References
  1. Guideline: Daily iron supplementation in infants and children. Geneva: World Health Organization; 2016.
  2. Essential Nutrition Actions: Improving maternal, newborn, infant and young child health and nutrition. Geneva: World Health Organization; 2013.
  3. Department of Health: Ministry of Public Health of Thailand. Guidelines for controlling and preventing anemia from iron deficiency. Available at: URL:http://hpc.go.th/director/data/mch/IDAControl.pdf. Accessed Mar 27, 2019.
  4. Lukowski AF, Koss M, Burden MJ, Jonides J, Nelson CA, Kaciroti N,et al. Iron deficiency in infancy and neurocognitive functioning at 19 years: evidence of long-term deficits in executive function and recognition memory. Nutritional Neuroscience 2010;13:54-70.
  5. Porter J, Viprakasit V. Iron overload and chelation. In: Cappellini MD, Cohen A, Porter J, Taher A, Viprakasit V, eds. Guidelines for the management of transfusion dependent thalassaemia, 3rd ed. Thalassaemia international federation; 2014. p. 42-97.
  6. Taher A, Vichinsky E, Musallam K, Cappellini MD, Viprakasit V. Iron overload and chelation. In: Taher A, Vichinsky E, Musallam K, Cappellini MD, Viprakasit V, editors. Guidelines for the management of non transfusion dependent thalassaemia, 1st ed. Thalassaemia international federation; 2013. p. 35-50.
  7. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 2008;86:480–487.
  8. Weatherall DJ, Clegg JB, eds. The Thalassaemia Syndromes. 4th ed. Oxford: Blackwell Science; 2001.
  9. Globin gene server home page. Available at: URL:http://globin.cse.psu.edu/. Accessed Mar 1, 2019.
  10. Panich V, Pornpatkul M, Sriroongrueng W. The problem of thalassemia in Thailand. Southeast Asian J Trop Med Public Health 1992;23 Suppl 2:1-6.
  11. Fucharoen S, Winichagoon P. Hemoglobinopathies in Southeast Asia: molecular biology and clinical medicine. Hemoglobin 1997;21:299-319.
  12. Fucharoen S, Winichagoon P, Wisedpanichkij R, Sae-Ngow B, Sriphanich R, Oncoung W, et al. Prenatal and postnatal diagnoses of thalassemias and hemoglobinopathies by HPLC. Clin Chem 1998;44:740–748.
  13. Viprakasit V, Limwongse C, Sukpanichnant S, Ruangvutilert P, Kanjanakorn C, Glomglao W, et al. Problems in determining thalassemia carrier status in a program for prevention and control of severe thalassemia syndromes: a lesson from Thailand. Clin Chem Lab Med 2013; 51:1605–1614.
  14. Tachavanich K, Viprakasit V, Chinchang W, Glomglao W, Pung-Amritt P, Tanphaichitr VS. Clinical and hematological phenotype of homozygous hemoglobin E: revisit of a benign condition with hidden reproductive risk. Southeast Asian J Trop Med Public Health 2009;40:306-316.
  15. Taher A, Hershko C, Cappellini MD. Iron overload in thalassaemia intermedia: reassessment of iron chelation strategies. Br J Haematol 2009;147:634-640.
  16. Winichakoon P, Tantiworawit A, Rattanathammethee T, Hantrakool S, Chai-adisaksopha C, Rattarittamrong E, et al. Prevalence and risk factors for complications in patients with nontransfusion dependent alpha- and beta-thalassemia. Anemia 2015;2015:1-7.
  17. Aydinok Y, Porter JB, Piga A, Elalfy M, Beshlawy AE, Kilinc Y, et al. Prevalence and distribution of iron overload in patients with transfusion-dependent anemias differs across geographic regions: results from the CORDELIA study. Eur J Haematol 2015;95:244-253.
  18. Krittayaphonga R, Viprakasit V, Saiviroonpornc P, Siritanaratkuld N, Siripornpitake S, Meekaewkunchornf A, et al. Prevalence and predictors of cardiac and liver iron overload in patients with thalassemia: A multicenter study based on real-world data. Blood Cells Mol Dis 2017;66:24–30.
  19. Zimmermann MB, Fucharoen S, Winichagoon P, Sirankapracha P, Zeder C, Gowachirapant S, et al. Iron metabolism in heterozygotes for hemoglobin E (HbE), α-thalassemia 1, or β-thalassemia and in compound heterozygotes for HbE/ β –thalassemia. Am J Clin Nutr 2008;88:1026–1031.
  20. Tanno T, Bhanu NV, Oneal PA, Goh SH, Staker P, Lee YT, et al .High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med 2007;13:1096–1101.
  21. Kim A, Nemeth E. New insights into iron regulation and erythropoiesis. Curr Opin Hematol 2015;22:199–205.
  22. Gupta R, Musallam KM, Taher AT, Rivella S. Ineffective erythropoiesis: anemia and iron overload. Hematol Oncol Clin N Am 2018;32:213–21.
  23. Gardenghi S, Marongiu MF, Ramos P, Guy E, Breda L, Chadburn A, et al. Ineffective erythropoiesis in beta-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood 2007;109:5027-5035.
  24. Camberlein E, Zanninelli G, Détivaud L, Lizzi AR, Sorrentino F, Vacquer S, et al. Anemia in β-thalassemia patients targets hepatic hepcidin transcript levels independently of iron metabolism genes controlling hepcidin expression. Haematologica 2008;93:111-115.
  25. Jones E, Pasricha SR, Allen A, Evans P, Fisher CA, Wray K. Hepcidin is suppressed by erythropoiesis in hemoglobin E β-thalassemia and β-thalassemia trait. Blood 2015;125:873-880.
  26. WHO Anthro for personal computers, version 3.2.2, 2011: Software for assessing growth and development of the world’s children. Geneva: WHO, 2010. (http://www.who.int/childgrowth/software/en/)
  27. Schlosnagle DC, Hutton PS, Conn RB. Ferrozine assay of serum iron and total iron-binding capacity adapted to the COBAS BIO centrifugal analyzer. Clin Chem 1982;28:1730-1732.
  28. Ganz T, Olbina G, Girelli D, Nemeth E, Westerman M. Immunoassay for human serum hepcidin. Blood 2008;112:4292-4297.
  29. Zipperer E, Post JG, Herkert M, Kündgen A, Fox F, Haas R, et al. Serum hepcidin measured with an improved ELISA correlates with parameters of iron metabolism in patients with myelodysplastic syndrome. Ann Hematol 2013;92:1617–1623.
  30. Troutt JS, Rudling M, Persson L, Ståhle L, Angelin B, Butterfield AM, et al. Circulating human hepcidin-25 concentrations display a diurnal rhythm, increase with prolonged fasting, and are reduced by growth hormone administration. Clin Chem 2012;58:1225-1232.
  31. Eng B PM, Walker L, Chui DHK, Waye JS. Detection of severe nondeletional α-thalassemia mutations using a single-tube multiplex ARMS assay. Genet Test 2001;5:327-329.
  32. Newton CR, Graham A, Heptinstall LE, Powell J, Summers C, Kalsheker N, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Research 1989;17:2503–2516.
  33. Tritipsombut J, Phylipsen M, Viprakasit V, Chalaow N, Fucharoen S, Harteveld CL, et al. A single-tube multiplex gap-polymerase chain reaction for the detection of eight beta-globin gene cluster deletions common in Southeast Asia. Hemoglobin 2012;3:571-580.
  34. Craig JE, Barnetson RA, Prior J, Raven JL, Thein SL. Rapid detection of deletions caused β-thalassemia and hereditary persistence of fetal hemoglobin by enzymatic amplification. Blood 1994;83:1673-1682.
  35. Ekwattanakit S MY, Riolueang S, Tachavanich K, Viprakasit V. Association of XmnI polymorphism and hemoglobin E haplotypes on postnatal gamma globin gene expression in homozygous hemoglobin E. Adv Hematol 2012;2012:1-5.
  36. Iron deficiency anemia: assessment, prevention and control. A guide for programme managers. Geneva, World Health Organization, 2001 (WHO/NHD/01.3).
  37. Camaschella C. Iron deficiency: new insights into diagnosis and treatment. Hematology Am Soc Hematol Educ Program 2015;2015:8-13.
  38. Galanello R. Screening and diagnosis for haemoglobin disorders. In: Old J, editor. Prevention of thalassaemias and other haemoglobin disorders: volume 1, 2nd ed. Nicosia, Cyprus: Thalassaemia international federation; 2013.
  39. Tachavanich K, Viprakasit V, Chinchang W, Glomglao W, Pung-Amritt P, Tanphaichitr VS. Clinical and hematological phenotype of homozygous hemoglobin E: revisit of a benign condition with hidden reproductive risk. Southeast Asian J Trop Med Public Health 2009 Mar;40:306-316.
  40. Vrettou C, Kanavakis E, Traeger-Synodinos J, Metaxotou-Mavrommati A, Basiakos I, Maragoudaki E, et al. Molecular studies of beta-thalassemia heterozygotes with raised Hb F levels. Hemoglobin 2000;24:203-220.
  41. Viprakasit V, Lee-Lee C, Chong QT, Lin KH, Khuhapinant A. Iron chelation therapy in the management of thalassemia: the Asian perspectives. Int J Hematol 2009;90:435-445.
  42. Tassiopoulos T, Konstantopoulos K, Tassiopoulos S, Rombos Y, Alevizou-Terzaki V, Kyriaki P, et al. Erythropoietin levels and microcytosis in heterozygous beta-thalassaemia. Acta Haematol 1997;98:147-149.
  43. Mehta BC, Pandya BG. Iron status of beta thalassemia carriers. Am J Hematol 1987;24:137-141.
  44. Hoorfar H, Sadrarhami S, Keshteli AH, Ardestani SK, Ataei M, Moafi A. Evaluation of iron status by serum ferritin level in Iranian carriers of beta thalassemia minor. Int J Vitam Nutr Res 2008;78:204-207.
  45. Dolai TK, Nataraj KS, Sinha N, Mishra S, Bhattacharya M, Ghosh MK. Prevalance of iron deficiency in thalassemia minor: a study from tertiary hospital. Indian J Hematol Blood Transfus 2012;28:7–9.
  46. Hinchliffe RF, Lilleyman JS. Frequency of coincident iron deficiency and beta-thalassaemia trait in British Asian children. J Clin Pathol 1995;48:594-595.
  47. Wray K, Allen A, Evans E, Fisher C, Premawardhena A, Perera L, et al. Hepcidin detects iron deficiency in Sri Lankan adolescents with a high burden of hemoglobinopathy: A diagnostic test accuracy study. Am J Hematol 2017;92:196–203.
  48. Uijterschout L, Domellöf M, Berglund SK, Abbink M, Vos P, Rövekamp L, et al. Serum hepcidin in infants born after 32 to 37 wk of gestational age. Pediatr Res 2016;79:608-613.
  49. Aranda N, Bedmar C, Arija V, Jardí C, Jimenez-Feijoo R, Ferré N, et al. Serum hepcidin levels, iron status, and HFE gene alterations during the first year of life in healthy Spanish infants. Ann Hematol 2018;97:1071-1080.
FIGURE 1 Comparison of serum ferritin (A), transferrin saturation (B) and serum hepcidin (C) between normal infants (NL) and infants with three subgroups of thalassemia minor; α-thalassemia trait, β-thalassemia trait or hemoglobin (Hb) E trait, and combined α- and β-globin mutations
Legend to Figure: #All infants shown herein were determined as having normal iron status. The difference between each parameter of infant groups was analyzed using a one-way analysis of variance (P ). Note: NL: normal; a: α-thalassemia trait, b: β-thalassemia trait or hemoglobin (Hb) E trait, and c: combined α- and β-globin mutations. O: infants with thalassemia minor who had iron deficiency (ID); X: infants with thalassemia minor who had iron deficiency anemia (IDA).