References
Al-Bari, M.A. (2015). Chloroquine analogues in drug discovery: New
directions of uses, mechanisms of actions and toxic manifestations from
malaria to multifarious diseases. J. Antimicrob. Chemother. 70,
1608–1621. https://doi.org/10.1093/jac/dkv018
Amirian E.S., & Levy, J.K. (2020). Current knowledge about the
antivirals remdesivir (GS-5734) and GS-441524 as therapeutic options for
coronaviruses. One Health . 9:100128. Published 2020 Mar 27.
doi:10.1016/j.onehlt.2020.100128
Antinori, A., Rusconi, S., Gianotti, N., Bini, T., Mancusi, D., &
Termini., R. (2019). Cardiovascular adverse events during treatment with
darunavir-based regimens in an Italian Observaional Study. Drug Des
Devel THER. 13:1667-1685.
Aoki, M., Das, D., Hayashi, H., Aoki-Ogata, H., Takamatsu, Y., Ghosh,
A.K., Mitsuya, H. (2018). Mechanism of Duranavir (DRV)’s High Genetic
Barrier to HIV-1 Resistance: A key V321 Substitution in Protease Rarely
Occurs, but once it occurs, it predisposes HIV-1 to Develop DRV
Resistance. Mb109:eo2425-17.
https://doi.org/10.1128/mBio.
02425-17.
Ashburn, T., & Thor, K. (2004). Drug repositioning: identifying and
developing new uses for existing drugs. Nat Rev Drug
Discov 3, 673–683. https://doi.org/10.1038/nrd1468
Beigel, J.H., Nam, H.H., Adams, P.L., et al. (2019). Advances in
respiratory virus therapeutics - A meeting report from the 6th isirv
Antiviral Group conference. Antiviral Res . 167:45–67.
doi:10.1016/j.antiviral.2019.04.006
Brown, A.J., Won, J.J., Graham, R.L., et al. (2019). Broad spectrum
antiviral remdesivir inhibits human endemic and zoonotic
deltacoronaviruses with a highly divergent RNA dependent RNA
polymerase. Antiviral Res .169:104541.
doi:10.1016/j.antiviral.2019.104541
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang,
J., Liu, Y., Wei, Y. et al. (2020). Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: A descriptive study. Lancet 395, 507–513
Crosby, J.C., Heimann, M.A., Burleson, S.L., et al. (2020). COVID‐19: A
review of therapeutics under investigation. JACEP Open .
1– 7. https://doi.org/10.1002/emp2.12081
D’Alessandro, S., Scaccabarozzi, D., Signorini, L., et al. (2020). The
Use of Antimalarial Drugs against Viral
Infection. Microorganisms . 8(1):85. Published 2020 Jan 8.
doi:10.3390/microorganisms8010085
Delicio, A.M., Lagos, G.J., Amaral, E., Lopes, F., Cavichiolli, F.,
Myoshi, I., & Milanez, H. (2018). Adverse effects of anti-retroviral
therapy in pregnant women infected with HIV in Brazil from 2000 to 2015:
a cohort study. BMC infectious diseases 18(1)485.
https://doi.org/10.1186/s
12879-018-3397.
Devaux, C.A., Rolain, J.M., Colson. P., Raoult, D. (2020). New insights
on the antiviral effects of chloroquine against coronavirus: what to
expect for COVID-19? [published online ahead of print, 2020 Mar
12]. Int J Antimicrob Agents . 105938.
doi:10.1016/j.ijantimicag.2020.105938
Dionne, B. (2019). Key Principles of Antiretroviral Pharmacology. Infect
Dis Clin N Am 33:787–805
doi.org/10.1016/j.idc.2019.05.006
Ferrara, G., Petrillo, M.G., Giani, T., Marrani, E., Filippesci, C.,
Oranges, T., Simonini, G., Cimaz, R. (2009). Clinical use and Molecular
Action of Corticosteroids and Paediatric Age. International Journal of
Molecular Sciences, 20,44; doi: 10.3390/yms 20020444.
Fink, S.L., Vojtech, L., Wagoner, J., Sliviski, N.S.J., Jackson, K.J.,
Wang, R., Khadka, S., Luthra, P., Basker, C.F., Polyak, S.J. (2018). The
antiviral drug Arbidol inhibits Zika virus. Sci REP 8: 8989. doi:
1038/s41598-018-27224-4.
Furuta, Y., Gowen, B.B., Takahashi K., Shiraki, K., Smee, D.F., Barnard,
D.L. (2013). Favipiravir (T-705), a novel viral RNA polymerase
inhibitor. Antiviral Res . 100(2):446–454.
doi:10.1016/j.antiviral.2013.09.015
Haładyj, E., Sikora, M., Felis-Giemza, A., & Olesińska, M. (2018).
Antimalarials - are they effective and safe in rheumatic diseases?.Reumatologia . 56(3):164–173. doi:10.5114/reum.2018.76904
Hayden, F.G., & Shindo, N. (2019) Influenza virus polymerase inhibitors
in clinical development. Curr Opin Infect Dis . 32(2):176–186.
doi:10.1097/QCO.0000000000000532
Huang, C., Wang, Y., Li, X., et al. (2020)Clinical features of
patients infected with 2019 novel coronavirus in Wuhan, China.
Lancet, 395:497-506
doi.org/10.1016/S0140-6736(20)30183-5
Hulseberg, C.E., Feneant, L., Szymansk -de Wijs, K.M., Kessler, N.P.,
Nelson, E.A., Shoemaker, C.J., Polyak, S.J., White, J.M. (2019). Arbidol
and other Low-molecular-weight Drugs That Inhibit Lassa and Ebola
Viruses. Journal of Virology 93:8 eo2185-18.
Jespersen
S, Hønge
BL, Krarup
H, Medstrand
P, Sørensen
A, Medina
C, Té
DDS, Correira
FG, Erikstrup
C, Østergaard
L, Wejse
C, Laursen
AL; Bissau
HIV Cohort study group. (2018). Protease Inhibitors or NNRTIs as
First-Line HIV-1 Treatment in West Africa (PIONA): A Randomized
Controlled Trial. J
Acquir Immune Defic Syndr. Nov 1;79(3):386-393. doi:
10.1097/QAI.0000000000001820.
Jordan, P.C., Liu, C., Raynaud, P., Lo, M.K., Spiropoulou, C.F., Symons,
J.A., Beigelman, L., Deval, J. (2018). Initiation, extension, and
termination of RNA synthesis by a paramyxovirus polymerase. PLoS
Pathog. 14 :e1006889. doi: 10.1371/journal.ppat.1006889.
Karkkhur, S., & Hasanreisoghi, M. (2019). Interleukin-6 inhibition in
the management of non infectious uveitis and beyond. Journal of
Ophthalmic inflammation and infection 9:17.
http://doi.org/10.1186/s12348-019-0182-y.
Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., et al. (2020).
Genomic characterisation and epidemiology of 2019 novel coronavirus:
implications for virus origins and receptor binding. Lancet395: 565-574. doi: https://doi.org/10.1016/S0140-6736(20)30251-8
Luo, P., Liu, L., Liu, X., Li, J. (2020). Tocilizumab treatment in
COVID-19: A Single Center Experience. Journal Med. Virol doi.
W.1002/jmv. 2580
Lythgoe, M.P., & Middleton, P. (2020) Ongoing Clinical Trials for the
Management of the COVID-19 Pandemic. Trends in Pharmacological Sciences.
doi.org/10.1016/j.tips.2020.03.006
Madelain, V., Nguyen, T.H., Olivo, A., et al. (2016). Ebola Virus
Infection: Review of the Pharmacokinetic and Pharmacodynamic Properties
of Drugs Considered for Testing in Human Efficacy Trials. Clin
Pharmacokinet . 55(8):907–923. doi:10.1007/s40262-015-0364-1
Nature. Hopes rise for coronavirus drug remdesivir. Available on:
https://www.nature.com/articles/d41586-020-01295-8
O’Brien, T.R., Thomas, D.L., Jackson, S.S., Prokunina-Olsson, L.,
Donelly, R.P., Hartmann, R. (2020). Weak induction of Interferon
Expression by SARS-COV-2 supports Clinical Trials of interferon Lambda
to Treat Early COVID-19. Clin. Infect Dis. Ciaa410.
Ozato K, Tailor P, Kubota T. (2007) The interferon regulatory factor
family in host defense: mechanism of action. J Biol Chem.282(28):20065-20069.
Paintsil, E., & Cheng Y.C. (2019). Antiviral Agents. Encyclopedia
of Microbiology . 176–225. doi:10.1016/B978-0-12-801238-3.02387-4
Ponticelli, C. & Locatelli, F. (2018) Glucocorticoids in the Treatment
of Glomerular Diseases: Pitfalls and Pearls. Clin J Am Soc
Nephrol . 13(5):815‐822. doi:10.2215/CJN.12991117
Principi, N., Camilloni, B., Alunno, A., Polinori, I., Argentiero, A.,
Esposito, S. (2019). Drugs for Influenza Treatment: Is There Significant
News?. Front Med (Lausanne) . 6:109. doi:10.3389/fmed.2019.00109
Prokunina-Olsson, L., Alphorise, N., Dickson, R.E., Durban, J.E., Glenn,
J.S., Hartmann, R., Kotenko, S.V., Lazear, H.M., Onabajo, O.O.,
Piontkivska, H., Santer, D.M., Reich, N.C., Wack, A., Zanoni, I. (2020).
COVID-19 and emergency viral infections: The Case for Interferon Lambda.
J Exp Med, 217(5). Pil: e20200653.doi:10.1084/jem 20200653.
Pshenichnaya, N.Y.U., Bulgakova, V.A., Lvou, N.I., et al (2019).
Clinical efficacy of Umifenovir in influenza and ARV1. Therapeutic
Archive 91(3) 56-63. doi: 10.26442/00403550.
Savarino,
A., Boelaert,
J.R., Cassone,
A., Majori,
G., &
Cauda
R. (2003). Effects of chloroquine on viral infections: an old drug
against today’s diseases?
Lancet Infect Dis.
3(11):722-7
Sharma, A. (2020). Chloroquine Paradox May Cause More Damage Than Help
Fight COVID-19 [published online ahead of print, 2020 Apr
16]. Microbes Infect . S1286-4579(20)30071-X.
doi:10.1016/j.micinf.2020.04.004
Sheahan, T.P., Sims, A.C., Leist, S.R. et al. (2020). Comparative
therapeutic efficacy of remdesivir and combination lopinavir, ritonavir,
and interferon beta against MERS-CoV. Nat
Commun 11, 222.
doi.org/10.1038/s41467-019-13940-6
Silva, B., Peixoto, G., da Luz, S., de Moraes, S. & Peres, S. (2019).
Adverse effects of chronic treatment with the Main subclasses of highly
active antiretroviral therapy: a systematic review. HIV Med, 20:
429-438. doi:10.1111/hiv.12733
Su, B., Wang, Y., Zhou, R., et al. (2019). Efficacy and Tolerability of
Lopinavir/Ritonavir- and Efavirenz-Based Initial Antiretroviral Therapy
in HIV-1-Infected Patients in a Tertiary Care Hospital in Beijing,
China. Front Pharmacol . 10:1472. doi:10.3389/fphar.2019.01472
Subramanian, G., Kuzmanovic, T., Zhang, Y., Peter, C.B., Veleeparambil,
M., Chakravarti, R. et al (2018). A new mechanism of interferon’s
antiviral action: Induction of autophagy, essential for Paramyxovirus
replication, is inhibited by the interferon-stimulated gene, TDRD7.
Journal of Path, Plos Pathog 14(1): e1006877. Doi:10.1371.
Tchesnokov, E. P., Feng, J. Y., Porter, D. P. & Gotte, M. (2019)
Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by
remdesivir. Viruses 11, 326.
Tobaiqy, M., Qashqary, M., Al-Dahery, S., et al. (2020). Therapeutic
Management of COVID-19 Patients: A systematic review [published online
ahead of print, 2020 Apr 17]. 2020;100061.
doi:10.1016/j.infpip.2020.100061
Wang, D., Hu, B., & Hu, C. (2020). Clinical characteristics of 138
hospitalized patients with 2019 novel coronavirus-infected pneumonia in
Wuhan, China. JAMA published online Feb 7.
DOI:10.1001/jama.2020.1585
Wang, Y., Jiang, W., He, Q., Wang, C., Wang, B., Zhou, P., Dong, N.,
Tong, Q. (2020). A retrospective cohort study of methylprednisolone
therapy in severe patients with COVID-19 Pneumonia. Signal Transduct
Target ther. 5(1): 57.Doi: 10.1038/3413-020-0158-2.
WHO “Solidarity” clinical trial for COVID-19 treatments.https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-for-covid-19-treatments
accessed 17th April 2020.
WHO Rolling updates on coronavirus disease (COVID-19). Available from:
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen.
Accessed on 16th April 2020.
WHO. Coronavirus disease (COVID-19) Situation Report – 118. Available
from
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200517-covid-19-sitrep-118.pdf?sfvrsn=21c0dafe_6
Accessed on 18th May 2020.
Williams, D.M. (2018). Clinical Pharmacology of Corticosteroids.
Respir Care. 2018
Jun;63(6):655-670. doi: 10.4187/respcare.06314.
Yan, Y., Shin, W.I., Pang, Y.X., Meng, Y., Lai, J., You, C., Zhao, H.,
Lester, E., Wu, T., Pang, C.H. (2020). The First 75 Days of Novel
Coronavirus (SARS-CoV-2) Outbreak: Recent Advances, Prevention, and
Treatment. Int. J. Environ. Res. Public Health. 17, 2323;
DOI:10.3390/ijerph17072323
Yang, X., Yu, Y., Xu, J., Shu, H., Xia, Ja, Liu, H., et al. (2020).
Clinical course and outcomes of critically ill patients with SARS-CoV-2
pneumonia in Wuhan, China: a singlecentered, retrospective,
observational study. Lancet Respir. Med. pii: S2213-2600(20)30079-5.
https://doi.org/10.1016/S2213-2600(20)30079-5
Zhou, W., Liu, Y., Tian, D., Wang, C., Wang, S., Cheng, J., Hu, M.,
Fang, M., Gao, Y. (2020). Potential benefits of precise corticosteroids
therapy for severe 2019-Ncov Pneumonia. Signal Transduct Target Ther.
5(1)18. Doi:1038/s41392-020-0127-9.