Genome Biology, 15(12), 564.
Wenzel, R. L. (1976). The streblid batflies of Venezuela (Diptera: Streblidae). Brigham Young University Science Bulletin, Biological Series, 20(4), 1.
Wickham, H. (2011). ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics, 3(2), 180–185.
Wilkinson, D. A., Duron, O., Cordonin, C., Gomard, Y., Ramasindrazana, B., Mavingui, P., Goodman, S. M., & Tortosa, P. (2016). The Bacteriome of Bat Flies (Nycteribiidae) from the Malagasy Region: a Community Shaped by Host Ecology, Bacterial Transmission Mode, and Host-Vector Specificity. Applied and Environmental Microbiology, 82(6), 1778–1788.
Xia, Y., & Sun, J. (2017). Hypothesis Testing and Statistical Analysis of Microbiome. Genes & Diseases, 4(3), 138–148.
Yaveroğlu, Ö. N., Malod-Dognin, N., Davis, D., Levnajic, Z., Janjic, V., Karapandza, R., Stojmirovic, A., & Pržulj, N. (2014). Revealing the hidden language of complex networks. Scientific Reports, 4, 4547.
Zinger, L., Boetius, A., & Ramette, A. (2014). Bacterial taxa-area and distance-decay relationships in marine environments. Molecular Ecology, 23(4), 954–964.
Data Accessibility Statement
All metabarcoding data was uploaded to QIITA (doi to follow), COI sequences of bat flies were added to GenBank (Accession numbers to follow), and an R Markdown of all analyses is on Github (link to follow).
Author Contributions
KAS, TSMT, MRI, NBS, and ELB designed the study; TSMT collected samples in the field; KAS, AMB, KD, CW, KK, CD, MVV, ACD collected lab-based data; KAS, TSMT, AMB, MVV, ACD, and SCG analyzed the data; KAS, SLP, and ELC funded the research; KAS wrote the manuscript; and all authors contributed to review and editing of the manuscript.