REFERENCES
Abuelsoud, W., Cortleven, A., & Schmülling, T. (2020). Photoperiod stress alters the cellular redox status and is associated with an increased peroxidase and decreased catalase activity. BioRxivdoi: https://doi.org/10.1101/2020.03.05.978270
Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012). Flavonoids as antioxidants in plants: location and functional significance. Plant Sci . doi: https://doi.org/10.1016/j.plantsci.2012.07.014
Agrawal, A. A., Kearney, E. E., Hastings, A. P., & Ramsey, T. E. (2012). Attenuation of the jasmonate burst, plant defensive traits, and resistance to specialist monarch caterpillars on shaded common milkweed (Asclepias syriaca ). J Chem Ecol, 38(7), 893-901.
Ahmad, M., & Cashmore, A. R. (1993). HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature, 366(6451), 162-166.
Ahres, M., Gierczik, K., Boldizsár, Á., Vítámvás, P., & Galiba, G. (2020). Temperature and Light-Quality-Dependent Regulation of Freezing Tolerance in Barley. Plants, 9(1), pii: E83.
Alonso-Blanco, C., Gomez-Mena, C., Llorente, F., Koornneef, M., Salinas, J., & Martinez-Zapater, J. M. (2005). Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis.Plant Physiol, 139(3), 1304-1312
Amissah, L., Mohren, G. M., Kyereh, B., & Poorter, L. (2015). The effects of drought and shade on the performance, morphology and physiology of Ghanaian tree species. PLoS One, 10(4), e0121004.
Anjum, N. A., Khan, N. A., Sofo, A., Baier, M., & Kizek, R. (2016). Redox homeostasis managers in plants under environmental stresses.Front Environ Sci . doi: https://doi.org/10.3389/ fenvs.2016.00035
Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,55, 373-399.
Arico, D., Legris, M., Castro, L., Garcia, C. F., Laino, A., Casal, J. J., & Mazzella, M. A. (2019). Neighbour signals perceived by phytochrome B increase thermotolerance in Arabidopsis. Plant Cell Environ, 42(9), 2554-2566.
Asada, K. (1999). THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu Rev Plant Physiol Plant Mol Biol , 50, 601-639.
Asghar, M. A., Duab, J., Jiang, H., Lia, Y., Sun, X., Shang, J., . . . Yang, W. (2020). Shade pretreatment enhanced drought resistance of soybean. Environ Exp Bot, 171, 103952.
Baena-Gonzalez, E., & Aro, E. M. (2002). Biogenesis, assembly and turnover of photosystem II units. Philos Trans R Soc Lond B Biol Sci, 357 (1426), 1451-1459.
Balfagon, D., Sengupta, S., Gomez-Cadenas, A., Fritschi, F. B., Azad, R. K., Mittler, R., & Zandalinas, S. I. (2019). Jasmonic Acid Is Required for Plant Acclimation to a Combination of High Light and Heat Stress.Plant Physiol, 181(4), 1668-1682.
Ballaré, C. L. (2014). Light regulation of plant defense. Annu Rev Plant Biol, 65, 335-363.
Banerjee, R., Schleicher, E., Meier, S., Viana, R. M., Pokorny, R., Ahmad, M., . . . Batschauer, A. (2007). The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J Biol Chem, 282(20), 14916-14922.
Boccalandro, H. E., Rugnone, M. L., Moreno, J. E., Ploschuk, E. L., Serna, L., Yanovsky, M. J., & Casal, J. J. (2009). Phytochrome B enhances photosynthesis at the expense of water-use efficiency in Arabidopsis. Plant Physiol, 150(2), 1083-1092.
Bögre, L., Okresz, L., Henriques, R., & Anthony, R. G. (2003). Growth signalling pathways in Arabidopsis and the AGC protein kinases.Trends Plant Sci, 8(9), 424-431.
Bouly, J. P., Schleicher, E., Dionisio-Sese, M., Vandenbussche, F., Van Der Straeten, D., Bakrim, N., . . . Ahmad, M. (2007). Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem, 282(13), 9383-9391.
Brelsford, C. C., Morales, L. O., Nezval, J., Kotilainen, T. K., Hartikainen, S. M., Aphalo, P. J., & Robson, T. M. (2019). Do UV-A radiation and blue light during growth prime leaves to cope with acute high light in photoreceptor mutants of Arabidopsis thaliana ?Physiol Plant, 165(3), 537-554.
Britt, A. (2002). Repair of damaged bases. Arabidopsis Book, 1 , e0005. doi:10.1199/tab.0005
Brown, B. A., Cloix, C., Jiang, G. H., Kaiserli, E., Herzyk, P., Kliebenstein, D. J., & Jenkins, G. I. (2005). A UV-B-specific signaling component orchestrates plant UV protection. Proc Natl Acad Sci U S A, 102(50), 18225-18230.
Brown, B. A., & Jenkins, G. I. (2008). UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH.Plant Physiol, 146(2), 576-588.
Canamero, R. C., Bakrim, N., Bouly, J. P., Garay, A., Dudkin, E. E., Habricot, Y., & Ahmad, M. (2006). Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta, 224(5), 995-1003.
Caputo, C., Rutitzky, M., & Ballare, C. L. (2006). Solar ultraviolet-B radiation alters the attractiveness of Arabidopsis plants to diamondback moths (Plutella xylostella L.): impacts on oviposition and involvement of the jasmonic acid pathway. Oecologia, 149(1), 81-90.
Casal, J. J. (2013). Photoreceptor signaling networks in plant responses to shade. Annu Rev Plant Biol, 64, 403-427.
Cecchini, E., Geri, C., Love, A. J., Coupland, G., Covey, S. N., & Milner, J. J. (2002). Mutations that delay flowering in Arabidopsis de-couple symptom response from cauliflower mosaic virus accumulation during infection. Mol Plant Pathol, 3(2), 81-90.
Cerrudo, I., Keller, M. M., Cargnel, M. D., Demkura, P. V., de Wit, M., Patitucci, M. S., . . . Ballare, C. L. (2012). Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Plant Physiol, 158(4), 2042-2052.
Chandra-Shekara, A. C., Gupte, M., Navarre, D., Raina, S., Raina, R., Klessig, D., & Kachroo, P. (2006). Light-dependent hypersensitive response and resistance signaling against Turnip Crinkle Virus in Arabidopsis. Plant J, 45(3), 320-334.
Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 124(4), 803-814.
Christie, J. M. (2007). Phototropin blue-light receptors. Annu Rev Plant Biol, 58, 21-45.
Christie, J. M., Blackwood, L., Petersen, J., & Sullivan, S. (2015). Plant flavoprotein photoreceptors. Plant Cell Physiol, 56(3), 401-413.
Christie, J. M., Salomon, M., Nozue, K., Wada, M., & Briggs, W. R. (1999). LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci U S A, 96(15), 8779-8783.
Conrath, U. (2006). Systemic acquired resistance. Plant Signal Behav, 1( 4), 179-184.
Consentino, L., Lambert, S., Martino, C., Jourdan, N., Bouchet, P. E., Witczak, J., . . . Ahmad, M. (2015). Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism. New Phytol, 206(4), 1450-1462.
Correll, M. J., Coveney, K. M., Raines, S. V., Mullen, J. L., Hangarter, R. P., & Kiss, J. Z. (2003). Phytochromes play a role in phototropism and gravitropism in Arabidopsis roots. Adv Space Res, 31(10), 2203-2210.
Danon, A., Coll, N. S., & Apel, K. (2006). Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen inArabidopsis thaliana . Proc Natl Acad Sci U S A, 103(45), 17036-17041.
Daszkowska-Golec, A., & Szarejko, I. (2013). Open or close the gate - stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci, 4, 138.
Davey, M. P., Susanti, N. I., Wargent, J. J., Findlay, J. E., Paul Quick, W., Paul, N. D., & Jenkins, G. I. (2012). The UV-B photoreceptor UVR8 promotes photosynthetic efficiency in Arabidopsis thalianaexposed to elevated levels of UV-B. Photosynth Res, 114(2), 121-131.
de Wit, M., Spoel, S. H., Sanchez-Perez, G. F., Gommers, C. M. M., Pieterse, C. M. J., Voesenek, L., & Pierik, R. (2013). Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. Plant J, 75(1), 90-103.
De Wit, P. (1997). Pathogen avirulence and plant resistance: a key role for recognition. Trends Plant Sci 2: 452–458. Trends in Plant Science, 2, 452-458.
De Wit, P. (2007). How plants recognize pathogens and defend themselves.Cellular and Molecular Life Sciences , 2726-2732.
Delprato, M. L., Krapp, A. R., & Carrillo, N. (2015). Green Light to Plant Responses to Pathogens: The Role of Chloroplast Light-Dependent Signaling in Biotic Stress. Photochem Photobiol, 91(5), 1004-1011.
Demkura, P. V., & Ballare, C. L. (2012). UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. Mol Plant, 5(3), 642-652.
Devlin, P. F., & Kay, S. A. (2000). Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity.Plant Cell, 12(12), 2499-2510.
Dickinson, P. J., Kumar, M., Martinho, C., Yoo, S. J., Lan, H., Artavanis, G., . . . Wigge, P. A. (2018). Chloroplast Signaling Gates Thermotolerance in Arabidopsis. Cell Rep, 22(7), 1657-1665.
Ding, L., Wang, S., Song, Z. T., Jiang, Y., Han, J. J., Lu, S. J., . . . Liu, J. X. (2018). Two B-Box Domain Proteins, BBX18 and BBX23, Interact with ELF3 and Regulate Thermomorphogenesis in Arabidopsis. Cell Rep, 25(7), 1718-1728 e1714.
Dong, M. A., Farre, E. M., & Thomashow, M. F. (2011). Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci U S A, 108(17), 7241-7246.
Edelman, M., & Mattoo, A. K. (2008). D1-protein dynamics in photosystem II: the lingering enigma. Photosynth Res, 98(1-3), 609-620.
El-Esawi, M., Arthaut, L. D., Jourdan, N., d’Harlingue, A., Link, J., Martino, C. F., & Ahmad, M. (2017). Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome.Sci Rep, 7(1), 13875.
Emiliani, J., Grotewold, E., Falcone Ferreyra, M. L., & Casati, P. (2013). Flavonols protect Arabidopsis plants against UV-B deleterious effects. Mol Plant, 6(4), 1376-1379.
Escobar-Bravo, R., Klinkhamer, P. G., & Leiss, K. A. (2017). Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores. Front Plant Sci, 8, 278.
Escobar Bravo, R., Chen, G., Grosser, K., Van Dam, N. M., Leiss, K. A., & Klinkhamer, P. G. L. (2019). Ultraviolet radiation enhances salicylic acid-mediated defense signaling and resistance to Pseudomonas syringae DC3000 in a jasmonic acid-deficient tomato mutant. Plant Signal Behav, 14(4), e1581560.
Ezer, D., Jung, J. H., Lan, H., Biswas, S., Gregoire, L., Box, M. S., . . . Wigge, P. A. (2017). The evening complex coordinates environmental and endogenous signals in Arabidopsis. Nat Plants, 3, 17087.
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., . . . Huang, J. (2017). Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front Plant Sci,8, 1147.
Favory, J. J., Stec, A., Gruber, H., Rizzini, L., Oravecz, A., Funk, M., . . . Ulm, R. (2009). Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis.EMBO J, 28(5), 591-601.
Fernandez-Milmanda, G. L., Crocco, C. D., Reichelt, M., Mazza, C. A., Kollner, T. G., Zhang, T., . . . Ballare, C. L. (2020). A light-dependent molecular link between competition cues and defence responses in plants. Nat Plants, 6(3), 223-230.
Fowler, S. G., Cook, D., & Thomashow, M. F. (2005). Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock.Plant Physiol, 137(3), 961-968.
Frank, M., Cortleven, A., Novak, O., & Schmülling, T. (2020). Root-derived trans-zeatin cytokinin protects Arabidopsis plants against photoperiod stress. doi: https://doi.org/10.1101/2020.03.05.978221
Franklin, K. A., & Whitelam, G. C. (2007a). Light-quality regulation of freezing tolerance in Arabidopsis thaliana . Nat Genet,39(11), 1410-1413.
Franklin, K. A., & Whitelam, G. C. (2007b). Phytochrome a function in red light sensing. Plant Signal Behav, 2(5), 383-385.
Gallagher, S., Short, T. W., Ray, P. M., Pratt, L. H., & Briggs, W. R. (1988). Light-mediated changes in two proteins found associated with plasma membrane fractions from pea stem sections. Proc Natl Acad Sci U S A, 85(21), 8003-8007.
Ganguly, D. R., Crisp, P. A., Eichten, S. R., & Pogson, B. J. (2018). Maintenance of pre-existing DNA methylation states through recurring excess-light stress. Plant Cell Environ, 41(7), 1657-1672.
Genoud, T., Buchala, A. J., Chua, N. H., & Metraux, J. P. (2002). Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J, 31(1), 87-95.
Gonzalez, C. V., Ibarra, S. E., Piccoli, P. N., Botto, J. F., & Boccalandro, H. E. (2012). Phytochrome B increases drought tolerance by enhancing ABA sensitivity in Arabidopsis thaliana . Plant Cell Environ, 35(11), 1958-1968.
Griebel, T., & Zeier, J. (2008). Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol, 147 (2), 790-801.
Guo, H., Yang, H., Mockler, T. C., & Lin, C. (1998). Regulation of flowering time by Arabidopsis photoreceptors. Science, 279(5355), 1360-1363.
Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2008). Metabolomics of temperature stress. Physiol Plant, 132(2), 220-235.
Han, S. H., Park, Y. J., & Park, C. M. (2019a). Light Primes the Thermally Induced Detoxification of Reactive Oxygen Species During Development of Thermotolerance in Arabidopsis. Plant Cell Physiol, 60(1), 230-241.
Han, S. H., Park, Y. J., & Park, C. M. (2019b). Light priming of thermotolerance development in plants. Plant Signal Behav, 14(1), 1554469.
Harvaux, M., & Kloppstech, K. (2001). The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants.Planta, 213(6), 953-966.
Hayes, S., Sharma, A., Fraser, D. P., Trevisan, M., Cragg-Barber, C. K., Tavridou, E., . . . Franklin, K. A. (2017). UV-B Perceived by the UVR8 Photoreceptor Inhibits Plant Thermomorphogenesis. Curr Biol,27(1), 120-127.
He, Y., Li, Y., Cui, L., Xie, L., Zheng, C., Zhou, G., . . . Xie, X. (2016). Phytochrome B Negatively Affects Cold Tolerance by Regulating OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like Protein OsPIL16 in Rice. Front Plant Sci, 7, 1963.
Hectors, K., Van Oevelen, S., Geuns, J., Guisez, Y., Jansen, M. A., & Prinsen, E. (2014). Dynamic changes in plant secondary metabolites during UV acclimation in Arabidopsis thaliana . Physiol Plant, 152(2), 219-230.
Heijde, M., & Ulm, R. (2013). Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc Natl Acad Sci U S A, 110(3), 1113-1118.
Heil, M. (2009). Damaged-self recognition in plant herbivore defence.Trends Plant Sci, 14(7), 356-363.
Hideg, E., Jansen, M. A., & Strid, A. (2013). UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates?Trends Plant Sci, 18(2), 107-115.
Holt, N. E., Fleming, G. R., & Niyogi, K. K. (2004). Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry, 43(26), 8281-8289.
Hou, X., Lee, L. Y., Xia, K., Yan, Y., & Yu, H. (2010). DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell, 19 (6), 884-894. doi:10.1016/j.devcel.2010.10.024
Huang, J., Zhao, X., & Chory, J. (2019). The Arabidopsis Transcriptome Responds Specifically and Dynamically to High Light Stress. Cell Rep, 29(12), 4186-4199 e4183.
Ito, S., Song, Y. H., & Imaizumi, T. (2012). LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol Plant, 5(3), 573-582.
Izaguirre, M. M., Mazza, C. A., Biondini, M., Baldwin, I. T., & Ballare, C. L. (2006). Remote sensing of future competitors: impacts on plant defenses. Proc Natl Acad Sci U S A, 103(18), 7170-7174.
Jelenska, J., Yao, N., Vinatzer, B. A., Wright, C. M., Brodsky, J. L., & Greenberg, J. T. (2007). A J domain virulence effector ofPseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol, 17(6), 499-508.
Jeong, R. D., Chandra-Shekara, A. C., Barman, S. R., Navarre, D., Klessig, D. F., Kachroo, A., & Kachroo, P. (2010). Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc Natl Acad Sci U S A, 107(30), 13538-13543.
Jeong, R. D., Kachroo, A., & Kachroo, P. (2010). Blue light photoreceptors are required for the stability and function of a resistance protein mediating viral defense in Arabidopsis. Plant Signal Behav, 5(11), 1504-1509.
Jiang, B., Shi, Y., Peng, Y., Jia, Y., Yan, Y., Dong, X., . . . Yang, S. (2020). Cold-Induced CBF-PIF3 Interaction Enhances Freezing Tolerance by Stabilizing the phyB Thermosensor in Arabidopsis. Mol Plant . Doi:https//doi.org/10.1016/j.molp.2020.04.006
Jiang, B., Shi, Y., Zhang, X., Xin, X., Qi, L., Guo, H., . . . Yang, S. (2017). PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proc Natl Acad Sci U S A, 114(32), E6695-E6702.
Jones, J. D., & Dangl, J. L. (2006). The plant immune system.Nature, 444(7117), 323-329.
Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., . . . Singla-Pareek, S. L. (2016). Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions.Front Plant Sci, 7, 1029.
Jourdan, N., Martino, C. F., El-Esawi, M., Witczak, J., Bouchet, P. E., d’Harlingue, A., & Ahmad, M. (2015). Blue-light dependent ROS formation by Arabidopsis cryptochrome-2 may contribute toward its signaling role.Plant Signal Behav, 10(8), e1042647.
Jung, J. H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., . . . Wigge, P. A. (2016). Phytochromes function as thermosensors in Arabidopsis. Science, 354(6314), 886-889.
Kampinga, H. H., Brunsting, J. F., Stege, G. J., Burgman, P. W., & Konings, A. W. (1995). Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals: role of heat shock proteins. Exp Cell Res, 219(2), 536-546.
Kang, C. Y., Lian, H. L., Wang, F. F., Huang, J. R., & Yang, H. Q. (2009). Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell, 21(9), 2624-2641.
Kangasjärvi, S., Neukermans, J., Li, S., Aro, E. M., & Noctor, G. (2012). Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot, 63(4), 1619-1636.
Karpinski, S., Gabrys, H., Mateo, A., Karpinska, B., & Mullineaux, P. M. (2003). Light perception in plant disease defence signalling.Curr Opin Plant Biol, 6(4), 390-396.
Kazan, K., & Manners, J. M. (2011). The interplay between light and jasmonate signalling during defence and development. J Exp Bot,62(12), 4087-4100.
Kazan, K., & Manners, J. M. (2012). JAZ repressors and the orchestration of phytohormone crosstalk. Trends Plant Sci, 17(1), 22-31.
Kiba, T., Henriques, R., Sakakibara, H., & Chua, N. H. (2007). Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana .Plant Cell, 19(8), 2516-2530.
Kidokoro, S., Maruyama, K., Nakashima, K., Imura, Y., Narusaka, Y., Shinwari, Z. K., . . . Yamaguchi-Shinozaki, K. (2009). The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol,151(4), 2046-2057.
Kim, H. J., Kim, Y. K., Park, J. Y., & Kim, J. (2002). Light signalling mediated by phytochrome plays an important role in cold-induced gene expression through the C-repeat/dehydration responsive element (C/DRE) in Arabidopsis thaliana . Plant Journal, 29(6), 693-704.
Kim, J. S., Mizoi, J., Kidokoro, S., Maruyama, K., Nakajima, J., Nakashima, K., . . . Yamaguchi-Shinozaki, K. (2012). Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, includingDREB2A . Plant Cell, 24(8), 3393-3405.
Kleine, T., Kindgren, P., Benedict, C., Hendrickson, L., & Strand, A. (2007). Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance.Plant Physiol, 144(3), 1391-1406.
Kliebenstein, D. J., Lim, J. E., Landry, L. G., & Last, R. L. (2002). Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol, 130(1), 234-243.
Koini, M. A., Alvey, L., Allen, T., Tilley, C. A., Harberd, N. P., Whitelam, G. C., & Franklin, K. A. (2009). High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol, 19(5), 408-413.
Kono, M., Noguchi, K., & Terashima, I. (2014). Roles of the cyclic electron flow around PSI (CEF-PSI) and O(2)-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana. Plant Cell Physiol,55(5), 990-1004.
Kono, M., & Terashima, I. (2014). Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. J Photochem Photobiol B, 137, 89-99.
Kono, M., & Terashima, I. (2016). Elucidation of Photoprotective Mechanisms of PSI Against Fluctuating Light photoinhibition. Plant Cell Physiol, 57(7), 1405-1414.
Kono, M., Yamori, W., Suzuki, Y., & Terashima, I. (2017). Photoprotection of PSI by Far-Red Light Against the Fluctuating Light-Induced Photoinhibition in Arabidopsis thaliana and Field-Grown Plants. Plant Cell Physiol, 58(1), 35-45.
Kostaki, K. I., Coupel-Ledru, A., Bonnell, V. C., Gustavsson, M., Sun, P., McLaughlin, F. J., . . . Franklin, K. A. (2020). Guard Cells Integrate Light and Temperature Signals to Control Stomatal Aperture.Plant Physiol, 182(3), 1404-1419.
Kudoh, H., & Sonoike, K. (2002). Irreversible damage to photosystem I by chilling in the light: cause of the degradation of chlorophyll after returning to normal growth temperature. Planta, 215(4), 541-548.
Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol,138(2), 882-897.
Larkindale, J., & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol,128(2), 682-695.
Larkindale, J., & Vierling, E. (2008). Core genome responses involved in acclimation to high temperature. Plant Physiol, 146(2), 748-761.
Lau, O. S., & Deng, X. W. (2010). Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol, 13(5), 571-577.
Lee, C. M., & Thomashow, M. F. (2012). Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana . Proc Natl Acad Sci U S A, 109(37), 15054-15059.
Legris, M., Klose, C., Burgie, E. S., Rojas, C. C., Neme, M., Hiltbrunner, A., . . . Casal, J. J. (2016). Phytochrome B integrates light and temperature signals in Arabidopsis. Science, 354(6314), 897-900.
Leone, M., Keller, M. M., Cerrudo, I., & Ballare, C. L. (2014). To grow or defend? Low red : far-red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability. New Phytol, 204(2), 355-367.
Levitt, J. (1980). Responses of plants to environmental stresses.
Li, B., Gao, K., Ren, H., & Tang, W. (2018). Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol, 60(9), 757-779.
Li, J., Li, G., Wang, H., & Wang Deng, X. (2011). Phytochrome signaling mechanisms. Arabidopsis Book, 9, e0148.
Li, N., Teranishi, M., Yamaguchi, H., Matsushita, T., Watahiki, M. K., Tsuge, T., . . . Hidema, J. (2015). UV-B-Induced CPD Photolyase Gene Expression is Regulated by UVR8-Dependent and -Independent Pathways in Arabidopsis. Plant Cell Physiol, 56(10), 2014-2023.
Liang, T., Mei, S., Shi, C., Yang, Y., Peng, Y., Ma, L., . . . Liu, H. (2018). UVR8 Interacts with BES1 and BIM1 to Regulate Transcription and Photomorphogenesis in Arabidopsis. Dev Cell, 44(4), 512-523 e515.
Lin, C. (2000). Photoreceptors and regulation of flowering time.Plant Physiol, 123(1), 39-50.
Liu, H., Liu, B., Zhao, C., Pepper, M., & Lin, C. (2011). The action mechanisms of plant cryptochromes. Trends Plant Sci, 16(12), 684-691.
Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., & Lin, C. (2008). Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science, 322(5907), 1535-1539.
Liu, Z., Zhang, Y., Wang, J., Li, P., Zhao, C., Chen, Y., & Bi, Y. (2015). Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings. Plant Sci, 238, 64-72.
Ma, D., Li, X., Guo, Y., Chu, J., Fang, S., Yan, C., . . . Liu, H. (2016). Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light.Proc Natl Acad Sci U S A, 113(1), 224-229.
Mahmood, T., Khalid, S., Abdullah, M., Ahmed, Z., Shah, M. K. N., Ghafoor, A., & Du, X. (2019). Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance.Cells, 9(1).
Maier, A., & Hoecker, U. (2015). COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions. Plant Signal Behav, 10(1), e970440.
Malhotra, K., Kim, S. T., Batschauer, A., Dawut, L., & Sancar, A. (1995). Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homology to DNA photolyase contain the two photolyase cofactors but lack DNA repair activity.Biochemistry, 34(20), 6892-6899.
Mao, J., Zhang, Y. C., Sang, Y., Li, Q. H., & Yang, H. Q. (2005). From The Cover: A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci U S A,102(34), 12270-12275.
Mas, P., Kim, W. Y., Somers, D. E., & Kay, S. A. (2003). Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature, 426(6966), 567-570.
Matthews, J. S. A., Vialet-Chabrand, S., & Lawson, T. (2020). Role of blue and red light in stomatal dynamic behaviour. J Exp Bot,71(7), 2253-2269.
Mittler, R., Finka, A., & Goloubinoff, P. (2012). How do plants feel the heat? Trends Biochem Sci, 37 (3), 118-125.
Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci, 9(10), 490-498.
Moreno, J. E., Tao, Y., Chory, J., & Ballare, C. L. (2009). Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci U S A, 106(12), 4935-4940.
Muller-Xing, R., Xing, Q., & Goodrich, J. (2014). Footprints of the sun: memory of UV and light stress in plants. Front Plant Sci, 5, 474.
Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M., & Shikanai, T. (2002). PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell,110(3), 361-371.
Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I. (2007). Photoinhibition of photosystem II under environmental stress.Biochim Biophys Acta, 1767(6), 414-421.
Nagy, F., & Schafer, E. (2002). Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu Rev Plant Biol, 53, 329-355.
Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat.Front Plant Sci, 5, 170.
Navarro, L., Bari, R., Achard, P., Lison, P., Nemri, A., Harberd, N. P., & Jones, J. D. (2008). DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling.Curr Biol, 18(9), 650-655.
Nieto, C., Lopez-Salmeron, V., Daviere, J. M., & Prat, S. (2015). ELF3-PIF4 interaction regulates plant growth independently of the Evening Complex. Curr Biol, 25(2), 187-193.
Nitschke, S., Cortleven, A., Iven, T., Feussner, I., Havaux, M., Riefler, M., & Schmulling, T. (2016). Circadian Stress Regimes Affect the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in Cytokinin-Deficient Arabidopsis Plants. Plant Cell, 28(7), 1616-1639.
Nitschke, S., Cortleven, A., & Schmulling, T. (2017). Novel Stress in Plants by Altering the Photoperiod. Trends Plant Sci, 22 (11), 913-916.
Nomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K., . . . Shiina, T. (2012). Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun, 3, 926.
Ohnishi, N., Allakhverdiev, S. I., Takahashi, S., Higashi, S., Watanabe, M., Nishiyama, Y., & Murata, N. (2005). Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center.Biochemistry, 44(23), 8494-8499.
Oikawa, K., Kasahara, M., Kiyosue, T., Kagawa, T., Suetsugu, N., Takahashi, F., . . . Wada, M. (2003). Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell,15(12), 2805-2815.
Outlaw, W. H. J. (2003). Integration of Cellular and Physiological Functions of Guard Cells. Critical Reviews in Plant Sciences,,22(6), 503-529.
Paik, I., & Huq, E. (2019). Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Semin Cell Dev Biol, 92, 114-121.
Pareek, A., Khurana, A., Sharma, A. K., & Kumar, R. (2017). An Overview of Signaling Regulons During Cold Stress Tolerance in Plants. Curr Genomics, 18(6), 498-511.
Pierik, R., & de Wit, M. (2014). Shade avoidance: phytochrome signalling and other aboveground neighbour detection cues. J Exp Bot, 65(11), 2815-2824.
Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C. (2009). Networking by small-molecule hormones in plant immunity.Nat Chem Biol, 5(5), 308-316.
Pospisil, P. (2016). Production of Reactive Oxygen Species by Photosystem II as a Response to Light and Temperature Stress.Front Plant Sci, 7, 1950.
Qi, J., Zhang, M., Lu, C., Hettenhausen, C., Tan, Q., Cao, G., . . . Wu, J. (2018). Ultraviolet-B enhances the resistance of multiple plant species to lepidopteran insect herbivory through the jasmonic acid pathway. Sci Rep, 8(1), 277.
Radhika, V., Kost, C., Mithofer, A., & Boland, W. (2010). Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proc Natl Acad Sci U S A, 107(40), 17228-17233.
Rai, N., Neugart, S., Yan, Y., Wang, F., Siipola, S. M., Lindfors, A. V., . . . Aphalo, P. J. (2019). How do cryptochromes and UVR8 interact in natural and simulated sunlight? J Exp Bot, 70(18), 4975-4990.
Rizzini, L., Favory, J. J., Cloix, C., Faggionato, D., O’Hara, A., Kaiserli, E., . . . Ulm, R. (2011). Perception of UV-B by the Arabidopsis UVR8 protein. Science, 332(6025), 103-106.
Roberts, M. R., & Paul, N. D. (2006). Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. New Phytol,170(4), 677-699.
Roden, L. C., & Ingle, R. A. (2009). Lights, rhythms, infection: the role of light and the circadian clock in determining the outcome of plant-pathogen interactions. Plant Cell, 21(9), 2546-2552.
Rodriguez-Herva, J. J., Gonzalez-Melendi, P., Cuartas-Lanza, R., Antunez-Lamas, M., Rio-Alvarez, I., Li, Z., . . . Lopez-Solanilla, E. (2012). A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cell Microbiol, 14(5), 669-681.
Sangwan, V., Orvar, B. L., Beyerly, J., Hirt, H., & Dhindsa, R. S. (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J, 31(5), 629-638.
Sato, R., Kono, M., Harada, K., Ohta, H., Takaichi, S., & Masuda, S. (2017). FLUCTUATING-LIGHT-ACCLIMATION PROTEIN1, Conserved in Oxygenic Phototrophs, Regulates H+ Homeostasis and Non-Photochemical Quenching in Chloroplasts. Plant Cell Physiol, 58(10), 1622-1630.
Schneider, T., Bolger, A., Zeier, J., Preiskowski, S., Benes, V., Trenkamp, S., . . . Matsubara, S. (2019). Fluctuating Light Interacts with Time of Day and Leaf Development Stage to Reprogram Gene Expression. Plant Physiol, 179(4), 1632-1657.
Schreiber, U., Hormann, H., Asada, K., & Neubauer, C. (1995). O2-dependent electron flow in spinach chloroplasts: properties and possible regulaion of the Mehler-ascorbate peroxidase cycle.Photosynthesis, 2, 813-818.
Sessa, G., Carabelli, M., Possenti, M., Morelli, G., & Ruberti, I. (2018). Multiple Pathways in the Control of the Shade Avoidance Response. Plants (Basel), 7(4).
Shamrai, S. N. (2014). Plant immune system: Basal immunity.Cytology and Genetics, 48, 258–271.
Shikanai, T. (2007). Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol, 58, 199-217.
Shikanai, T. (2016). Chloroplast NDH: a different enzyme with a structure similar to that of respiratory NADH dehydrogenase.Biochim Biophys Acta, 7, 1015-1022.
Shin, D. H., Choi, M., Kim, K., Bang, G., Cho, M., Choi, S. B., . . . Park, Y. I. (2013). HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis. FEBS Lett, 587(10), 1543-1547.
Silva, C. S., Nayak, A., Lai, X., Hutin, S., Hugouvieux, V., Jung, J. H., . . . Zubieta, C. (2020). Molecular mechanisms of Evening Complex activity in Arabidopsis. Proc Natl Acad Sci U S A, 117(12), 6901-6909.
Soitamo, A. J., Piippo, M., Allahverdiyeva, Y., Battchikova, N., & Aro, E. M. (2008). Light has a specific role in modulating Arabidopsis gene expression at low temperature. BMC Plant Biol, 8, 13.
Somers, D. E., Devlin, P. F., & Kay, S. A. (1998). Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock.Science, 282(5393), 1488-1490.
Somers, D. E., Schultz, T. F., Milnamow, M., & Kay, S. A. (2000). ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis.Cell, 101(3), 319-329.
Song, J., Liu, Q., Hu, B., & Wu, W. (2017). Photoreceptor PhyB Involved in Arabidopsis Temperature Perception and Heat-Tolerance Formation.Int J Mol Sci, 18(6).
Song, L., Jiang, Y., Zhao, H., & Hou, M. (2012). Acquired thermotolerance in plants. Plant Cell Tiss Organ Cult, 111, 265-276.
Song, Y. H., Estrada, D. A., Johnson, R. S., Kim, S. K., Lee, S. Y., MacCoss, M. J., & Imaizumi, T. (2014). Distinct roles of FKF1, Gigantea, and Zeitlupe proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci U S A,111(49), 17672-17677.
Sonoike, K. (1996). Photoinhibition of Photosystem I: Its Physiological Significance in the Chilling Sensitivity of Plants. Plant and Cell Physiology, 37(3), 239-247.
Sonoike, K., & Terashima, I. (1994). Mechanism of photosystem-I photoinhibition in leaves of Cucumis sativus L.. . Planta, 194 , 287-293. doi:doi.org/10.1007/BF01101690
Takahashi, S., & Badger, M. R. (2011). Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci, 16(1), 53-60.
Takahashi, S., Milward, S. E., Yamori, W., Evans, J. R., Hillier, W., & Badger, M. R. (2010). The solar action spectrum of photosystem II damage. Plant Physiol, 153(3), 988-993.
Takahashi, S., & Murata, N. (2008). How do environmental stresses accelerate photoinhibition? Trends Plant Sci, 13(4), 178-182.
Takase, T., Nishiyama, Y., Tanihigashi, H., Ogura, Y., Miyazaki, Y., Yamada, Y., & Kiyosue, T. (2011). LOV KELCH PROTEIN2 and ZEITLUPE repress Arabidopsis photoperiodic flowering under non-inductive conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant J, 67(4), 608-621.
Tallman, G. (2004). Are diurnal patterns of stomatal movement the result of alternating metabolism of endogenous guard cell ABA and accumulation of ABA delivered to the apoplast around guard cells by transpiration?J Exp Bot, 55(405), 1963-1976.
Taylor, B. L., & Zhulin, I. B. (1999). PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev,63(2), 479-506.
Thomashow, M. F. (1999). PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 50, 571-599.
Thomashow, M. F. (2010). Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol, 154(2), 571-577.
Tissot, N., & Ulm, R. (2020). Cryptochrome-mediated blue-light signalling modulates UVR8 photoreceptor activity and contributes to UV-B tolerance in Arabidopsis. Nat Commun, 11 (1), 1323.
Torres, M. A. (2010). ROS in biotic interactions. Physiol Plant, 138 (4), 414-429.
Trotta, A., Rahikainen, M., Konert, G., Finazzi, G., & Kangasjarvi, S. (2014). Signalling crosstalk in light stress and immune reactions in plants. Philos Trans R Soc Lond B Biol Sci, 369(1640), 20130235.
Tsuda, K., & Katagiri, F. (2010). Comparing signaling mechanisms engaged in pattern-triggeredand effector-triggered immunity.Current Opinion in Plant Biology, 13, 459-465.
Verhage, A., van Wees, S. C., & Pieterse, C. M. (2010). Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol,154(2), 536-540.
Wang, F., Guo, Z., Li, H., Wang, M., Onac, E., Zhou, J., . . . Zhou, Y. (2016). Phytochrome A and B Function Antagonistically to Regulate Cold Tolerance via Abscisic Acid-Dependent Jasmonate Signaling. Plant Physiol, 170(1), 459-471.
Wang, F. F., Lian, H. L., Kang, C. Y., & Yang, H. Q. (2010). Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana. Mol Plant, 3(1), 246-259.
Wang, Q., & Lin, C. (2020). Mechanisms of Cryptochrome-Mediated Photoresponses in Plants. Annu Rev Plant Biol . Doi://https/doi.org/10.1146/annurev-arplant-050718-100300
Yamamoto, Y. (2016). Quality Control of Photosystem II: The Mechanisms for Avoidance and Tolerance of Light and Heat Stresses are Closely Linked to Membrane Fluidity of the Thylakoids. Front Plant Sci,7, 1136.
Yang, C., & Li, L. (2017). Hormonal Regulation in Shade Avoidance.Front Plant Sci, 8, 1527.
Yang, Y., Zhang, L., Chen, P., Liang, T., Li, X., & Liu, H. (2020). UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO J, 39(2), e101928.
Yang, Y. X., Wang, M. M., Yin, Y. L., Onac, E., Zhou, G. F., Peng, S., . . . Zhou, Y. H. (2015). RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Genomics, 16, 120.
Yi, C., & Deng, X. W. (2005). COP1 - from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol, 15(11), 618-625.
Yin, R. (2017). Cooling Down Thermomorphogenesis by UV-B Signaling.Trends Plant Sci, 22(6), 447-449.
Yoshinaga, N., Alborn, H. T., Nakanishi, T., Suckling, D. M., Nishida, R., Tumlinson, J. H., & Mori, N. (2010). Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars. J Chem Ecol, 36(3), 319-325.
Yu, X., Klejnot, J., Zhao, X., Shalitin, D., Maymon, M., Yang, H., . . . Lin, C. (2007). Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell, 19(10), 3146-3156.
Zeier, J., Pink, B., Mueller, M. J., & Berger, S. (2004). Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR1 accumulation. Planta, 219(4), 673-683.
Zhang, M., Chiang, Y. H., Toruno, T. Y., Lee, D., Ma, M., Liang, X., . . . Coaker, G. (2018). The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants. Cell Host Microbe, 24(3), 379-391 e375.