References
Al-Bari, M.A. (2015). Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J. Antimicrob. Chemother. 70, 1608–1621. https://doi.org/10.1093/jac/dkv018
Amirian E.S., & Levy, J.K. (2020). Current knowledge about the antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for coronaviruses. One Health . 9:100128. Published 2020 Mar 27. doi:10.1016/j.onehlt.2020.100128
Antinori, A., Rusconi, S., Gianotti, N., Bini, T., Mancusi, D., & Termini., R. (2019). Cardiovascular adverse events during treatment with darunavir-based regimens in an Italian Observaional Study. Drug Des Devel THER. 13:1667-1685.
Aoki, M., Das, D., Hayashi, H., Aoki-Ogata, H., Takamatsu, Y., Ghosh, A.K., Mitsuya, H. (2018). Mechanism of Duranavir (DRV)’s High Genetic Barrier to HIV-1 Resistance: A key V321 Substitution in Protease Rarely Occurs, but once it occurs, it predisposes HIV-1 to Develop DRV Resistance. Mb109:eo2425-17. https://doi.org/10.1128/mBio. 02425-17.
Ashburn, T., & Thor, K. (2004). Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov  3,  673–683. https://doi.org/10.1038/nrd1468
Beigel, J.H., Nam, H.H., Adams, P.L., et al. (2019). Advances in respiratory virus therapeutics - A meeting report from the 6th isirv Antiviral Group conference. Antiviral Res . 167:45–67. doi:10.1016/j.antiviral.2019.04.006
Brown, A.J., Won, J.J., Graham, R.L., et al. (2019). Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res .169:104541. doi:10.1016/j.antiviral.2019.104541
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y. et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 395, 507–513
Crosby, J.C., Heimann, M.A., Burleson, S.L., et al. (2020). COVID‐19: A review of therapeutics under investigation. JACEP Open . 1– 7. https://doi.org/10.1002/emp2.12081
D’Alessandro, S., Scaccabarozzi, D., Signorini, L., et al. (2020). The Use of Antimalarial Drugs against Viral Infection. Microorganisms . 8(1):85. Published 2020 Jan 8. doi:10.3390/microorganisms8010085
Delicio, A.M., Lagos, G.J., Amaral, E., Lopes, F., Cavichiolli, F., Myoshi, I., & Milanez, H. (2018). Adverse effects of anti-retroviral therapy in pregnant women infected with HIV in Brazil from 2000 to 2015: a cohort study. BMC infectious diseases 18(1)485. https://doi.org/10.1186/s 12879-018-3397.
Devaux, C.A., Rolain, J.M., Colson. P., Raoult, D. (2020). New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? [published online ahead of print, 2020 Mar 12]. Int J Antimicrob Agents . 105938. doi:10.1016/j.ijantimicag.2020.105938
Dionne, B. (2019). Key Principles of Antiretroviral Pharmacology. Infect Dis Clin N Am 33:787–805 doi.org/10.1016/j.idc.2019.05.006
Ferrara, G., Petrillo, M.G., Giani, T., Marrani, E., Filippesci, C., Oranges, T., Simonini, G., Cimaz, R. (2009). Clinical use and Molecular Action of Corticosteroids and Paediatric Age. International Journal of Molecular Sciences, 20,44; doi: 10.3390/yms 20020444.
Fink, S.L., Vojtech, L., Wagoner, J., Sliviski, N.S.J., Jackson, K.J., Wang, R., Khadka, S., Luthra, P., Basker, C.F., Polyak, S.J. (2018). The antiviral drug Arbidol inhibits Zika virus. Sci REP 8: 8989. doi: 1038/s41598-018-27224-4.
Furuta, Y., Gowen, B.B., Takahashi K., Shiraki, K., Smee, D.F., Barnard, D.L. (2013). Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res . 100(2):446–454. doi:10.1016/j.antiviral.2013.09.015
Haładyj, E., Sikora, M., Felis-Giemza, A., & Olesińska, M. (2018). Antimalarials - are they effective and safe in rheumatic diseases?.Reumatologia . 56(3):164–173. doi:10.5114/reum.2018.76904
Hayden, F.G., & Shindo, N. (2019) Influenza virus polymerase inhibitors in clinical development. Curr Opin Infect Dis . 32(2):176–186. doi:10.1097/QCO.0000000000000532
Huang, C., Wang, Y., Li, X., et al. (2020)Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395:497-506 doi.org/10.1016/S0140-6736(20)30183-5
Hulseberg, C.E., Feneant, L., Szymansk -de Wijs, K.M., Kessler, N.P., Nelson, E.A., Shoemaker, C.J., Polyak, S.J., White, J.M. (2019). Arbidol and other Low-molecular-weight Drugs That Inhibit Lassa and Ebola Viruses. Journal of Virology 93:8 eo2185-18.
Jespersen S, Hønge BL, Krarup H, Medstrand P, Sørensen A, Medina C, Té DDS, Correira FG, Erikstrup C, Østergaard L, Wejse C, Laursen AL; Bissau HIV Cohort study group. (2018). Protease Inhibitors or NNRTIs as First-Line HIV-1 Treatment in West Africa (PIONA): A Randomized Controlled Trial. J Acquir Immune Defic Syndr.  Nov 1;79(3):386-393. doi: 10.1097/QAI.0000000000001820.
Jordan, P.C., Liu, C., Raynaud, P., Lo, M.K., Spiropoulou, C.F., Symons, J.A., Beigelman, L., Deval, J. (2018). Initiation, extension, and termination of RNA synthesis by a paramyxovirus polymerase. PLoS Pathog. 14 :e1006889. doi: 10.1371/journal.ppat.1006889.
Karkkhur, S., & Hasanreisoghi, M. (2019). Interleukin-6 inhibition in the management of non infectious uveitis and beyond. Journal of Ophthalmic inflammation and infection 9:17. http://doi.org/10.1186/s12348-019-0182-y.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet395: 565-574. doi: https://doi.org/10.1016/S0140-6736(20)30251-8
Luo, P., Liu, L., Liu, X., Li, J. (2020). Tocilizumab treatment in COVID-19: A Single Center Experience. Journal Med. Virol doi. W.1002/jmv. 2580
Lythgoe, M.P., & Middleton, P. (2020) Ongoing Clinical Trials for the Management of the COVID-19 Pandemic. Trends in Pharmacological Sciences. doi.org/10.1016/j.tips.2020.03.006
Madelain, V., Nguyen, T.H., Olivo, A., et al. (2016). Ebola Virus Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties of Drugs Considered for Testing in Human Efficacy Trials. Clin Pharmacokinet . 55(8):907–923. doi:10.1007/s40262-015-0364-1
Nature. Hopes rise for coronavirus drug remdesivir. Available on: https://www.nature.com/articles/d41586-020-01295-8
O’Brien, T.R., Thomas, D.L., Jackson, S.S., Prokunina-Olsson, L., Donelly, R.P., Hartmann, R. (2020). Weak induction of Interferon Expression by SARS-COV-2 supports Clinical Trials of interferon Lambda to Treat Early COVID-19. Clin. Infect Dis. Ciaa410.
Ozato K, Tailor P, Kubota T. (2007) The interferon regulatory factor family in host defense: mechanism of action. J Biol Chem.282(28):20065-20069.
Paintsil, E., & Cheng Y.C. (2019). Antiviral Agents. Encyclopedia of Microbiology . 176–225. doi:10.1016/B978-0-12-801238-3.02387-4
Ponticelli, C. & Locatelli, F. (2018) Glucocorticoids in the Treatment of Glomerular Diseases: Pitfalls and Pearls. Clin J Am Soc Nephrol . 13(5):815‐822. doi:10.2215/CJN.12991117
Principi, N., Camilloni, B., Alunno, A., Polinori, I., Argentiero, A., Esposito, S. (2019). Drugs for Influenza Treatment: Is There Significant News?. Front Med (Lausanne) . 6:109. doi:10.3389/fmed.2019.00109
Prokunina-Olsson, L., Alphorise, N., Dickson, R.E., Durban, J.E., Glenn, J.S., Hartmann, R., Kotenko, S.V., Lazear, H.M., Onabajo, O.O., Piontkivska, H., Santer, D.M., Reich, N.C., Wack, A., Zanoni, I. (2020). COVID-19 and emergency viral infections: The Case for Interferon Lambda. J Exp Med, 217(5). Pil: e20200653.doi:10.1084/jem 20200653.
Pshenichnaya, N.Y.U., Bulgakova, V.A., Lvou, N.I., et al (2019). Clinical efficacy of Umifenovir in influenza and ARV1. Therapeutic Archive 91(3) 56-63. doi: 10.26442/00403550.
Savarino, A., Boelaert, J.R., Cassone, A., Majori, G., & Cauda R. (2003). Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect Dis. 3(11):722-7
Sharma, A. (2020). Chloroquine Paradox May Cause More Damage Than Help Fight COVID-19 [published online ahead of print, 2020 Apr 16]. Microbes Infect . S1286-4579(20)30071-X. doi:10.1016/j.micinf.2020.04.004
Sheahan, T.P., Sims, A.C., Leist, S.R. et al.  (2020). Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun  11,  222. doi.org/10.1038/s41467-019-13940-6
Silva, B., Peixoto, G., da Luz, S., de Moraes, S. & Peres, S. (2019). Adverse effects of chronic treatment with the Main subclasses of highly active antiretroviral therapy: a systematic review. HIV Med, 20: 429-438. doi:10.1111/hiv.12733
Su, B., Wang, Y., Zhou, R., et al. (2019). Efficacy and Tolerability of Lopinavir/Ritonavir- and Efavirenz-Based Initial Antiretroviral Therapy in HIV-1-Infected Patients in a Tertiary Care Hospital in Beijing, China. Front Pharmacol . 10:1472. doi:10.3389/fphar.2019.01472
Subramanian, G., Kuzmanovic, T., Zhang, Y., Peter, C.B., Veleeparambil, M., Chakravarti, R. et al (2018). A new mechanism of interferon’s antiviral action: Induction of autophagy, essential for Paramyxovirus replication, is inhibited by the interferon-stimulated gene, TDRD7. Journal of Path, Plos Pathog 14(1): e1006877. Doi:10.1371.
Tchesnokov, E. P., Feng, J. Y., Porter, D. P. & Gotte, M. (2019) Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses  11, 326.
Tobaiqy, M., Qashqary, M., Al-Dahery, S., et al. (2020). Therapeutic Management of COVID-19 Patients: A systematic review [published online ahead of print, 2020 Apr 17]. 2020;100061. doi:10.1016/j.infpip.2020.100061
Wang, D., Hu, B., & Hu, C. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA published online Feb 7. DOI:10.1001/jama.2020.1585
Wang, Y., Jiang, W., He, Q., Wang, C., Wang, B., Zhou, P., Dong, N., Tong, Q. (2020). A retrospective cohort study of methylprednisolone therapy in severe patients with COVID-19 Pneumonia. Signal Transduct Target ther. 5(1): 57.Doi: 10.1038/3413-020-0158-2.
WHO “Solidarity” clinical trial for COVID-19 treatments.https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments accessed 17th April 2020. 
WHO Rolling updates on coronavirus disease (COVID-19). Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen. Accessed on 16th April 2020.
WHO. Coronavirus disease (COVID-19) Situation Report – 118. Available from https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200517-covid-19-sitrep-118.pdf?sfvrsn=21c0dafe_6 Accessed on 18th May 2020.
Williams, D.M. (2018). Clinical Pharmacology of Corticosteroids. Respir Care. 2018 Jun;63(6):655-670. doi: 10.4187/respcare.06314.
Yan, Y., Shin, W.I., Pang, Y.X., Meng, Y., Lai, J., You, C., Zhao, H., Lester, E., Wu, T., Pang, C.H. (2020). The First 75 Days of Novel Coronavirus (SARS-CoV-2) Outbreak: Recent Advances, Prevention, and Treatment. Int. J. Environ. Res. Public Health. 17, 2323; DOI:10.3390/ijerph17072323
Yang, X., Yu, Y., Xu, J., Shu, H., Xia, Ja, Liu, H., et al. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a singlecentered, retrospective, observational study. Lancet Respir. Med. pii: S2213-2600(20)30079-5. https://doi.org/10.1016/S2213-2600(20)30079-5
Zhou, W., Liu, Y., Tian, D., Wang, C., Wang, S., Cheng, J., Hu, M., Fang, M., Gao, Y. (2020). Potential benefits of precise corticosteroids therapy for severe 2019-Ncov Pneumonia. Signal Transduct Target Ther. 5(1)18. Doi:1038/s41392-020-0127-9.