REFERENCES
Abuelsoud, W., Cortleven, A., & Schmülling, T. (2020). Photoperiod
stress alters the cellular redox status and is associated with an
increased peroxidase and decreased catalase activity. BioRxivdoi: https://doi.org/10.1101/2020.03.05.978270
Agati, G., Azzarello, E., Pollastri, S., & Tattini, M. (2012).
Flavonoids as antioxidants in plants: location and functional
significance. Plant Sci . doi:
https://doi.org/10.1016/j.plantsci.2012.07.014
Agrawal, A. A., Kearney, E. E., Hastings, A. P., & Ramsey, T. E.
(2012). Attenuation of the jasmonate burst, plant defensive traits, and
resistance to specialist monarch caterpillars on shaded common milkweed
(Asclepias syriaca ). J Chem Ecol, 38(7), 893-901.
Ahmad, M., & Cashmore, A. R. (1993). HY4 gene of A.
thaliana encodes a protein with characteristics of a blue-light
photoreceptor. Nature, 366(6451), 162-166.
Ahres, M., Gierczik, K., Boldizsár, Á., Vítámvás, P., & Galiba, G.
(2020). Temperature and Light-Quality-Dependent Regulation of Freezing
Tolerance in Barley. Plants, 9(1), pii: E83.
Alonso-Blanco, C., Gomez-Mena, C., Llorente, F., Koornneef, M., Salinas,
J., & Martinez-Zapater, J. M. (2005). Genetic and molecular analyses of
natural variation indicate CBF2 as a candidate gene for
underlying a freezing tolerance quantitative trait locus in Arabidopsis.Plant Physiol, 139(3), 1304-1312
Amissah, L., Mohren, G. M., Kyereh, B., & Poorter, L. (2015). The
effects of drought and shade on the performance, morphology and
physiology of Ghanaian tree species. PLoS One, 10(4), e0121004.
Anjum, N. A., Khan, N. A., Sofo, A., Baier, M., & Kizek, R. (2016).
Redox homeostasis managers in plants under environmental stresses.Front Environ Sci . doi: https://doi.org/10.3389/ fenvs.2016.00035
Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism,
oxidative stress, and signal transduction. Annu Rev Plant Biol,55, 373-399.
Arico, D., Legris, M., Castro, L., Garcia, C. F., Laino, A., Casal, J.
J., & Mazzella, M. A. (2019). Neighbour signals perceived by
phytochrome B increase thermotolerance in Arabidopsis. Plant Cell
Environ, 42(9), 2554-2566.
Asada, K. (1999). THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of
Active Oxygens and Dissipation of Excess Photons. Annu Rev Plant
Physiol Plant Mol Biol , 50, 601-639.
Asghar, M. A., Duab, J., Jiang, H., Lia, Y., Sun, X., Shang, J., . . .
Yang, W. (2020). Shade pretreatment enhanced drought resistance of
soybean. Environ Exp Bot, 171, 103952.
Baena-Gonzalez, E., & Aro, E. M. (2002). Biogenesis, assembly and
turnover of photosystem II units. Philos Trans R Soc Lond B Biol
Sci, 357 (1426), 1451-1459.
Balfagon, D., Sengupta, S., Gomez-Cadenas, A., Fritschi, F. B., Azad, R.
K., Mittler, R., & Zandalinas, S. I. (2019). Jasmonic Acid Is Required
for Plant Acclimation to a Combination of High Light and Heat Stress.Plant Physiol, 181(4), 1668-1682.
Ballaré, C. L. (2014). Light regulation of plant defense. Annu Rev
Plant Biol, 65, 335-363.
Banerjee, R., Schleicher, E., Meier, S., Viana, R. M., Pokorny, R.,
Ahmad, M., . . . Batschauer, A. (2007). The signaling state of
Arabidopsis cryptochrome 2 contains flavin semiquinone. J Biol
Chem, 282(20), 14916-14922.
Boccalandro, H. E., Rugnone, M. L., Moreno, J. E., Ploschuk, E. L.,
Serna, L., Yanovsky, M. J., & Casal, J. J. (2009). Phytochrome B
enhances photosynthesis at the expense of water-use efficiency in
Arabidopsis. Plant Physiol, 150(2), 1083-1092.
Bögre, L., Okresz, L., Henriques, R., & Anthony, R. G. (2003). Growth
signalling pathways in Arabidopsis and the AGC protein kinases.Trends Plant Sci, 8(9), 424-431.
Bouly, J. P., Schleicher, E., Dionisio-Sese, M., Vandenbussche, F., Van
Der Straeten, D., Bakrim, N., . . . Ahmad, M. (2007). Cryptochrome blue
light photoreceptors are activated through interconversion of flavin
redox states. J Biol Chem, 282(13), 9383-9391.
Brelsford, C. C., Morales, L. O., Nezval, J., Kotilainen, T. K.,
Hartikainen, S. M., Aphalo, P. J., & Robson, T. M. (2019). Do UV-A
radiation and blue light during growth prime leaves to cope with acute
high light in photoreceptor mutants of Arabidopsis thaliana ?Physiol Plant, 165(3), 537-554.
Britt, A. (2002). Repair of damaged bases. Arabidopsis Book, 1 ,
e0005. doi:10.1199/tab.0005
Brown, B. A., Cloix, C., Jiang, G. H., Kaiserli, E., Herzyk, P.,
Kliebenstein, D. J., & Jenkins, G. I. (2005). A UV-B-specific signaling
component orchestrates plant UV protection. Proc Natl Acad Sci U S
A, 102(50), 18225-18230.
Brown, B. A., & Jenkins, G. I. (2008). UV-B signaling pathways with
different fluence-rate response profiles are distinguished in mature
Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH.Plant Physiol, 146(2), 576-588.
Canamero, R. C., Bakrim, N., Bouly, J. P., Garay, A., Dudkin, E. E.,
Habricot, Y., & Ahmad, M. (2006). Cryptochrome photoreceptors cry1 and
cry2 antagonistically regulate primary root elongation in Arabidopsis
thaliana. Planta, 224(5), 995-1003.
Caputo, C., Rutitzky, M., & Ballare, C. L. (2006). Solar ultraviolet-B
radiation alters the attractiveness of Arabidopsis plants to diamondback
moths (Plutella xylostella L.): impacts on oviposition and
involvement of the jasmonic acid pathway. Oecologia, 149(1),
81-90.
Casal, J. J. (2013). Photoreceptor signaling networks in plant responses
to shade. Annu Rev Plant Biol, 64, 403-427.
Cecchini, E., Geri, C., Love, A. J., Coupland, G., Covey, S. N., &
Milner, J. J. (2002). Mutations that delay flowering in Arabidopsis
de-couple symptom response from cauliflower mosaic virus accumulation
during infection. Mol Plant Pathol, 3(2), 81-90.
Cerrudo, I., Keller, M. M., Cargnel, M. D., Demkura, P. V., de Wit, M.,
Patitucci, M. S., . . . Ballare, C. L. (2012). Low red/far-red ratios
reduce Arabidopsis resistance to Botrytis cinerea and jasmonate
responses via a COI1-JAZ10-dependent, salicylic acid-independent
mechanism. Plant Physiol, 158(4), 2042-2052.
Chandra-Shekara, A. C., Gupte, M., Navarre, D., Raina, S., Raina, R.,
Klessig, D., & Kachroo, P. (2006). Light-dependent hypersensitive
response and resistance signaling against Turnip Crinkle Virus in
Arabidopsis. Plant J, 45(3), 320-334.
Chisholm, S. T., Coaker, G., Day, B., & Staskawicz, B. J. (2006).
Host-microbe interactions: shaping the evolution of the plant immune
response. Cell, 124(4), 803-814.
Christie, J. M. (2007). Phototropin blue-light receptors. Annu Rev
Plant Biol, 58, 21-45.
Christie, J. M., Blackwood, L., Petersen, J., & Sullivan, S. (2015).
Plant flavoprotein photoreceptors. Plant Cell Physiol, 56(3),
401-413.
Christie, J. M., Salomon, M., Nozue, K., Wada, M., & Briggs, W. R.
(1999). LOV (light, oxygen, or voltage) domains of the blue-light
photoreceptor phototropin (nph1): binding sites for the chromophore
flavin mononucleotide. Proc Natl Acad Sci U S A, 96(15),
8779-8783.
Conrath, U. (2006). Systemic acquired resistance. Plant Signal
Behav, 1( 4), 179-184.
Consentino, L., Lambert, S., Martino, C., Jourdan, N., Bouchet, P. E.,
Witczak, J., . . . Ahmad, M. (2015). Blue-light dependent reactive
oxygen species formation by Arabidopsis cryptochrome may define a novel
evolutionarily conserved signaling mechanism. New Phytol, 206(4),
1450-1462.
Correll, M. J., Coveney, K. M., Raines, S. V., Mullen, J. L., Hangarter,
R. P., & Kiss, J. Z. (2003). Phytochromes play a role in phototropism
and gravitropism in Arabidopsis roots. Adv Space Res, 31(10),
2203-2210.
Danon, A., Coll, N. S., & Apel, K. (2006). Cryptochrome-1-dependent
execution of programmed cell death induced by singlet oxygen inArabidopsis thaliana . Proc Natl Acad Sci U S A, 103(45),
17036-17041.
Daszkowska-Golec, A., & Szarejko, I. (2013). Open or close the gate -
stomata action under the control of phytohormones in drought stress
conditions. Front Plant Sci, 4, 138.
Davey, M. P., Susanti, N. I., Wargent, J. J., Findlay, J. E., Paul
Quick, W., Paul, N. D., & Jenkins, G. I. (2012). The UV-B photoreceptor
UVR8 promotes photosynthetic efficiency in Arabidopsis thalianaexposed to elevated levels of UV-B. Photosynth Res, 114(2),
121-131.
de Wit, M., Spoel, S. H., Sanchez-Perez, G. F., Gommers, C. M. M.,
Pieterse, C. M. J., Voesenek, L., & Pierik, R. (2013). Perception of
low red:far-red ratio compromises both salicylic acid- and jasmonic
acid-dependent pathogen defences in Arabidopsis. Plant J, 75(1),
90-103.
De Wit, P. (1997). Pathogen avirulence and plant resistance: a key role
for recognition. Trends Plant Sci 2: 452–458. Trends in Plant
Science, 2, 452-458.
De Wit, P. (2007). How plants recognize pathogens and defend themselves.Cellular and Molecular Life Sciences , 2726-2732.
Delprato, M. L., Krapp, A. R., & Carrillo, N. (2015). Green Light to
Plant Responses to Pathogens: The Role of Chloroplast Light-Dependent
Signaling in Biotic Stress. Photochem Photobiol, 91(5),
1004-1011.
Demkura, P. V., & Ballare, C. L. (2012). UVR8 mediates UV-B-induced
Arabidopsis defense responses against Botrytis cinerea by controlling
sinapate accumulation. Mol Plant, 5(3), 642-652.
Devlin, P. F., & Kay, S. A. (2000). Cryptochromes are required for
phytochrome signaling to the circadian clock but not for rhythmicity.Plant Cell, 12(12), 2499-2510.
Dickinson, P. J., Kumar, M., Martinho, C., Yoo, S. J., Lan, H.,
Artavanis, G., . . . Wigge, P. A. (2018). Chloroplast Signaling Gates
Thermotolerance in Arabidopsis. Cell Rep, 22(7), 1657-1665.
Ding, L., Wang, S., Song, Z. T., Jiang, Y., Han, J. J., Lu, S. J., . . .
Liu, J. X. (2018). Two B-Box Domain Proteins, BBX18 and BBX23, Interact
with ELF3 and Regulate Thermomorphogenesis in Arabidopsis. Cell
Rep, 25(7), 1718-1728 e1714.
Dong, M. A., Farre, E. M., & Thomashow, M. F. (2011). Circadian
clock-associated 1 and late elongated hypocotyl regulate expression of
the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc
Natl Acad Sci U S A, 108(17), 7241-7246.
Edelman, M., & Mattoo, A. K. (2008). D1-protein dynamics in photosystem
II: the lingering enigma. Photosynth Res, 98(1-3), 609-620.
El-Esawi, M., Arthaut, L. D., Jourdan, N., d’Harlingue, A., Link, J.,
Martino, C. F., & Ahmad, M. (2017). Blue-light induced biosynthesis of
ROS contributes to the signaling mechanism of Arabidopsis cryptochrome.Sci Rep, 7(1), 13875.
Emiliani, J., Grotewold, E., Falcone Ferreyra, M. L., & Casati, P.
(2013). Flavonols protect Arabidopsis plants against UV-B deleterious
effects. Mol Plant, 6(4), 1376-1379.
Escobar-Bravo, R., Klinkhamer, P. G., & Leiss, K. A. (2017).
Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth
and Chemistry, and Their Consequences for Defense against Arthropod
Herbivores. Front Plant Sci, 8, 278.
Escobar Bravo, R., Chen, G., Grosser, K., Van Dam, N. M., Leiss, K. A.,
& Klinkhamer, P. G. L. (2019). Ultraviolet radiation enhances salicylic
acid-mediated defense signaling and resistance to Pseudomonas
syringae DC3000 in a jasmonic acid-deficient tomato mutant. Plant
Signal Behav, 14(4), e1581560.
Ezer, D., Jung, J. H., Lan, H., Biswas, S., Gregoire, L., Box, M. S., .
. . Wigge, P. A. (2017). The evening complex coordinates environmental
and endogenous signals in Arabidopsis. Nat Plants, 3, 17087.
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib,
A., . . . Huang, J. (2017). Crop Production under Drought and Heat
Stress: Plant Responses and Management Options. Front Plant Sci,8, 1147.
Favory, J. J., Stec, A., Gruber, H., Rizzini, L., Oravecz, A., Funk, M.,
. . . Ulm, R. (2009). Interaction of COP1 and UVR8 regulates
UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis.EMBO J, 28(5), 591-601.
Fernandez-Milmanda, G. L., Crocco, C. D., Reichelt, M., Mazza, C. A.,
Kollner, T. G., Zhang, T., . . . Ballare, C. L. (2020). A
light-dependent molecular link between competition cues and defence
responses in plants. Nat Plants, 6(3), 223-230.
Fowler, S. G., Cook, D., & Thomashow, M. F. (2005). Low temperature
induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock.Plant Physiol, 137(3), 961-968.
Frank, M., Cortleven, A., Novak, O., & Schmülling, T. (2020).
Root-derived trans-zeatin cytokinin protects Arabidopsis plants against
photoperiod stress. doi: https://doi.org/10.1101/2020.03.05.978221
Franklin, K. A., & Whitelam, G. C. (2007a). Light-quality regulation of
freezing tolerance in Arabidopsis thaliana . Nat Genet,39(11), 1410-1413.
Franklin, K. A., & Whitelam, G. C. (2007b). Phytochrome a function in
red light sensing. Plant Signal Behav, 2(5), 383-385.
Gallagher, S., Short, T. W., Ray, P. M., Pratt, L. H., & Briggs, W. R.
(1988). Light-mediated changes in two proteins found associated with
plasma membrane fractions from pea stem sections. Proc Natl Acad
Sci U S A, 85(21), 8003-8007.
Ganguly, D. R., Crisp, P. A., Eichten, S. R., & Pogson, B. J. (2018).
Maintenance of pre-existing DNA methylation states through recurring
excess-light stress. Plant Cell Environ, 41(7), 1657-1672.
Genoud, T., Buchala, A. J., Chua, N. H., & Metraux, J. P. (2002).
Phytochrome signalling modulates the SA-perceptive pathway in
Arabidopsis. Plant J, 31(1), 87-95.
Gonzalez, C. V., Ibarra, S. E., Piccoli, P. N., Botto, J. F., &
Boccalandro, H. E. (2012). Phytochrome B increases drought tolerance by
enhancing ABA sensitivity in Arabidopsis thaliana . Plant
Cell Environ, 35(11), 1958-1968.
Griebel, T., & Zeier, J. (2008). Light regulation and daytime
dependency of inducible plant defenses in Arabidopsis: phytochrome
signaling controls systemic acquired resistance rather than local
defense. Plant Physiol, 147 (2), 790-801.
Guo, H., Yang, H., Mockler, T. C., & Lin, C. (1998). Regulation of
flowering time by Arabidopsis photoreceptors. Science, 279(5355),
1360-1363.
Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2008).
Metabolomics of temperature stress. Physiol Plant, 132(2),
220-235.
Han, S. H., Park, Y. J., & Park, C. M. (2019a). Light Primes the
Thermally Induced Detoxification of Reactive Oxygen Species During
Development of Thermotolerance in Arabidopsis. Plant Cell
Physiol, 60(1), 230-241.
Han, S. H., Park, Y. J., & Park, C. M. (2019b). Light priming of
thermotolerance development in plants. Plant Signal Behav, 14(1),
1554469.
Harvaux, M., & Kloppstech, K. (2001). The protective functions of
carotenoid and flavonoid pigments against excess visible radiation at
chilling temperature investigated in Arabidopsis npq and tt mutants.Planta, 213(6), 953-966.
Hayes, S., Sharma, A., Fraser, D. P., Trevisan, M., Cragg-Barber, C. K.,
Tavridou, E., . . . Franklin, K. A. (2017). UV-B Perceived by the UVR8
Photoreceptor Inhibits Plant Thermomorphogenesis. Curr Biol,27(1), 120-127.
He, Y., Li, Y., Cui, L., Xie, L., Zheng, C., Zhou, G., . . . Xie, X.
(2016). Phytochrome B Negatively Affects Cold Tolerance by Regulating
OsDREB1 Gene Expression through Phytochrome Interacting Factor-Like
Protein OsPIL16 in Rice. Front Plant Sci, 7, 1963.
Hectors, K., Van Oevelen, S., Geuns, J., Guisez, Y., Jansen, M. A., &
Prinsen, E. (2014). Dynamic changes in plant secondary metabolites
during UV acclimation in Arabidopsis thaliana . Physiol
Plant, 152(2), 219-230.
Heijde, M., & Ulm, R. (2013). Reversion of the Arabidopsis UV-B
photoreceptor UVR8 to the homodimeric ground state. Proc Natl Acad
Sci U S A, 110(3), 1113-1118.
Heil, M. (2009). Damaged-self recognition in plant herbivore defence.Trends Plant Sci, 14(7), 356-363.
Hideg, E., Jansen, M. A., & Strid, A. (2013). UV-B exposure, ROS, and
stress: inseparable companions or loosely linked associates?Trends Plant Sci, 18(2), 107-115.
Holt, N. E., Fleming, G. R., & Niyogi, K. K. (2004). Toward an
understanding of the mechanism of nonphotochemical quenching in green
plants. Biochemistry, 43(26), 8281-8289.
Hou, X., Lee, L. Y., Xia, K., Yan, Y., & Yu, H. (2010). DELLAs modulate
jasmonate signaling via competitive binding to JAZs. Dev Cell,
19 (6), 884-894. doi:10.1016/j.devcel.2010.10.024
Huang, J., Zhao, X., & Chory, J. (2019). The Arabidopsis Transcriptome
Responds Specifically and Dynamically to High Light Stress. Cell
Rep, 29(12), 4186-4199 e4183.
Ito, S., Song, Y. H., & Imaizumi, T. (2012). LOV domain-containing
F-box proteins: light-dependent protein degradation modules in
Arabidopsis. Mol Plant, 5(3), 573-582.
Izaguirre, M. M., Mazza, C. A., Biondini, M., Baldwin, I. T., &
Ballare, C. L. (2006). Remote sensing of future competitors: impacts on
plant defenses. Proc Natl Acad Sci U S A, 103(18), 7170-7174.
Jelenska, J., Yao, N., Vinatzer, B. A., Wright, C. M., Brodsky, J. L.,
& Greenberg, J. T. (2007). A J domain virulence effector ofPseudomonas syringae remodels host chloroplasts and suppresses
defenses. Curr Biol, 17(6), 499-508.
Jeong, R. D., Chandra-Shekara, A. C., Barman, S. R., Navarre, D.,
Klessig, D. F., Kachroo, A., & Kachroo, P. (2010). Cryptochrome 2 and
phototropin 2 regulate resistance protein-mediated viral defense by
negatively regulating an E3 ubiquitin ligase. Proc Natl Acad Sci U
S A, 107(30), 13538-13543.
Jeong, R. D., Kachroo, A., & Kachroo, P. (2010). Blue light
photoreceptors are required for the stability and function of a
resistance protein mediating viral defense in Arabidopsis. Plant
Signal Behav, 5(11), 1504-1509.
Jiang, B., Shi, Y., Peng, Y., Jia, Y., Yan, Y., Dong, X., . . . Yang, S.
(2020). Cold-Induced CBF-PIF3 Interaction Enhances Freezing Tolerance by
Stabilizing the phyB Thermosensor in Arabidopsis. Mol Plant .
Doi:https//doi.org/10.1016/j.molp.2020.04.006
Jiang, B., Shi, Y., Zhang, X., Xin, X., Qi, L., Guo, H., . . . Yang, S.
(2017). PIF3 is a negative regulator of the CBF pathway and freezing
tolerance in Arabidopsis. Proc Natl Acad Sci U S A, 114(32),
E6695-E6702.
Jones, J. D., & Dangl, J. L. (2006). The plant immune system.Nature, 444(7117), 323-329.
Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., .
. . Singla-Pareek, S. L. (2016). Transcription Factors and Plants
Response to Drought Stress: Current Understanding and Future Directions.Front Plant Sci, 7, 1029.
Jourdan, N., Martino, C. F., El-Esawi, M., Witczak, J., Bouchet, P. E.,
d’Harlingue, A., & Ahmad, M. (2015). Blue-light dependent ROS formation
by Arabidopsis cryptochrome-2 may contribute toward its signaling role.Plant Signal Behav, 10(8), e1042647.
Jung, J. H., Domijan, M., Klose, C., Biswas, S., Ezer, D., Gao, M., . .
. Wigge, P. A. (2016). Phytochromes function as thermosensors in
Arabidopsis. Science, 354(6314), 886-889.
Kampinga, H. H., Brunsting, J. F., Stege, G. J., Burgman, P. W., &
Konings, A. W. (1995). Thermal protein denaturation and protein
aggregation in cells made thermotolerant by various chemicals: role of
heat shock proteins. Exp Cell Res, 219(2), 536-546.
Kang, C. Y., Lian, H. L., Wang, F. F., Huang, J. R., & Yang, H. Q.
(2009). Cryptochromes, phytochromes, and COP1 regulate light-controlled
stomatal development in Arabidopsis. Plant Cell, 21(9),
2624-2641.
Kangasjärvi, S., Neukermans, J., Li, S., Aro, E. M., & Noctor, G.
(2012). Photosynthesis, photorespiration, and light signalling in
defence responses. J Exp Bot, 63(4), 1619-1636.
Karpinski, S., Gabrys, H., Mateo, A., Karpinska, B., & Mullineaux, P.
M. (2003). Light perception in plant disease defence signalling.Curr Opin Plant Biol, 6(4), 390-396.
Kazan, K., & Manners, J. M. (2011). The interplay between light and
jasmonate signalling during defence and development. J Exp Bot,62(12), 4087-4100.
Kazan, K., & Manners, J. M. (2012). JAZ repressors and the
orchestration of phytohormone crosstalk. Trends Plant Sci, 17(1),
22-31.
Kiba, T., Henriques, R., Sakakibara, H., & Chua, N. H. (2007). Targeted
degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates
clock function and photomorphogenesis in Arabidopsis thaliana .Plant Cell, 19(8), 2516-2530.
Kidokoro, S., Maruyama, K., Nakashima, K., Imura, Y., Narusaka, Y.,
Shinwari, Z. K., . . . Yamaguchi-Shinozaki, K. (2009). The
phytochrome-interacting factor PIF7 negatively regulates DREB1
expression under circadian control in Arabidopsis. Plant Physiol,151(4), 2046-2057.
Kim, H. J., Kim, Y. K., Park, J. Y., & Kim, J. (2002). Light signalling
mediated by phytochrome plays an important role in cold-induced gene
expression through the C-repeat/dehydration responsive element (C/DRE)
in Arabidopsis thaliana . Plant Journal, 29(6), 693-704.
Kim, J. S., Mizoi, J., Kidokoro, S., Maruyama, K., Nakajima, J.,
Nakashima, K., . . . Yamaguchi-Shinozaki, K. (2012). Arabidopsis
growth-regulating factor7 functions as a transcriptional repressor of
abscisic acid- and osmotic stress-responsive genes, includingDREB2A . Plant Cell, 24(8), 3393-3405.
Kleine, T., Kindgren, P., Benedict, C., Hendrickson, L., & Strand, A.
(2007). Genome-wide gene expression analysis reveals a critical role for
CRYPTOCHROME1 in the response of Arabidopsis to high irradiance.Plant Physiol, 144(3), 1391-1406.
Kliebenstein, D. J., Lim, J. E., Landry, L. G., & Last, R. L. (2002).
Arabidopsis UVR8 regulates ultraviolet-B signal transduction and
tolerance and contains sequence similarity to human regulator of
chromatin condensation 1. Plant Physiol, 130(1), 234-243.
Koini, M. A., Alvey, L., Allen, T., Tilley, C. A., Harberd, N. P.,
Whitelam, G. C., & Franklin, K. A. (2009). High temperature-mediated
adaptations in plant architecture require the bHLH transcription factor
PIF4. Curr Biol, 19(5), 408-413.
Kono, M., Noguchi, K., & Terashima, I. (2014). Roles of the cyclic
electron flow around PSI (CEF-PSI) and O(2)-dependent alternative
pathways in regulation of the photosynthetic electron flow in short-term
fluctuating light in Arabidopsis thaliana. Plant Cell Physiol,55(5), 990-1004.
Kono, M., & Terashima, I. (2014). Long-term and short-term responses of
the photosynthetic electron transport to fluctuating light. J
Photochem Photobiol B, 137, 89-99.
Kono, M., & Terashima, I. (2016). Elucidation of Photoprotective
Mechanisms of PSI Against Fluctuating Light photoinhibition. Plant
Cell Physiol, 57(7), 1405-1414.
Kono, M., Yamori, W., Suzuki, Y., & Terashima, I. (2017).
Photoprotection of PSI by Far-Red Light Against the Fluctuating
Light-Induced Photoinhibition in Arabidopsis thaliana and Field-Grown
Plants. Plant Cell Physiol, 58(1), 35-45.
Kostaki, K. I., Coupel-Ledru, A., Bonnell, V. C., Gustavsson, M., Sun,
P., McLaughlin, F. J., . . . Franklin, K. A. (2020). Guard Cells
Integrate Light and Temperature Signals to Control Stomatal Aperture.Plant Physiol, 182(3), 1404-1419.
Kudoh, H., & Sonoike, K. (2002). Irreversible damage to photosystem I
by chilling in the light: cause of the degradation of chlorophyll after
returning to normal growth temperature. Planta, 215(4), 541-548.
Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat
stress phenotypes of Arabidopsis mutants implicate multiple signaling
pathways in the acquisition of thermotolerance. Plant Physiol,138(2), 882-897.
Larkindale, J., & Knight, M. R. (2002). Protection against heat
stress-induced oxidative damage in Arabidopsis involves calcium,
abscisic acid, ethylene, and salicylic acid. Plant Physiol,128(2), 682-695.
Larkindale, J., & Vierling, E. (2008). Core genome responses involved
in acclimation to high temperature. Plant Physiol, 146(2),
748-761.
Lau, O. S., & Deng, X. W. (2010). Plant hormone signaling lightens up:
integrators of light and hormones. Curr Opin Plant Biol, 13(5),
571-577.
Lee, C. M., & Thomashow, M. F. (2012). Photoperiodic regulation of the
C-repeat binding factor (CBF) cold acclimation pathway and freezing
tolerance in Arabidopsis thaliana . Proc Natl Acad Sci U S
A, 109(37), 15054-15059.
Legris, M., Klose, C., Burgie, E. S., Rojas, C. C., Neme, M.,
Hiltbrunner, A., . . . Casal, J. J. (2016). Phytochrome B integrates
light and temperature signals in Arabidopsis. Science, 354(6314),
897-900.
Leone, M., Keller, M. M., Cerrudo, I., & Ballare, C. L. (2014). To grow
or defend? Low red : far-red ratios reduce jasmonate sensitivity in
Arabidopsis seedlings by promoting DELLA degradation and increasing
JAZ10 stability. New Phytol, 204(2), 355-367.
Levitt, J. (1980). Responses of plants to environmental stresses.
Li, B., Gao, K., Ren, H., & Tang, W. (2018). Molecular mechanisms
governing plant responses to high temperatures. J Integr Plant
Biol, 60(9), 757-779.
Li, J., Li, G., Wang, H., & Wang Deng, X. (2011). Phytochrome signaling
mechanisms. Arabidopsis Book, 9, e0148.
Li, N., Teranishi, M., Yamaguchi, H., Matsushita, T., Watahiki, M. K.,
Tsuge, T., . . . Hidema, J. (2015). UV-B-Induced CPD Photolyase Gene
Expression is Regulated by UVR8-Dependent and -Independent Pathways in
Arabidopsis. Plant Cell Physiol, 56(10), 2014-2023.
Liang, T., Mei, S., Shi, C., Yang, Y., Peng, Y., Ma, L., . . . Liu, H.
(2018). UVR8 Interacts with BES1 and BIM1 to Regulate Transcription and
Photomorphogenesis in Arabidopsis. Dev Cell, 44(4), 512-523 e515.
Lin, C. (2000). Photoreceptors and regulation of flowering time.Plant Physiol, 123(1), 39-50.
Liu, H., Liu, B., Zhao, C., Pepper, M., & Lin, C. (2011). The action
mechanisms of plant cryptochromes. Trends Plant Sci, 16(12),
684-691.
Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., & Lin, C.
(2008). Photoexcited CRY2 interacts with CIB1 to regulate transcription
and floral initiation in Arabidopsis. Science, 322(5907),
1535-1539.
Liu, Z., Zhang, Y., Wang, J., Li, P., Zhao, C., Chen, Y., & Bi, Y.
(2015). Phytochrome-interacting factors PIF4 and PIF5 negatively
regulate anthocyanin biosynthesis under red light in Arabidopsis
seedlings. Plant Sci, 238, 64-72.
Ma, D., Li, X., Guo, Y., Chu, J., Fang, S., Yan, C., . . . Liu, H.
(2016). Cryptochrome 1 interacts with PIF4 to regulate high
temperature-mediated hypocotyl elongation in response to blue light.Proc Natl Acad Sci U S A, 113(1), 224-229.
Mahmood, T., Khalid, S., Abdullah, M., Ahmed, Z., Shah, M. K. N.,
Ghafoor, A., & Du, X. (2019). Insights into Drought Stress Signaling in
Plants and the Molecular Genetic Basis of Cotton Drought Tolerance.Cells, 9(1).
Maier, A., & Hoecker, U. (2015). COP1/SPA ubiquitin ligase complexes
repress anthocyanin accumulation under low light and high light
conditions. Plant Signal Behav, 10(1), e970440.
Malhotra, K., Kim, S. T., Batschauer, A., Dawut, L., & Sancar, A.
(1995). Putative blue-light photoreceptors from Arabidopsis thaliana and
Sinapis alba with a high degree of sequence homology to DNA photolyase
contain the two photolyase cofactors but lack DNA repair activity.Biochemistry, 34(20), 6892-6899.
Mao, J., Zhang, Y. C., Sang, Y., Li, Q. H., & Yang, H. Q. (2005). From
The Cover: A role for Arabidopsis cryptochromes and COP1 in the
regulation of stomatal opening. Proc Natl Acad Sci U S A,102(34), 12270-12275.
Mas, P., Kim, W. Y., Somers, D. E., & Kay, S. A. (2003). Targeted
degradation of TOC1 by ZTL modulates circadian function in Arabidopsis
thaliana. Nature, 426(6966), 567-570.
Matthews, J. S. A., Vialet-Chabrand, S., & Lawson, T. (2020). Role of
blue and red light in stomatal dynamic behaviour. J Exp Bot,71(7), 2253-2269.
Mittler, R., Finka, A., & Goloubinoff, P. (2012). How do plants feel
the heat? Trends Biochem Sci, 37 (3), 118-125.
Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004).
Reactive oxygen gene network of plants. Trends Plant Sci, 9(10),
490-498.
Moreno, J. E., Tao, Y., Chory, J., & Ballare, C. L. (2009). Ecological
modulation of plant defense via phytochrome control of jasmonate
sensitivity. Proc Natl Acad Sci U S A, 106(12), 4935-4940.
Muller-Xing, R., Xing, Q., & Goodrich, J. (2014). Footprints of the
sun: memory of UV and light stress in plants. Front Plant Sci, 5,
474.
Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M., & Shikanai,
T. (2002). PGR5 is involved in cyclic electron flow around photosystem I
and is essential for photoprotection in Arabidopsis. Cell,110(3), 361-371.
Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I.
(2007). Photoinhibition of photosystem II under environmental stress.Biochim Biophys Acta, 1767(6), 414-421.
Nagy, F., & Schafer, E. (2002). Phytochromes control photomorphogenesis
by differentially regulated, interacting signaling pathways in higher
plants. Annu Rev Plant Biol, 53, 329-355.
Nakashima, K., Yamaguchi-Shinozaki, K., & Shinozaki, K. (2014). The
transcriptional regulatory network in the drought response and its
crosstalk in abiotic stress responses including drought, cold, and heat.Front Plant Sci, 5, 170.
Navarro, L., Bari, R., Achard, P., Lison, P., Nemri, A., Harberd, N. P.,
& Jones, J. D. (2008). DELLAs control plant immune responses by
modulating the balance of jasmonic acid and salicylic acid signaling.Curr Biol, 18(9), 650-655.
Nieto, C., Lopez-Salmeron, V., Daviere, J. M., & Prat, S. (2015).
ELF3-PIF4 interaction regulates plant growth independently of the
Evening Complex. Curr Biol, 25(2), 187-193.
Nitschke, S., Cortleven, A., Iven, T., Feussner, I., Havaux, M.,
Riefler, M., & Schmulling, T. (2016). Circadian Stress Regimes Affect
the Circadian Clock and Cause Jasmonic Acid-Dependent Cell Death in
Cytokinin-Deficient Arabidopsis Plants. Plant Cell, 28(7),
1616-1639.
Nitschke, S., Cortleven, A., & Schmulling, T. (2017). Novel Stress in
Plants by Altering the Photoperiod. Trends Plant Sci, 22 (11),
913-916.
Nomura, H., Komori, T., Uemura, S., Kanda, Y., Shimotani, K., Nakai, K.,
. . . Shiina, T. (2012). Chloroplast-mediated activation of plant immune
signalling in Arabidopsis. Nat Commun, 3, 926.
Ohnishi, N., Allakhverdiev, S. I., Takahashi, S., Higashi, S., Watanabe,
M., Nishiyama, Y., & Murata, N. (2005). Two-step mechanism of
photodamage to photosystem II: step 1 occurs at the oxygen-evolving
complex and step 2 occurs at the photochemical reaction center.Biochemistry, 44(23), 8494-8499.
Oikawa, K., Kasahara, M., Kiyosue, T., Kagawa, T., Suetsugu, N.,
Takahashi, F., . . . Wada, M. (2003). Chloroplast unusual positioning1
is essential for proper chloroplast positioning. Plant Cell,15(12), 2805-2815.
Outlaw, W. H. J. (2003). Integration of Cellular and Physiological
Functions of Guard Cells. Critical Reviews in Plant Sciences,,22(6), 503-529.
Paik, I., & Huq, E. (2019). Plant photoreceptors: Multi-functional
sensory proteins and their signaling networks. Semin Cell Dev
Biol, 92, 114-121.
Pareek, A., Khurana, A., Sharma, A. K., & Kumar, R. (2017). An Overview
of Signaling Regulons During Cold Stress Tolerance in Plants. Curr
Genomics, 18(6), 498-511.
Pierik, R., & de Wit, M. (2014). Shade avoidance: phytochrome
signalling and other aboveground neighbour detection cues. J Exp
Bot, 65(11), 2815-2824.
Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., & Van Wees, S. C.
(2009). Networking by small-molecule hormones in plant immunity.Nat Chem Biol, 5(5), 308-316.
Pospisil, P. (2016). Production of Reactive Oxygen Species by
Photosystem II as a Response to Light and Temperature Stress.Front Plant Sci, 7, 1950.
Qi, J., Zhang, M., Lu, C., Hettenhausen, C., Tan, Q., Cao, G., . . . Wu,
J. (2018). Ultraviolet-B enhances the resistance of multiple plant
species to lepidopteran insect herbivory through the jasmonic acid
pathway. Sci Rep, 8(1), 277.
Radhika, V., Kost, C., Mithofer, A., & Boland, W. (2010). Regulation of
extrafloral nectar secretion by jasmonates in lima bean is light
dependent. Proc Natl Acad Sci U S A, 107(40), 17228-17233.
Rai, N., Neugart, S., Yan, Y., Wang, F., Siipola, S. M., Lindfors, A.
V., . . . Aphalo, P. J. (2019). How do cryptochromes and UVR8 interact
in natural and simulated sunlight? J Exp Bot, 70(18), 4975-4990.
Rizzini, L., Favory, J. J., Cloix, C., Faggionato, D., O’Hara, A.,
Kaiserli, E., . . . Ulm, R. (2011). Perception of UV-B by the
Arabidopsis UVR8 protein. Science, 332(6025), 103-106.
Roberts, M. R., & Paul, N. D. (2006). Seduced by the dark side:
integrating molecular and ecological perspectives on the influence of
light on plant defence against pests and pathogens. New Phytol,170(4), 677-699.
Roden, L. C., & Ingle, R. A. (2009). Lights, rhythms, infection: the
role of light and the circadian clock in determining the outcome of
plant-pathogen interactions. Plant Cell, 21(9), 2546-2552.
Rodriguez-Herva, J. J., Gonzalez-Melendi, P., Cuartas-Lanza, R.,
Antunez-Lamas, M., Rio-Alvarez, I., Li, Z., . . . Lopez-Solanilla, E.
(2012). A bacterial cysteine protease effector protein interferes with
photosynthesis to suppress plant innate immune responses. Cell
Microbiol, 14(5), 669-681.
Sangwan, V., Orvar, B. L., Beyerly, J., Hirt, H., & Dhindsa, R. S.
(2002). Opposite changes in membrane fluidity mimic cold and heat stress
activation of distinct plant MAP kinase pathways. Plant J, 31(5),
629-638.
Sato, R., Kono, M., Harada, K., Ohta, H., Takaichi, S., & Masuda, S.
(2017). FLUCTUATING-LIGHT-ACCLIMATION PROTEIN1, Conserved in Oxygenic
Phototrophs, Regulates H+ Homeostasis and Non-Photochemical Quenching in
Chloroplasts. Plant Cell Physiol, 58(10), 1622-1630.
Schneider, T., Bolger, A., Zeier, J., Preiskowski, S., Benes, V.,
Trenkamp, S., . . . Matsubara, S. (2019). Fluctuating Light Interacts
with Time of Day and Leaf Development Stage to Reprogram Gene
Expression. Plant Physiol, 179(4), 1632-1657.
Schreiber, U., Hormann, H., Asada, K., & Neubauer, C. (1995).
O2-dependent electron flow in spinach chloroplasts: properties and
possible regulaion of the Mehler-ascorbate peroxidase cycle.Photosynthesis, 2, 813-818.
Sessa, G., Carabelli, M., Possenti, M., Morelli, G., & Ruberti, I.
(2018). Multiple Pathways in the Control of the Shade Avoidance
Response. Plants (Basel), 7(4).
Shamrai, S. N. (2014). Plant immune system: Basal immunity.Cytology and Genetics, 48, 258–271.
Shikanai, T. (2007). Cyclic electron transport around photosystem I:
genetic approaches. Annu Rev Plant Biol, 58, 199-217.
Shikanai, T. (2016). Chloroplast NDH: a different enzyme with a
structure similar to that of respiratory NADH dehydrogenase.Biochim Biophys Acta, 7, 1015-1022.
Shin, D. H., Choi, M., Kim, K., Bang, G., Cho, M., Choi, S. B., . . .
Park, Y. I. (2013). HY5 regulates anthocyanin biosynthesis by inducing
the transcriptional activation of the MYB75/PAP1 transcription factor in
Arabidopsis. FEBS Lett, 587(10), 1543-1547.
Silva, C. S., Nayak, A., Lai, X., Hutin, S., Hugouvieux, V., Jung, J.
H., . . . Zubieta, C. (2020). Molecular mechanisms of Evening Complex
activity in Arabidopsis. Proc Natl Acad Sci U S A, 117(12),
6901-6909.
Soitamo, A. J., Piippo, M., Allahverdiyeva, Y., Battchikova, N., & Aro,
E. M. (2008). Light has a specific role in modulating Arabidopsis gene
expression at low temperature. BMC Plant Biol, 8, 13.
Somers, D. E., Devlin, P. F., & Kay, S. A. (1998). Phytochromes and
cryptochromes in the entrainment of the Arabidopsis circadian clock.Science, 282(5393), 1488-1490.
Somers, D. E., Schultz, T. F., Milnamow, M., & Kay, S. A. (2000).
ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis.Cell, 101(3), 319-329.
Song, J., Liu, Q., Hu, B., & Wu, W. (2017). Photoreceptor PhyB Involved
in Arabidopsis Temperature Perception and Heat-Tolerance Formation.Int J Mol Sci, 18(6).
Song, L., Jiang, Y., Zhao, H., & Hou, M. (2012). Acquired
thermotolerance in plants. Plant Cell Tiss Organ Cult, 111,
265-276.
Song, Y. H., Estrada, D. A., Johnson, R. S., Kim, S. K., Lee, S. Y.,
MacCoss, M. J., & Imaizumi, T. (2014). Distinct roles of FKF1,
Gigantea, and Zeitlupe proteins in the regulation of Constans stability
in Arabidopsis photoperiodic flowering. Proc Natl Acad Sci U S A,111(49), 17672-17677.
Sonoike, K. (1996). Photoinhibition of Photosystem I: Its Physiological
Significance in the Chilling Sensitivity of Plants. Plant and Cell
Physiology, 37(3), 239-247.
Sonoike, K., & Terashima, I. (1994). Mechanism of photosystem-I
photoinhibition in leaves of Cucumis sativus L.. . Planta, 194 ,
287-293. doi:doi.org/10.1007/BF01101690
Takahashi, S., & Badger, M. R. (2011). Photoprotection in plants: a new
light on photosystem II damage. Trends Plant Sci, 16(1), 53-60.
Takahashi, S., Milward, S. E., Yamori, W., Evans, J. R., Hillier, W., &
Badger, M. R. (2010). The solar action spectrum of photosystem II
damage. Plant Physiol, 153(3), 988-993.
Takahashi, S., & Murata, N. (2008). How do environmental stresses
accelerate photoinhibition? Trends Plant Sci, 13(4), 178-182.
Takase, T., Nishiyama, Y., Tanihigashi, H., Ogura, Y., Miyazaki, Y.,
Yamada, Y., & Kiyosue, T. (2011). LOV KELCH PROTEIN2 and ZEITLUPE
repress Arabidopsis photoperiodic flowering under non-inductive
conditions, dependent on FLAVIN-BINDING KELCH REPEAT F-BOX1. Plant
J, 67(4), 608-621.
Tallman, G. (2004). Are diurnal patterns of stomatal movement the result
of alternating metabolism of endogenous guard cell ABA and accumulation
of ABA delivered to the apoplast around guard cells by transpiration?J Exp Bot, 55(405), 1963-1976.
Taylor, B. L., & Zhulin, I. B. (1999). PAS domains: internal sensors of
oxygen, redox potential, and light. Microbiol Mol Biol Rev,63(2), 479-506.
Thomashow, M. F. (1999). PLANT COLD ACCLIMATION: Freezing Tolerance
Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol
Biol, 50, 571-599.
Thomashow, M. F. (2010). Molecular basis of plant cold acclimation:
insights gained from studying the CBF cold response pathway. Plant
Physiol, 154(2), 571-577.
Tissot, N., & Ulm, R. (2020). Cryptochrome-mediated blue-light
signalling modulates UVR8 photoreceptor activity and contributes to UV-B
tolerance in Arabidopsis. Nat Commun, 11 (1), 1323.
Torres, M. A. (2010). ROS in biotic interactions. Physiol Plant,
138 (4), 414-429.
Trotta, A., Rahikainen, M., Konert, G., Finazzi, G., & Kangasjarvi, S.
(2014). Signalling crosstalk in light stress and immune reactions in
plants. Philos Trans R Soc Lond B Biol Sci, 369(1640), 20130235.
Tsuda, K., & Katagiri, F. (2010). Comparing signaling mechanisms
engaged in pattern-triggeredand effector-triggered immunity.Current Opinion in Plant Biology, 13, 459-465.
Verhage, A., van Wees, S. C., & Pieterse, C. M. (2010). Plant immunity:
it’s the hormones talking, but what do they say? Plant Physiol,154(2), 536-540.
Wang, F., Guo, Z., Li, H., Wang, M., Onac, E., Zhou, J., . . . Zhou, Y.
(2016). Phytochrome A and B Function Antagonistically to Regulate Cold
Tolerance via Abscisic Acid-Dependent Jasmonate Signaling. Plant
Physiol, 170(1), 459-471.
Wang, F. F., Lian, H. L., Kang, C. Y., & Yang, H. Q. (2010).
Phytochrome B is involved in mediating red light-induced stomatal
opening in Arabidopsis thaliana. Mol Plant, 3(1), 246-259.
Wang, Q., & Lin, C. (2020). Mechanisms of Cryptochrome-Mediated
Photoresponses in Plants. Annu Rev Plant Biol .
Doi://https/doi.org/10.1146/annurev-arplant-050718-100300
Yamamoto, Y. (2016). Quality Control of Photosystem II: The Mechanisms
for Avoidance and Tolerance of Light and Heat Stresses are Closely
Linked to Membrane Fluidity of the Thylakoids. Front Plant Sci,7, 1136.
Yang, C., & Li, L. (2017). Hormonal Regulation in Shade Avoidance.Front Plant Sci, 8, 1527.
Yang, Y., Zhang, L., Chen, P., Liang, T., Li, X., & Liu, H. (2020).
UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin
responses and lateral root development. EMBO J, 39(2), e101928.
Yang, Y. X., Wang, M. M., Yin, Y. L., Onac, E., Zhou, G. F., Peng, S., .
. . Zhou, Y. H. (2015). RNA-seq analysis reveals the role of red light
in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato
plants. BMC Genomics, 16, 120.
Yi, C., & Deng, X. W. (2005). COP1 - from plant photomorphogenesis to
mammalian tumorigenesis. Trends Cell Biol, 15(11), 618-625.
Yin, R. (2017). Cooling Down Thermomorphogenesis by UV-B Signaling.Trends Plant Sci, 22(6), 447-449.
Yoshinaga, N., Alborn, H. T., Nakanishi, T., Suckling, D. M., Nishida,
R., Tumlinson, J. H., & Mori, N. (2010). Fatty acid-amino acid
conjugates diversification in lepidopteran caterpillars. J Chem
Ecol, 36(3), 319-325.
Yu, X., Klejnot, J., Zhao, X., Shalitin, D., Maymon, M., Yang, H., . . .
Lin, C. (2007). Arabidopsis cryptochrome 2 completes its
posttranslational life cycle in the nucleus. Plant Cell, 19(10),
3146-3156.
Zeier, J., Pink, B., Mueller, M. J., & Berger, S. (2004). Light
conditions influence specific defence responses in incompatible
plant-pathogen interactions: uncoupling systemic resistance from
salicylic acid and PR1 accumulation. Planta, 219(4), 673-683.
Zhang, M., Chiang, Y. H., Toruno, T. Y., Lee, D., Ma, M., Liang, X., . .
. Coaker, G. (2018). The MAP4 Kinase SIK1 Ensures Robust Extracellular
ROS Burst and Antibacterial Immunity in Plants. Cell Host
Microbe, 24(3), 379-391 e375.