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Summary

Fully digital microscopes are becoming more and more common in surgical appli-
cations. In addition to high-resolution stereoscopic images of the operating field,
which can be transmitted over long distances or stored directly, these systems offer
further potentials by supporting the surgical workflow based on their fully digital
image processing chain. For example, the image display can be adapted to the respec-
tive surgical scenario by adaptive color reproduction optimization or image overlays
with additional information, such as the tissue topology. Knowledge of this topol-
ogy can be used for computer-assisted or AR-guided microsurgical treatments and
enables additional features such as spatially resolved spectral reconstruction of sur-
face reflectance. In this work, a new method for high-resolution depth measurements
in digital microsurgical applications is proposed, which is based on the principle of
laser triangulation. Part of this method is a sensor data fusion procedure to prop-
erly match the laser scanner and camera data. In this context, a strategy based on
RBF interpolation techniques is presented to handle missing or corrupt data, which,
due to the measuring principle, can occur on steep edges and through occlusion.
The proposed method is used for the acquisition of high-resolution depth profiles of
various organic tissue samples, proving the feasibility of the proposed concept as a
supporting technology in a digital microsurgical workflow.
KEYWORDS:
medical imaging, AR-guidedmicrosurgical treatments, depth measurements, laser sensor, tissue topology,
digital image processing

1 INTRODUCTION1

The use of surgical microscopes has become the gold standard for many ophthalmic, otorhinolaryngological and neuro-surgical2

procedures (see e.g.,1,2,3,4). In addition to conventional optical surgical microscopes, fully digital solutions are more and more3

common in clinical practice. Besides offering high-resolution and even stereoscopic vision of the operative field, most of these4

systems are intended to provide additional benefit by supporting the surgical workflow based on their completely digital image5

processing chain. Potential advantages of digital over conventional optical systems comprise for example the in-situ visualization6

of preoperative image data (acquired e.g. from tomographic scanning procedures), the overlay of the surgeon’s view with signals7

from external video sources (e.g., from an additional endoscope), and the possibility of collaborative viewing and improved8

surgical assistance by synchronizing the surgeon’s exact view of the operative field to external monitors.9
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Various approaches to further explore the benefits of digital microscopes for surgical applications are reported in the literature,10

most of which are related to the development of new and dedicated image processing algorithms. Gard et al.5 for example11

proposed a new method of precise distance and contour measurements of patient specific anatomy without external hardware12

by tracking a marked spherical instrument tip in the stereoscopic image pair provided by a digital surgical microscope. They13

showed that by applying a self-updating template-matching algorithm sufficiently accurate distance measurements in the sub-14

millimeter regime could be achieved depending on the zoom level and the microscope’s depth-of-field. In combination with15

stereo triangulation, their method enabled the reconstruction of instrument tip trajectories that could eventually be used as16

precisely registered augmented-reality (AR) overlays projected into the surgeon’s field of view.17

Based on a similar approach, the MultiARC project6 aims to develop an interactive and multimodal AR system for computer-18

assisted ear, nose and throat (ENT) microsurgery. This system is intended to allow for interactive remote surgical assistance19

including live annotations, three-dimensional point-to-point distance measurements, and the overlaying visualization of pre-20

operatively acquired patient’s data (e.g., from magnetic resonance imaging). Potential benefits of providing additional AR21

information as an integrative part of the digital microscope’s image processing pipeline are discussed by Aschke et al.7 in the22

context of neurosurgical treatments. A more general overview can be found in Khor et al.8, who besides emphasizing the huge23

potential of such digital surgical environments also elaborate on their current practical limitations.24

Another aspect recently discussed in the context of AR-supported microsurgery is the feasibility of automated tissue25

recognition based on hyperspectral imaging (HSI, see Lu and Fei9 for a review on HSI in medical applications). As a first-proof-26

of-concept, Wisotzky et al.10,11 developed an HSI setup to noninvasively analyze the optical characteristics of in vivo tissue27

samples encountered during ENT microsurgery in order to explore the suitability of this approach. They equipped a digital sur-28

gical microscope with an additional filter wheel which was placed in front of the white-light LED illumination unit holding 1629

different narrow bandpass filters. By synchronizing the rotation of the filter wheel and, therefore, the spectral changes of the30

illumination of the surgical field with the image capturing frame rate of the microscope, they were able to capture the spectral31

reflection behavior of various tissue structures in the visible range from 400 to 700 nm. The evaluation of the collected data32

showed that even for tissue samples which are not or hardly distinguishable for the human eye, the analysis in the 16-dimensional33

wavelength domain lead to clearly different, individually unique trends in the samples’ reflection characteristics allowing for a34

robust tissue differentiation.35

One of the downsides of this method as discussed by Wisotzky et al. is the existing time misalignment which is caused by the36

rather slow rotation of the filter wheel making its current implementation inapplicable for clinical routine. In a further paper,37

Wisotzky et al.12 therefore proposed a novel HSI approach replacing the filter wheel by two hyperspectral snapshot cameras38

covering the visible and near-infrared range from 460 to 980 nm. This new setup allowed for acquiring the complete hyperspectral39

dataset in a single shot making it more suitable for clinical application. However, single snapshot HSI always comes with the40

cost of significantly reduced spatial resolution due to the large filter arrays (here: 4 × 4 and 5 × 5, respectively) applied to the41

camera sensor’s surface. In addition, both the filter wheel and the camera-based approach require very expensive and complex42

components to be additionally mounted to the surgical microscope, considerably increasing engineering effort and production43

costs.44

For these reasons, we worked on a new HSI approach for estimating the spectral reflectance characteristics of organic tissue45

samples without the need for expensive hardware supplements. The theoretical framework and first results of this approach46

have recently been published elsewhere13. In principle, the idea is to combine the light emission of various narrow-banded47

monochromatic and phosphor-converted white LEDs creating the multi-channel illumination unit of the digital microscope with48

the imaging capabilities of its standard three-channel RGB camera system. During data acquisition, the tissue sample under49

inspection is illuminated by flashing the individual LED channels one after the other. At the same time, the image capturing50

has to be synchronized to this illumination sequence, which artificially increases the dimensionality of the output data without51

the need of additional hardware or costly equipment. As a result, one obtains n × 3 monochromatic images of the same tissue52

sample, where n denotes the number of different LED channels, which can subsequently be used as input for applying a Wiener53

filter estimation approach14,15,16,17,18 to reconstruct the tissue’s spectral reflectance characteristics in the visible regime. Note54

that a similar spectral reconstruction procedure is proposed as part of the MultiARC project discussed above.55

Once the reflectance characteristics are known, it was found that significantly enhanced color correction can be achieved dur-56

ing image processing13. Leading to improved color reproduction properties, such an enhancement is considered to be beneficial57

for the success of video-assisted surgeries, where, in general, different kinds of tissues and critical structures must be distin-58

guished by the surgeon not just through their textures but also through their colors. In addition, promising results were obtained59

with regard to the premises of automated tissue recognition based on previous reflectance estimation.60
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However, as shown in our recent paper, for the required absolutely correct intensity scaling, the underlying Wiener-filter61

estimation technique demands the exact knowledge of the measurement geometry, which is determined by the distance and angle62

of the tissue surface with respect to the illumination and image capturing modules of the surgical microscope. A corresponding63

pixel-position dependent scaling factor �(i,j) was therefore introduced and determined for the reported measurements by previous64

calibration using a standard reflectance target at a fixed geometry. However, such a calibration procedure to be conducted in65

advance of a surgery is not really convenient in practice and must be re-performed every time the microscope head is moved to66

another position.67

Basically, this scaling factor can also be determined from the known pixel position (i, j) of the point-of-interest (POI) in the68

projected x-y-plane, for which the reflectance spectra should be estimated, and an additional depth measurement to determine69

the absolute distance value � between the POI and its corresponding location on the imaging sensor along the z-axis. From these70

geometric measurements, the known position of the multi-channel LED illuminant in relation to the image capturing module,71

and an initial one-time calibration during the manufacturing process, the absolute spectral power distribution (SPD) in terms72

of the spectral flux received by the tissue surface at the POI position can be derived for each given LED channel. Once the73

individual SPDs at the POI position are known, they can be used as input in the Wiener filter matrix (see previous work13 for74

corresponding equations) to properly estimate the spectral surface reflectance at the POI on an absolute scale.75

Even though the actual calculations and the algorithmic implementation are straightforward, the challenging task is to accu-76

rately perform the depth measurements. It was found in a pre-test in preparation of the current work that uncertainties of up77

to 3mm in the depth measurements result in average deviations of the reconstructed reflectance spectra from the ground truth78

of about 2.5%. Hence, with regard to the idea of automated tissue recognition based on reflectance estimation, a depth accu-79

racy of less than ±0.3mm would be favorable to keep the expected deviations from the ground truth due to systematic depth80

measurement inaccuracies below 1%.81

Since modern digital surgical microscopes usually provide stereoscopic imaging, trying to extract depth information directly
from the corresponding disparity mapping seems to be quite obvious. Based on stereo computer vision theory19, the accuracy
in depth estimation can be approximated by

|Δ�| = Z2

fB
Δd, (1)

where f is the focal length, B is the baseline distance of the stereo camera configuration, and Δd is the error of the disparity82

calculation between the left and right image. This also called correspondence accuracy describes the expected error caused by83

an incorrect matching of both images at the POI location and depends on image noise, scene texture, and other scene properties84

such as occlusions and non-Lambertian surfaces20, the used matching algorithm as well as on the resolution and pixel size of85

the camera sensors19.86

In benchmark tests for the performance evaluation of different matching algorithms, such as for example the Middlebury87

Stereo Evaluation21, average disparity errors of 2 to 3.5 pixels can be found for the best performing algorithms under controlled88

experimental conditions. Assuming further a typical focal length of surgical microscopes ranging between 45 to 80mm, a89

baseline distance of the (virtual) stereo camera configuration ranging from 16 to 22mm, and a pixel size of the camera sensors90

of 6 to 8 µm6, the accuracy in depth estimation under optimal conditions obtain from disparity mapping is expected to be of the91

order of ±0.6 to ±1.6mm for an assumed working distance of 250mm.92

With regard to the indicated depth resolution of ±0.3mm required for accurate in-situ reflectance reconstruction, a direct93

depth estimation from stereoscopic imaging of currently available surgical microscopes seems to be inexpedient. Hence, a new94

approach for high-resolution in-situ depth measurements based on laser triangulation was developed by the authors and will be95

presented in the following. Although laser triangulation is an established method in industrial production processesing and has96

already been tested in various other biomedical applications (see e.g.,22,23,24), the presented work, to the authors’ best knowledge,97

is the first to make use of this concept for achieving highly accurate depth measurements in microsurgical treatments.98

The structure of this paper is organized as follows. Sec. 2 starts with a short discussion of the experimental setup and the99

measurement protocol used for data acquisition. In Sec. 3, the applied strategies for accuracy estimation, sensor data fusion, and100

data visualization will be presented. Based on these preconditions, first depth profiling results for various organic tissue samples101

will be reported in order to qualitatively evaluate the performance of the proposed method. Finally, a short summary of the key102

findings of this work as well as an outlook on future research intentions will be given in Sec. 4.103
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FIGURE 1 Illustration of the laser triangulation principle. Based on an initial distance calibration, it is possible to determine
the corresponding distance � between the light emitting laser diode and the reflecting object for each position of the imaged
laser spot on the detector’s surface in the receiving unit.

2 EXPERIMENTAL SETUP AND MEASUREMENT PROTOCOL104

High-precision laser-triangulation modules are common components of modern coordinate measuring machines in various105

industrial production processes. They are typically used for quality control, safety, level measurements, and positioning applica-106

tions. Being solely based on trigonometry, they are relatively simple and cost-efficient measuring tools that allow for robust and107

accurate distance measurements well into the micrometer range. Due to this accuracy and outstanding depth resolution, laser108

triangulation is used in this work to determine the pixel-dependent scaling factor �(i,j) required for the microsurgical application109

sketched in the introduction.110

Its basic principle is shown in Fig. 1. A laser emitter, which consists of a laser diode of a certain wavelength supplemented111

with dedicated transmitting optics components, is used to project a light spot onto the surface of an object whose distance �112

should be measured. The scattered light from the object’s surface is collected by the receiving optics and focused on a position113

sensitive detector (PSD; e.g., a CCD sensor). If a change Δ� in the distance between the laser diode and the object’s surface114

occurs, the angle � under which the scattered light is received by the PSD changes accordingly, leading to a position shift Δ�115

of the focused image of the light spot on the detector’s surface. As a result of this relationship, the PSD can be calibrated such116

that absolute measures of the distance � between the laser diode and the surface of the object become feasible.117

In order to suppress disturbances caused by the ambient light, the receiving unit is usually equipped with an additional118

spectral band-pass filter, which is optimized to match the specific wavelength of the laser diode. Other factors that may reduce119

the accuracy of the distance measurements are for example unfavorable surface characteristics, distance-dependent laser spot120

enlargement, out-of-focus measurements and optical aberrations such as coma, astigmatism, or spherical errors of the lens121

systems. With regard to the intended microsurgical application, it is very important to be aware of these error sources and a122

careful characterization of the final experimental setup must therefore be performed on a dedicated reference target to obtain an123

estimate of the overall depth measurement accuracy.124

For the experimental test setup used in this work, two different laser triangulation modules with similar specifications but dif-125

ferent wavelengths were at our disposal: A red-emitting Micro-Epsilon scanCONTROL 2900-100 with 658 nm wavelength and126
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(a) Schematic illustration of the experimental setup
including its dimensions (b) Picture of the experimental setup as it can be

found in the laboratory
FIGURE 2 Experimental setup as a first proof-of-concept for high-resolution depth profiling of organic tissue samples based
on laser triangulation. Its main parts are a) the linear motion axis, b) a digital camera system to simulate the imaging workflow
of a surgical microscope, and c) the laser-triangulation profile scanner.

a blue-emitting Micro-Epsilon scanCONTROL 2900-100/BL with 405 nm wavelength. Both devices are Class 2M (≤ 8mW)127

laser profile scanners, i.e., instead of using a single light spot, as shown in Fig. 1, they project a complete line segment compris-128

ing 1,280 individual measuring points onto the object’s surface, which will be denoted as the x-axis in the following. According129

to the corresponding data sheet25, they both offer a reference depth resolution of 12 µm within the identical measurement range130

(working distance) from 190mm to 290mm along the z-axis and the same maximum measurement frequency of 300Hz. How-131

ever, pre-tests with both devices revealed that the blue-emitting laser module is better suited for profiling organic tissue than its132

red-emitting equivalent, which compared to the former suffered from too much failed measurements when being applied to scan133

various organic test samples. The remaining part of this paper should therefore consider the blue-emitting results only.134

For a complete scan of an arbitrary object, the scanning device must be moved along the y-axis at a constant velocity v.135

Fig. 2 shows the corresponding experimental setup. As can be seen, the laser scanner and an additional industrial GigE camera136

are mounted to the carriage of a linear motion system driven by a stepper motor. The linear motion system is held by a stable137

aluminum profile fixture and oriented such that both scanner and the camera are facing perpendicularly downwards to the bottom138

plate, where the test objects are placed for scanning. Care must be taken to ensure an almost vibration-free attachment. In this139

setup, the camera, which is a monochrome IDS UI-5490SE-M-GL Rev.226, is intended to simulate the digital imaging of a140

surgical microscope in order to address the question of how the output of both systems can efficiently be combined in future141

applications.142

The dimensions of the aluminum profile fixture (cf. Fig. 2) as well as the camera lens (f = 12mm) were chosen to match the143

measurement range and scanning width of the laser triangulation module. The stepper motor is used in half step mode to achieve144

a smooth and even running behavior27,28. A relatively low measurement frequency of 50Hz is chosen as a trade-off between145

a moderate scanning velocity to reduce vibrations and the total time required for a single scan. The corresponding scanning146

velocity was adjusted such that an approximately equal resolution in x- and y-direction can be achieved. As a result, an average147

velocity of (4.153 ± 0.002)mm s−1 is obtained, which was determined empirically from repeated measurements (n = 100). This148

gives a resolution along the y-axis of (83.1 ± 4.2) µm, while the resolution in x-direction depends on the distance between laser149

scanner and test object and ranges from approximately 81 µm (for objects with a height of 4 cm) to 94 µm (on the level of the150

bottom plate). Hence, it can be concluded that the proposed experimental setup allows for high-resolution measurements with151

sufficiently small uncertainties to generate, as a first proof-of-concept, diagnostically conclusive depth profiles of organic tissue152

samples with regard to the requirements defined in the introduction.153

The corresponding measurement protocol is conceived as follows. After the test object/tissue sample has been centered on154

the bottom plate, the carriage of the linear motion axis, with both camera and laser scanner being attached to it, is moved155

from one end of the axis to the other at the given constant scanning velocity. The actual data acquisition starts 1 s after the156

movement has been initiated and terminates 1 s before the end position is reached in order to exclude the phases of nonlinear157
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FIGURE 3 Reference target used to determine the overall depth measurement accuracy of the proposed laser-triangulation
method. The wedge-shape was chosen to imitate a well-defined surface gradient enabling a more realistic estimation of the
application-related measurement errors.

motor acceleration and deceleration. During the phase of constant movement, measurements from the laser profile scanner are158

read every 20ms, which complies with the desired 50Hz measurement frequency, so that a total number of approximately159

1,500×1,280 measurements are performed on the tissue sample resulting in a high-resolution depth profile of this test object.160

After the depth scanning is finished, the carriage is moved backwards until the camera and the center of the bottom plate are161

aligned to ensure the largest possible overlap between the measurement range of the laser scanner and the camera’s field of view162

for a subsequent sensor data fusion (see Sec. 3.2). Once this specific position is reached, an image of the test object is captured163

at a resolution of 3,840×2,748 pixels. Afterwards, the carriage is eventually moved back to its initial position and the whole164

setup is ready for the next acquisition run. In total, it takes approximately 46.5 s to complete a single scan.165

3 SCANNING CHARACTERIZATION AND DEPTH MEASUREMENT RESULTS166

Based on the description of the experimental setup and the measurement protocol given in the previous section, the following167

parts are intended to address the issues of data acquisition, error estimation, and data processing. In Sec. 3.1, the overall depth168

measurement accuracy along the z-direction should be evaluated. For this purpose, a dedicated reference target was used as a169

known test sample from which an error estimate is obtained by comparing nominal and measured values by means of residual170

analysis. This serves as an indicator whether the proposed triangulation method could meet the required depth resolution to be171

applicable for accurate in-situ reflectance estimation as discussed in the introduction of this paper. In Sec. 3.2, an efficient method172

of sensor data fusion is presented for matching both laser scanner and camera data as well as for visualizing the generated depth173

profiles in a genuine workflow. Finally, in Sec. 3.3, measurement results and acquired depth profiles of two different organic174

tissue samples are reported as a first proof-of-concept of the proposed method.175

3.1 Depth Measurements on Reference Target176

In order to determine the overall error in the depth measurements of the current experimental setup, a dedicated reference target177

was designed and manufactured accordingly for system characterization. Its form and dimensions are shown in Fig. 3. As can178

be seen, a wedge-shaped reference target was chosen. It is made of purely white polyethylene material with excellently diffuse179

reflection properties and a nominal production tolerance of ±50 µm. The shape of the reference target is intended to simulate180

a well-defined surface gradient giving a more realistic estimate of the application-related measurement errors. In general, the181

measurement uncertainty in z-direction also depends on the uncertainties observed for the other directions. In the current setup,182

mainly the deviations along the y-axis are crucial for the overall depth measurement accuracy because of the respective carriage183

movement and must therefore be implicated by using a non-flat, gradient-showing reference target, like the one presented here,184

for the characterization process.185

Before the actual characterization started, a baseline measurement had been performed first in order to account for measure-186

ment noise and flatness imperfections of the bottom plate and/or the underground. This baseline was then used to correct the187

actual measurement of the reference target, for which the protocol described in Sec. 2 was used.188
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(a) Measured data points and plane fit to approximate the ref-
erence target’s surface. The number of depicted data points
was reduced by a factor of 30 for illustration purposes.

(b) Analysis of the residuals between measured data points
and fitted plane model. Twice the standard deviation was used
for an estimate of the depth measurement accuracy.

FIGURE 4 Results of the laser-triangulation depth measurements performed on the wedge-shaped reference target. For conve-
nience, a re-scaling was applied to transform the z-axis from a distance measure to a height scale (left). Based on the residual
analysis (right), an estimate of ±104 µm is found for the overall depth measurement accuracy.

Fig. 4(a) depicts the results of the laser-triangulation depth measurements performed on the wedge-shaped reference target.189

Re-scaling was applied to transform the z-axis from a distance measure to height scale. As can be seen, a plane was fitted to the190

data points to approximate the reference target’s surface. The error estimation was then performed based on the corresponding191

residuals shown in Fig. 4(b). Here, twice the standard deviation was chosen giving an estimate of the overall depth measurement192

accuracy of ±104 µm.193

Compared to the initially formulated requirements, the laser triangulationmethod consequently provides a sufficiently accurate194

depth profiling and distance measurement, which particularly outperforms depth estimation based on stereo vision. Even when195

considering the full range of the residuals plotted in Fig. 4(b), which goes up to 205 µm, the required depth resolution of±0.3mm196

is still met.197

3.2 Sensor Data Fusion and Visualization198

Given that the proposed laser triangulation method clearly complies with the requirements for distance measurement and depth199

resolution, the next step is to perform the sensor data fusion in order to match the laser scanner and camera data. Since the200

measurement geometry is always fixed and given by the experimental setup shown in Fig. 2, an initial one-time calibration201

is sufficient. For the sake of efficiency, a standard object recognition approach can be applied to determine the corresponding202

transformation from the coordinate system of the laser scanner to the coordinate system of the camera.203

Assuming affinity between both coordinate systems29, this transformation basically consists of a translation, dilation, and
rotation, which can be summarized by a single matrix Taff ine projecting data points from one coordinate system into the other,
i.e.,

xcamera = Taff inexlaser . (2)
In order to determine this projection matrix, a simple cuboid calibration target was used. It is made of black polyethylene204

and its dimensions read 27.4mm×19.6mm×2.5mm. This calibration target was again centered on the bottom plate and the205

scanning and measurement protocol as described in Sec. 2 was initiated. The collected profile data of the laser scanner were206

then transformed to an 8 bit gray-scale image so that an object recognition algorithm can be applied. In Figs. 5(a) and (b), the207

resulting ”images” of the calibration target as obtained from the laser scanner and camera output are shown and compared to208

each other.209
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(a)Gray-scale image of the laser-scanner profile data obtained
for the rectangular calibration target

(b) Monochrome camera image of the rectangular calibration
target

(c) Contour detection of the calibration target from the laser-
scanner profile data. The green rectangle represents the min-
imum enclosing area.

(d) Contour detection of the imaged calibration target. The
green rectangle represents the minimum enclosing area.

FIGURE 5 Illustration of the sensor data fusion process to match laser scanner and camera data using a rectangular calibration
target. Assuming affinity, the transformation from one coordinate system into the other, and therefore the matching procedure,
can be described by a translation, dilation, and rotation, which can be summarized in a simple projection matrix. To determine
this matrix, corresponding data points in the image representations (upper row) of both data acquisition systems are identified
by means of object recognition (lower row).

Next, an adaptive thresholding algorithm30,31 is applied to transform both images of the calibration target into binary repre-
sentations that subsequently allow for a straightforward, accurate edge and corner detection of its contours. This is performed
by using the OpenCV implementation of the border following algorithm of Suzuki and Abe32 with a subsequent search for a
minimum rectangular enclosing area33 as shown in Figs. 5(c) and (d). By identifying three corresponding corners in the two
different images, the projection matrix to transform from the laser scanner coordinate system to the camera coordinate system
(see Eq. (2)) can eventually be determined and is given by

Taff ine =
(

2.5583 −0.0321 253.27
0.0424 2.7456 −523.44

)

(3)
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for the current experimental setup. As long as the geometry between the laser scanner and the camera is not changed in the210

experimental setup, Taff ine can automatically be applied right after each data acquisition run. The resulting depth profile for an211

arbitrary test object is then stored together with the captured image data as a new structure which, in the discussed microsurgical212

application, enables the direct access of depth and distance information at each given pixel location.213

This, however, is only feasible as long as there are no perturbations in the acquired data of the laser scanner so that a pixel-214

wise mapping can be performed. In general, laser triangulation works best on diffusely reflecting, non-specular surfaces, where215

the incident laser beam is scattered such that a significant amount of scattered light is received by the PSD. In real-world mea-216

surements certain functional impairments, like for example specular reflections and occlusions, cannot be precluded entirely217

and, as a result, lead to missing data points in the laser scan matrix vitiating not just the mapping process but also reducing the218

visualization quality of the captured depth profiles.219

To deal with these perturbations and to minimize the impact of missing data points, interpolation based on a radial basis220

function (RBF) approach should be applied. In general, RBF methods are used to approximate multivariate functions that are221

only known at a finite number of points by linear combinations of terms based on a single univariate, radially symmetric function.222

Here, we use them to interpolate missing data points in the laser scan matrix from their known surrounding measurement values223

and to approximate the test object’s surface for visualization purposes.224

Assume that the surface can be described by a smooth function f ∶ ℝ2 → ℝ, where n function values
f (xi) = yi, for i = 1, ..., n, (4)

are known by measurement. This, in general, unknown function can then be approximated by
s(x) =

n
∑

i=1
�i�(||x − xi||), (5)

which eventually allows for a depth measure evaluation at any given point x. Here, �(r) is the adopted RBF, which is a radially225

symmetric, real-valued function defined on [0, inf), xi are the data points for which the function yi is known, �i are scalar226

parameters, and || ⋅ || denotes a suitably chosen norm, usually (and also in the present case) the Euclidean norm | ⋅ |.227

As discussed by Carr et al.34, a simple linear RBF �(r) = r is a good choice for reconstructing surface data and should
therefore be used in the following. Hence, Eq. (5) simplifies to

s(x) =
n
∑

i=1
�i|x − xi|. (6)

Given that
s(xi) = f (xi) = yi, for i = 1, ..., n, (7)

a n×n linear system of equations (LSE) can eventually be derived to solve for the coefficients �i that specify the RBF in Eq. (6).
This LSE is given by

A� = y, (8)
where � = (�1, �2, ..., �n)T summarizes the RBF coefficients and y = (y1, y2, ..., yn)T the known (measured) surface values. The
entries of the square-symmetric interpolation matrix A are then given by

Aij = |xi − xj|, with i, j = 1, ..., n, (9)
which is non-singular and, consequently, guarantees the unique existence of the coefficients �i as long as the chosen RBF �(r)228

is strictly positive definite35, which, using a simple linear RBF in conjunction with the Euclidean norm, is the case here.229

By solving the LSE of Eq. (8), one obtains the coefficient vector � and, thus, the surface approximation function s(x) of230

Eq. (6), which can subsequently be used for visualization and sensor data fusion, as will be shown in the following section.231

In each case, a Python implementation of the LAPACK driver routine sSYSV36 was used. It is based on the diagonal pivoting232

method with a partial pivoting strategy introduced by Bunch and Kaufmann37 and allows for finding the corresponding solution233

of the symmetric LSE in a very efficient manner.234

3.3 Results for Organic Tissue Samples235

As a first proof-of-concept of the proposed method for high-resolution depth measurements in microsurgery based on laser tri-236

angulation, results obtained for two different organic tissue samples, i.e., a piece of fractured bone from a pig’s femur and muscle237

tissue from the upper part of a pig’s shoulder, are reported in this section. Figs. 6 and 7 visualize the respective measurement238
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(a) Three-dimensional depth reconstruction of the fractured bone sample. The RBF method was
applied for the interpolation of missing data points.

(b) Gray-scale image of the fractured bone sample
as acquired by the monochrome image capturing
system

(c) Color map overlay to visualize the sensor data
fusion process for the fractured bone sample

FIGURE 6 Visual representation of the laser-triangulation depth measurement results for the fractured bone sample. The fusion
of laser scanner and camera data eventually yields a data matrix containing both image and depth information at each given
pixel location.

and sensor data fusion outcomes. The corresponding raw and RBF data can be downloaded via our institutional webpage38.239

This source also provides further access to the results of some additional tissue samples (webpage-only) which, for the sake of240

brevity and due to similar conclusions to be drawn, are not explicitly discussed here.241
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(a) Three-dimensional depth reconstruction of the muscle tissue sample. The RBFmethod was applied
for the interpolation of missing data points.

(b) Gray-scale image of the muscle tissue sample
as acquired by the monochrome image capturing
system

(c) Color map overlay to visualize the sensor data
fusion process for the muscle tissue sample

FIGURE 7 Visual representation of the laser-triangulation depth measurement results for the muscle tissue sample. The fusion
of laser scanner and camera data eventually yields a data matrix containing both image and depth information at each given
pixel location.

In all cases – including the webpage-only samples – the proposed method works quite well. It does not only allow for a high-242

resolution depth map visualization of the respective tissue structures illustrated as three-dimensional surface plots but, based on243

the applied sensor data fusion, also enables the accurate, pixelwise determination of distance values in order to determine the244

pixel-dependent scaling factor �(i,j) that is required for reflectance estimation and subsequent tissue recognition as outlined in245

the introduction section of this paper. Problems of incorrect data representations because of failed RBF interpolation are only246

observed at the edges of the tissue samples, where the corresponding surface gradient becomes overly steep so that the scattered247
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light is not reflected back onto the PSD of the laser scanner. As a result, this yields too large areas of missing data points along the248

edges. Another source of such functional impairments compromising the RBF processing are occlusions of lower lying tissue249

layers at the edge structures due to the finite opening angle of the line segment emitted by the laser scanner.250

Besides these small, edge-related disturbances, no further severe measurement errors are observed. Comparing for example251

the results obtained for bone and muscle tissue shown in Figs. 6 and 7, respectively, an equally good performance of the proposed252

method can be concluded when assessing the inner structure of the tissue surfaces, i.e., all parts that are sufficiently far from253

the samples’ edges. As can be seen, the tissue fine structures are resolved properly in both cases without showing any non-254

smooth perturbations neither at the transitions from osseous to marrow structures in case of the fractured bone sample nor at255

the transition from fiber to adipose or conjunctive components in case of the muscle tissue. This basically indicates that neither256

residual surface moisture nor a specific tissue color prevent the proposed method from providing accurate depth measurements257

when being applied to different kinds of organic tissue samples.258

Failures in the data acquisition and/or RBF interpolation of the samples’ inner parts are therefore only expected if the tissue259

itself absorbs to much of the incident light from the laser scanner or prevents the light from being scattered diffusely back into the260

PSD unit because of the occurrence of too much specular reflections in conjunction with an unfavorable incident angle. In either261

case, missing data points in the laser scanner data matrix representing these surface areas would be the consequence. As long262

as these areas are relatively small, the missing data can still be compensated appropriately by the implemented RBF approach.263

Thus, larger errors or pronounced perturbations were not observed for any of the various organic tissue samples considered in264

this work. It can therefore be concluded that both absorption and specular reflection seem to be minor issues and little to worry265

about in practice – at least with regard to the current experimental setup.266

4 CONCLUSION AND OUTLOOK267

The exact knowledge of the tissue topology including the option of performing precise three-dimensional distance and con-268

tour measurements can facilitate and support the surgeon’s workflow within the framework of computer-assisted or AR-guided269

microsurgical treatments. For example, it may help to choose the appropriate size of patient-tailored implants and prostheses270

and allow for accurate real-time tracking of instrument tips in order to reduce the risk of complications caused by harmful tissue271

contact5,39.272

In the current paper, however, a slightly different use case was sketched for research motivation. As part of a previous273

exploratory study on automated tissue recognition in digital stereoscopic microsurgery based onWiener filter reflectance estima-274

tion from HSI input, it has been shown that the distance and angle of the captured tissue surface with respect to the illumination275

and image capturing modules of the microscope must be determined with high accuracy in order to achieve a sufficiently good276

tissue recognition performance. In this context, a depth accuracy of less than ±0.3mm has been concluded to be favorable for277

application. Based on the assumption of typical microscope specifications and the benchmark results of high-performance stereo-278

matching algorithms usually applied for such tasks, it has been demonstrated that the naïve approach of using the microscope’s279

stereoscopic image data for directly extracting depth information seems to be inappropriate to comply with these accuracy280

requirements.281

In this work, a new method for high-resolution depth measurements in digital microsurgical applications was therefore pro-282

posed adopting the principle of laser triangulation. With the experimental setup discussed in Sec. 2, the expected error in depth283

measurements performed on a dedicated reference target was shown to be of the order of ±104 µm, which conforms to the284

required depth resolution of at least ±0.3mm or better. Given that the proposed laser triangulation method clearly complies with285

these requirements, a method of sensor data fusion was subsequently discussed in order to properly match the laser scanner and286

camera data in a straightforward and intuitive manner. In this context, a strategy based on RBF interpolation techniques was287

introduced to handle missing or corrupt data as an integral part of this automated mapping process. The proposed method was288

eventually used to acquire – as a first proof-of-concept – high-resolution depth profiles of various organic tissue samples. It could289

be shown that, besides some small disturbances at the samples’ edges, excellent measurement performance was achieved for all290

considered tissue structures without observing any larger errors or pronounced perturbations. Thus, it was concluded that, with291

regard to the current experimental setup, failures in the data acquisition and RBF interpolation are only expected if the tissue292

itself absorbs to much of the incident light or prevents the light from being scattered diffusely back into the PSD unit because of293



S. Babilon ET AL 13

an unfavorable combination of specular reflections and a too large incident angle. In all other cases, the system performs suffi-294

ciently well to provide high-resolution depth measurements that comply with the requirements to be used for subsequent Wiener295

filter reflectance estimation or any other microsurgical treatment that requires accurate depth and distance measurements.296

Based on these encouraging results, the next logical step would be to proceed with the system integration into a real digital297

stereoscopic microsurgical device. The aim of this step is to combine the sensor data of the laser scanner with the stereoscopic298

image data of the microscope in a similar manner performed here on two-dimensional image data. The expected benefit of299

such a system integration is that the additional availability of native stereoscopic information from the microscope may help300

to improve the RBF performance and to deal with missing data of the laser scanner at edge-like structures in the surgical301

field. In these critical regions, depth information reconstructed from the microscopes stereoscopic image data, even though302

less accurate, can be used to fill the voids in the corresponding data matrix for achieving a more accurate RBF interpolation303

showing less pronounced perturbations at the tissue edges. In addition to the RBF method adopted for the current work due to304

its simplicity, more sophisticated interpolation algorithms should be tested, not only for overall interpolation performance but305

also for computational speed with regard to an intended real-time implementation. For a quantitative performance evaluation, it306

is further necessary to know the ground truth of the tissues’ surface structures used for testing. However, organic tissue seems307

inappropriate for this purpose. With recent breakthroughs in 3D-printing techniques40,41,42, models of known geometry and308

similar optical properties as their organic counterparts might be an adequate solution to become an integral part of these future309

research intentions.310
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