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Abstract

Coronavirus disease 2019 (COVID-2019) is a viral disease which is declared
as a pandemic by WHO. This disease is posing a global threat, and almost
every country in the world is now affected by this disease. Currently, there is
no vaccine for this disease and because of this containing COVID-19 is not an
easy task. It is noticed that elderly people got severely affected by this disease
specially in Europe. In the present paper, we propose and analyze a mathematical
model for COVID-19 virus transmission by dividing whole population in old
and young groups. We find disease-free equilibrium and the basic reproduction
number (Rp). We estimate the parameter corresponding to rate of transmission
and rate of detection of COVID-19 using real data from Italy and Spain by
least square method. We also perform sensitivity analysis to identify the key
parameters which influence the basic reproduction number and hence regulate
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the transmission dynamics of COVID-19. Finally, we extend our proposed model
to optimal control problem to explore the best cost-effective and time-dependent
control strategies that can reduce the number of infectives in a specified interval
of time.

Keywords: COVID-19 Model; Basic reproduction number; Sensitivity Analysis;
Parameter estimation; optimal control.

1 Introduction

A novel coronavirus (COVID-19) originated from Wuhan, China. Now it has spread
to 213 countries worldwide. Up to May 15, 2020, the total number of confirmed
cases were 4,525420 with a death toll of 303,372. Italy and Spain are in the list of
top five countries which are severely affected by this disease [1]. The transmission of
COVID-19 virus is primarily through droplets of saliva or discharge from the nose of
an infected individual while coughing or sneezing. At present there is no vaccines or
specific treatments for COVID-19. Trials of vaccines are in progress in different part of
the world and it may take few months for a approved vaccine to come into the market.
In this situation the best way to prevent and retard the transmission of this disease
is to be well informed about the COVID-19 virus, the disease it causes and models
of its transmission. The protective measures as per WHO guidelines involve washing
hands or using an alcohol based rub frequently and not touching face [2]. As there are
large number of asymptomatic cases, maintaining a safe distance while roaming out
i.e. physical distancing is another effective measure to reduce the chance of getting
infected by this virus.

There are several studies on COVID-19 based on real data [3, 4, 5|. A simple SEIR
type mathematical model for the transmission of COVID-19 is proposed and analyzed
in [6] where authors estimated the basic reproduction number based on the data from
Wuhan, China. A stochastic model combined with data on number of COVID-19 cases
in Wuhan, China is studied by Kucharski et al. [7]. Here authors concluded that
the there was more than 50% decline in the basic reproduction number (R) after
the introduction travel control measures. In [8, 9], authors discussed the impact of
different scenario of lock-down to study the transmission dynamics of COVID-19 in
India. As the correct estimation of asymptomatic cases are not easy, so the predictions
did not go well with the current situation of COVID-19 spread in India. As India is
comparatively young country so the number of deaths in India is much less compared
to many developed nations. Italy and Spain are among the top five worst affected
countries in the World. It is observed that most of the deaths took place among
elderly people and those who had other existing health issues.

In this paper, we have constructed mathematical model for COVID-2019 taking
simple mass action type incidence. Here we formulate our model by keeping in mind
that COVID-19 behaves differently with elderly compared to young people. The re-



maining of this paper is organized as follows: Section 2 describes the model; Section
3 deals with the existence of equilibrium and basic reproduction number; Section 4
deals with data scenario and parameter estimation; Section 5 describes optimal control
problem and the simulation results of the optimal control model and finally Section 6
concludes the paper.

2 The Model

The main route of transmission of COVID-19 is human to human [10]. Here we formu-
late our mathematical model for COVID-19 by divide the total human population N ()
into two groups namely, group of elderly individuals and group of young individuals
keeping in mind that major death reported in elderly people. Again we divide these
groups into different compartments, namely, Susceptible individuals who are young
Si1(t), Exposed individuals who are young F(t), Infected individuals who are young
I,(t), Susceptible individuals who are old Sy(t), Exposed individuals who are old Fs(t),
Infected individuals who are old I5(t), Home isolated /hospitalized individuals of both
groups who are identified as COVID-positive and under medical supervision H(t), and
Recovered individuals R(t). Here we assume that [; and [» are undetected infectives
and rate of transmission due to individuals in these two groups is very high. Here
individuals in H(t) are also infectious but as they are under medical supervision so
transmission due to individuals in H class is very low. It is assumed that the rates of
transmission, rates of reinfection, rates of screening/detection, rates of movement of
exposed individuals to infected compartment and disease related deaths in groups of
elderly people and young people are different. As elderly people can have some existing
health issues, so it is assumed that the rate of transmission in elderly individuals will be
more compared to rate of transmission in young individuals. Here the compartments
H(t) and R(t) contain both young and elderly individuals. The schematic diagram
of our proposed model is shown in Figure 1 and the mathematical model is given as



Table 1: Description of parameters

Parameter Description
01 : Transmission rate from I; or I, to S,
B : Transmission rate from I; or I to S5,
B3 : Transmission rate from H to Sy,
o : Transmission rate from H to Sy
01 :  Disease related death rate in I; compartment,
09 :  Disease related death rate in Iy compartment,
03 : Disease related death rate in H compartment,
2 . Rate of detection/isolation in /; compartment,
Vo : Rate of detection/isolation in I compartment,
i . Rate of progression of individuals from E; to I,
72 . Rate of progression of individuals from E; to [,
0G| . Rate of reinfection in E; compartment,
Yo . Rate of reinfection in Fy compartment,
« . Recovery rate of home isolated /hospitalized people.
follows:

ds

d_tl = —[S1(I1 + 1) — B3S1H

dFE

o BuS1(I + L) + B3S1 H — B (I + o) — mEy

dl,

o mEy +nE(L + 1) — iy — 014 (1)

dS

d_t2 = —32S:(I1 + Iy) — f4S2H

dFEs

i BoSo(Iy + Io) + BaSoH — o Ea(Iy + o) — oy

dl.

d_tQ = 772E2 + ’)/QEQ([l + IQ) — (52]2 — VQIQ.

dH

E = 1/1]1—|—V2]2—53H—04H.

dR

— = aH.

a

where By > (1. Here 3 and 4 can be taken equal as these correspond to transmission
of COVID-19 from patients under medical supervision. Additionally, we assume that
vy > 1y as the rate of detection in elderly people will be more as they will fall sick
faster than younger individuals. Here all the parameters are considered positive and
its description are given in Table 1.
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Figure 1: Schematic diagram of the model.

3 Analysis of the model

We consider the system (1) and find the disease-free equilibrium. For our model we
have disease-free equilibrium as

EO = (SIO7E107-[1075207E207IIOJH07RO) = (N970707N370707070)

We find the basic reproduction number R, by following the next generation matrix
method described in [16]. Following the same notations as in [16], we find the vector
F and V as follows:

B1S1(I + L) + BsS1H nE(I + L) + mEy
B255(11 + I3) + BaSoH and V — Yo Eo (I + I3) + o Es
0 —mEy — B+ ) + vl + 601y
0 —o By — o B (11 + Iy) + 0215 + 1215
—1/1[1 — 1/212 + (53 + CV)H

f:
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F= Jacobian of F at Ey = 0 0 0
0 0 0
0 0 0
mo 0 0 0 0
0 0 0 0
and V=Jacobian of Vat Eg=| —m 0 (v + &) 0 0
0 —T1)2 0 (Vg + 52) 0
0 0 —1 vy (034 )

and it follows that

aj; a2 aiz a4 ais
Q21 Q22 A23 24 Q25
Fv'i=]1 0 0 0 0 0 |,
O 0O 0 0 O
O 0o 0 0 O

where
_ 515? 53V15? _ 515? 53V25?
ap = + , Qr2 = + )
v 461 (03 +a)(vy + 61) vo+ 0y (03 + ) (V2 + 02)
. 515(1J 53”15? _ 515(1J 53”25? _ 5359
a3 = + , Q14 = + ; Qs = ———,
1241 —|—51 (53 —f—O./)(l/l +51) 125) +52 (53 _’_Of)(VQ +52) Oé+(53
o 525(2) 54V153 ooy — 525(2) @41/25[2)
PTU s (GBra)+a) P i td (G +a) (e + )
. 5253 54V1Sg . 525(2) 54V253 . 5458
Q93 = A24 25

l/1+51 (53+Oé)(l/1+51)7 N 1/2+52 (53+Oé)(l/2+(52)7 —Oé+(53.

Three eigenvalues of the above matrix are zero and remaining two are the roots of the
following quadratic equation:

M — (@11 + age)\ + a9y — arpaz =0,

51 (01— ) B — 1 90)
(J5+ @) +61)(va +6,) 1 R T
The basic reproduction number (Ry) is the largest positive root of the above quadratic
and is computed as follows:

and ajia — ajpas =

B Ro1 + R3, + 4R2,
0 — )
2



where ﬁ S0 6 S0 5 50 B 50
Ry = 171 3V107 209 409 /9
o v+ 01 +(53+a)(1/1—|—51) +V2+52+(53+a)(]/2+52)7
5059
Roy — 192 B B |
" \/(53 +a) (v + 61) (v + 02) (2 = 1) (B2 — P15

4 Data Scenario and Parameter Estimation

The total number of cases recorded in Italy as on May 10, 2020 was 219070 and total
deaths was 30560. In Spain too the number of cases is increasing day by day.The total
number of cases recorded in Spain as on May 10, 2020 was 264663 and total deaths was
26621. The High rate of death from COVID-19 in Italy and Spain may be explained
by the country’s relatively high proportion of elderly people. Here we assume that 60%
of total population is of young age and 40% of total population is elderly. Research
has shown that the death rate is very high in elderly [21]. At the beginning of 2020,
Italy had an estimated population of 60.3 million and at the end of the first decade
of the 21st century, one in five Italians was over 65 years old [17]. And the estimated
population of Spain was 46.75 million in 2020 [18]. Keeping in view of these data, we
did parameter estimation by least square method using R software [19]. We calibrated
our 2019-nCoV model (1) to the active COVID cases for both Italy and Spain. Daily
active COVID cases are collected for the period

15th February, 2020 — 10th M ay, 2020

from the hitps : //www.worldometers.info/coronavirus/country /italy/.[1]. For the
Spain daily active COVID cases are collected for the period

23rdFebruary, 2020 — 10thMay, 2020

from the https : //www.worldometers.info/coronavirus/country/spain/[20].
We fit the model (1) to active cases of COVID in the Italy. We estimate the diseases
transmission rates (1, 2, and rate of detection of infected individuals v and 5. The
other parameter values and the estimated values are listed in Table 2-3 respectively.
The observed active cases and fitted one for Italy and Spain can be seen in Figure
2 and Figure 3 respectively. We also perform sensitivity analysis for the parameters
involved in Reproduction number (Ry), which reflects that increase or decrease in
these parameter causes increase or decrease in (Ry). The sensitivity of Ry to different
parameters is shown in Figure 4. It is used to discover the parameters that have a high
impact on Ry and should be targeted by intervention strategies. Sensitivity indicess
allows to measure the relative change in a variable when parameter changes. For that
we use the forward sensitivity index of a variable, with respect to a given parameter,
which is defined as the ratio of the relative change in the variable to the relative change



Table 2: Values of parameters

Parameter value

53 :0.000513 assumed

B4 :0.000672 assumed

" : 0.14 assumed

m :0.08 (1-14 days)[11]
72 : 0.1 (1-14 days) [11]
Y2 : 0.2 assumed

01 . 0.013 assumed

09 : 0.014 assumed

03 : 0.015 0.001-0.1 [12]
o : 0.071 (14-28 days)[13, 14]

Table 3: Values of parameters
Country | Estimated Values | Value of Ry
B1 = 0.0028
[taly By = 0.0086
v = 0.031 2.644
vy = 0.058
£1 = 0.0024
Spain By = 0.0085
vy = 0.043 2.137
vy = 0.053
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Figure 2: Plots of the output of the fitted model (1) and the observed Corona active
cases for Italy. Dotted line shows data points and line showed model solution

in the parameter. If such variable is differentiable with respect to the parameter, then
the sensitivity index is defined using partial derivatives, [15]. The normalized forward
sensitivity index of Ry, which is differentiable with respect to a given parameter e, is
defined by

Ro _ %i

¢ Oe R()

The above formula can be used to compute the analytical expression for the sensitivity
of Ry to each parameter that it includes. From Figure 4, we can conclude that ; and
v; for i = 1,2 are very sensitive parameters as small variation in these parameters can
cause large variation in the value of Ry. So correct estimation of these parameters is
very important to predict transmission of this disease.

5 The Optimal Control Model

Here the mathematical model (1) is extended to formulate optimal control problem.
Generally, control policies depend upon the severity of the epidemic in the area under
investigation. It is clear from the sensitivity analysis of our proposed model that
the parameters related to transmission of disease i.e. ['s and screening/detection
i.e. /s are very important and it can have great impact in reducing the infection
prevalence. Keeping this in view, we incorporate optimal control in our proposed
model by considering two types of control parameters, namely, u1(¢) and us(t). Here
the control variable u;(t) represents the reduction in the transmission between human
to human via social distancing, awareness of transmission of disease and sanitization.
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Figure 3: Plots of the output of the fitted model (1) and the observed Corona active
cases for Spain. Dotted line shows data points and line showed model solution
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The control variable uy(t) corresponds to the increase in testing facility which can
lead to fast detection of Covid-positive cases and we add additional time dependent
parameter a.us(t) in rate of detection v; for ¢ = 1,2. Keeping in view of the above
assumptions, the optimal control model is formulated as follows:

s,
dt
4z,
dt
d,
dt
s,
dt
dE,
dt
L,
dt
aH
dt
d_R
dt

= —(1—w)pSi1(ly + L) — B3S1H

= (1—w)BSi(Li + L) + B35 H — nEW(L + ) —mEy

= mE+nEi(L + L) — (1 + acuz)ly — 611 (2)
= —(1—u1)B2S2(I1 + I2) — BaSoH

= (1 —w1)B2S:(11 + I2) + BaSoH — 7o Eo(I + Iz) — noEs

= Es+ 1Es(l1 + Is) — 021y — (12 + acug)ls.

= (1 +acuz) + (o + acuz)ls — 03H — aH.

= oH.

5.1 The Optimal Control Problem

In this section, we study the behavior of the proposed model by using optimal control
theory. The objective functional for fixed time t; is given by:

ts 1 1
J = / (Cili + Coly + 503U12 + §C4U22)- (3)
0

Here the parameter C; > 0, Cy > 0, C3 > 0, Cy > 0 and they represent the weight
constants. Our objective is to find the control u;* and wus*, such that

J(ur™,us") = min J(uy,us), (4)
u1,u2 €N
where €2 is the control set and is defined as
0 = {uy,uy : measurable and 0 < uy,uy < 1} and t € [0,].
The Lagrangian of this problem is defined as :

1 1
L(1y, 15, 1,,ur,ug) = C1 11 + Cols + §C3u12 + §C4U22

For our problem, the associated Hamiltonian H given by :
dsS, dEy dl, dSs dEs dl, dH
= L(Iy, 15, 1 — — — — — — —
HdR ( 1,42, v,ul,ug)—i-)\l dt +)\2 dt +)\3 dt +)\4 dt +)\5 dt +)\6 dt +)\7 dt +

Ag —
Sdt7
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where \; for i = 1...8 are the adjoint variables. Now adjoint variables in the form of
differential equation can be written as follows:

d\ OH
T —og, = (L=w)BLI+b) + B H)(M = %)
d\ OH
d_t2 = ~OE, = ()1 + 1) +m)(Aa — A3)
d\ OH
d_; SR —C1 4+ (1 =) B1S (A1 — X)) + (1 — u1)B2S2(As — As) + 1 EL (Mg — A3)
1
(1 + acuz) (A3 — A7) + 013
d\ OH
B SR = (- w1+ B O~ )
d\ OH
d_t5 = 9B (v2) (L1 + I2) +m2) (A5 — Ag)
dXg OH
d_tﬁ =57 = —Cy 4+ (1 —u)B11S1( A — A2) + (1 — uq)BaSa( Mg — As) + 11 E1( A2 — A3)
2
(1 + acuz)(As — A7) + 926
dA OH
d_; = _ﬁ = 03\7+ 05(/\7 - /\8)
By __0n _
d  OR

A3, A4, A5 be the solution of the above system of differential equations.
By using [22, 23|, we state and prove the following theorem:

Theorem 5.1. There exist optimal controls uy*, us* € Q such that J(ui*, us*) = min J(uy, us)
subject to system (2).

Proof : To prove this theorem we use [23]. Here all the state variables and the controls
are taken as positive. For this minimizing problem, the necessary convexity of the
objective functional in (uy,usy) is satisfied. The control variable set uy,us € € is also
convex and closed by the definition. The integrand of the functional

1 1
DiI + Do(S, + 1,,) + §D3u12 + §D4u22 is convex on the control set Q and the state

variables are bounded.

Since there exist optimal controls for minimizing the functional subject to equations
(4), we use Pontryagin’s maximum principle to derive the necessary conditions to find
the optimal solutions as follows:

If (x,u) is an optimal solution of an optimal control problem, then there exist a non-
trivial vector function A = A\j, Ao, Ag, ....... , \n satisfying the following equalities.
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dr  OH(t,x,u, \)

dat B\
OH(t, z,u,\)
0= 228 A
ou
ax _87—[(t,x,u, A)
dt ox

With the help of Pontryagin’s maximum principle [23] and theorem (5.1), we proved
the following theorem:

Theorem 5.2. The optimal controls (ui*, us*) which minimizes J over the region
given by

ur* = min{1l, maz(0,u7)}

ug™ = min{1l, maz(0,us)},

where
= L B)[Bi51(As = M) + B255(As — A)]
1 Cs
~ Clcfl(>\3 — )\7) —+ (ZCIQ(/\G — /\7)
U =
on
Proof: Using optimally condition :
OH OH
— =0 — =0
3u1 ’ 8u2 ’
we get,
OH
e Csuy + P51 (11 + 1) (A = A2) + B252(As — A5) = 0.
This implies
(L L)[BiS1(Na — M) + BaS2(Ns — \a)]
Uy = = U1
Cs
And,
OH
- = U,QC4 + a,cfl()w — )\3) + (ICIQ()\’? — >\6) =0
8u2
gives

CLC[1 (/\3 — )\7) -+ aCIQ(Ae; — )\7) ~
= UQ
o
Again upper and lower bounds for these control are 0 and 1 respectively. i.e. u; =
Uy = 0if u; <0 and ug < 0, and uy = upy = 1 if 47 > 1 and uy > 1, otherwise u; = 1
and us = uy. Hence for these controls u;*, us* we get optimum value of the function J.

Uo =
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6 Numerical Simulation

Here we use MATLAB to simulate our optimal control. All the parameter values are
kept same as described in Tables 2-3. The weight constants for the optimal control
problem are taken as C; = 1,Cy = 1, (3 = 40, Cy = 60. We solve the optimality system
by iterative method by using forward and backward difference approximations [22]. We
consider the final time as 120 days i.e. the time interval as [0,120]. First we solve the
state equations by using forward difference approximation method then we solve the
adjoint equation by using the backward difference approximation method. We explore
different types of control strategies to visualize the impact of optimal control in the
total number of infected human.

Strategy I: When only one type of control is used at a time

Here we try to find which type of optimal control is more effective in reducing the
infective population. So we apply each type of control one by one. We simulate our
model first for Italy and then for Spain.

Italy: In Fig. 5 and 7, the control profiles of different types of optimal control when
they are applied alone are shown and corresponding effects on total number of infectives
(I, + I5) and home isolated /hospitlized people (H) are shown in Fig. 6(a),8(a) and
6(b),8(b) respectively.

Spain: In Fig. 11 and 13, the control profiles of different types of optimal control when
they are applied alone are shown and corresponding effects on total number of infectives
(I + I5) and home isolated /hospitlized people (H) are shown in Fig. 12(a),14(a) and
12(b),14(b) respectively.

From these figures it is clear that the optimal control w;(¢) is little more effective
compared to other type of controls but we need to maintain it to 1 for a longer duration
which is not easy to achieve. This is the control through social distancing, awareness
of transmission of disease and sanitization.

Strategy 1I: When both controls are used

Here all the control mechanism (uy, us) are used to optimize the objective function J .
Italy:The variation of total infected human and home isolated /hospitlized people (H)
with time is shown in Fig 10(a) and 10(b). Here it is observed that there is a reasonable
decrease in the total number of infectives when both controls are used simultaneously.
Fig. 9(a)(b), show the control profiles of u; and usy respectively.

Spain:The variation of total infected human and isolated/hospitlized people (H) with
time is shown in Fig 16(a) and 16(b). Here it is easy to observe that there is a reasonable
decrease in the total number of infectives when both controls are used simultaneously.
Fig. 15(a)(b), show the control profiles of u; and uy respectively.

The simulation result demonstrates the effectiveness of optimal control strategies in
reducing the number of infectives. It is observed that combined controls are more
useful in reducing the number of infected cases significantly.
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7 Conclusion

Here a mathematical model for COVID-19 virus disease is formulated and analyzed.We
computed disease-free equilibrium and basic reproduction number R,. We estimated
the key parameters using least square estimation method using real life data fitted with
mathematical model for Italy and Spain. Sensitivity analysis is performed to find the
key parameters that are very sensitive to basic reproduction number Ry. Further, the
proposed model is extended to optimal control problem by incorporating two types of
controls. Then Pontryagins maximum principle is used to analyze the optimal control
problem. The numerical simulation is explored by considering different combinations
of optimal controls. Simulation results indicate that optimal control strategy is in fact
effective in reducing the total number of infectives if both the controls are applied
simultaneously.

Acknowledgments Mini Ghosh was supported by the research grants of DST, Govt.
of India, via a sponsored research project: File No. MSC/2020/000051. Xue-Zhi Li
was supported by National Science Foundation, China (Grant No. 11771017).

References

[1] Worldmeters, https://www.worldometers.info/coronavirus/country /italy/
[2] WHO https://www.who.int/health-topics/coronavirus

[3] Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, Munday JD,
Kucharski AJ, Edmunds WJ, Funk S, Eggo RM, Feasibility of controlling COVID-
19 outbreaks by isolation of cases and contacts,Lancet Glob Health 2020; 8: e48896.

[4] Benvenuto D, Giovanetti M, Vassallo L, Angeletti S, Ciccozzi M, Application of the
ARIMA model on the COVID-2019 epidemic dataset,Data in brief,2020; 105340.

[5] Zhanga S, Diaob M-Y, Yuc w, Peic L, Lind Z, Chena D, Estimation of the repro-
ductive number of novel coronavirus (COVID-19) and the probable outbreak size

on the Diamond Princess cruise ship: A data-driven analysis, International Journal
of Infectious Diseases.2020; 201204.

[6] Lina Q, Zhaob S, Gaod D, Loue Y, Yangf S, Musae SS, Wangb MH, Caig Y,
Wangg W, Yangh L, Hee D,A conceptual model for the coronavirus disease 2019
(COVID-19) outbreak in Wuhan, China with individual reaction and governmental
action,International Journal of Infectious Diseases. 2020; 211-216.

[7] Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk
S, Eggo RM, Early dynamics of transmission and control of COVID-
19:  a mathematical modelling study, Lancet Infect Dis. 2020;5(20),553-
558;DOLhttps:/ /doi.org/10.1016/S1473-3099(20)30144-4



20

[8] Singh R, Adhikari R, Age-structured impact of social distancing on the COVID-19
epidemic in India, arXiv preprint arXiv:2003.12055, 2020.

[9] Sardar T, Nadim Sk-S, Chattopadhyay J, Assessment of 21 Days Lockdown Ect in
Some States and Overall India: A Predictive Mathematical Study on COVID-19
Outbreak, arXiv preprint arXiv: 2004.03487, 2020.

[10] Huang C, Wang Y, Li X, Ren L, Zhao J, Huy, Zhang L, Fan G, Xu J, Gu X, Cheng
Z,Yu'T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao y, Gao H,Guo
L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B, Clinical features of pa-
tients infected with 2019 novel coronavirus in Wuhan,China.Lancet2020; Available
from:https://doi.org/10.1016/S0140-6736(20)30183-5. [Accessed 24 January 2020).

[11] https://www.who.int /news-room /q-a-detail /q-a-coronaviruses

[12] Ferguson NM, Laydon D, Gilani GN, Imai N,Ainslie K, Baguelin M, Bhatia S,
Boonyasiri a, Cucunub Z, Dannenburg GC, Dighe A, Dorigatti I, Fu H, Gaythorpe
K, Green W, Hamlet A, Hinsley W, Okell LC, Elsland SV, Thompson H, Verity
R, Volz E, Wang H, Wang Y, Walker P-GT, Walters C, Winskill P, Whittaker
C, Donnelly CA, Riley s, Ghani AC. .Report 9: Impact of non-pharmaceutical
interventions (NPIs) to reduce COVID19 mortality and healthcare demand.2020

[13] Tang B, Bragazzi NL, Li Q, Tang S, Xiao Y, Wu J, An updated estimation of
the risk of transmission of the novel coronavirus (2019-nCov). Infectious Disease
Modelling,2020; 5, 248255.

[14] Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan
L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and
risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a
retrospective cohort study, The Lancet;2020; 395(10229).

[15] Chitnis N, Hyman JM, Cushing JM, Determining important parameters in the
spread of malaria through the sensitivity analysis of a mathematical model. Bull.
Math. Biol.,2008; 70(5):12721296.

[16] Driessche PV, Watmough J. Reproduction numbers and subthreshold endemic
equilibria for compartmental models of disease transmission, Math Biosci,2002;
180:2948

[17) EUROSTAT. ” Ageing characterises the demographic perspectives of the European
societies - Issue number 72/2008” (PDF). Archived from the original (PDF) on 2
January 2009. Retrieved 28 April 2009.

[18] World Population Review, https://worldpopulationreview.com/countries/spain-
population/



21

[19] White LF, Pagano M, A likelihoodbased method for realtime estimation of the se-
rial interval and reproductive number of an epidemic. Stat. Med. 2008, 27, 29993016.

[20] https://www.worldometers.info/coronavirus/country/spain/

[21] https://www.worldometers.info/coronavirus/coronavirus-age-sex-demographics/

[22] Lenhart S, Workman JT, Optimal Control Applied to Biological Models, CRC
Press, 2007.

[23] Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF, The Mathe-
matical Theory of Optimal Processes, Interscience Publishers, 1962.



