References
Abbink, T. E. M., & Berkhout, B. (2008). RNA Structure Modulates
Splicing Efficiency at the Human Immunodeficiency Virus Type 1 Major
Splice Donor. Journal of Virology , 82 (6), 3090–3098.
https://doi.org/10.1128/JVI.01479-07
Aissat, A., de Becdelièvre, A., Golmard, L., Vasseur, C., Costa, C.,
Chaoui, A., Martin, N., Costes, B., Goossens, M., Girodon, E., Fanen,
P., & Hinzpeter, A. (2013). Combined Computational-Experimental
Analyses of CFTR Exon Strength Uncover Predictability of Exon-Skipping
Level. Human Mutation , 34 (6), 873–881.
https://doi.org/10.1002/humu.22300
Alanis, E. F., Pinotti, M., Mas, A. D., Balestra, D., Cavallari, N.,
Rogalska, M. E., Bernardi, F., & Pagani, F. (2012). An exon-specific U1
small nuclear RNA (snRNA) strategy to correct splicing defects.Human Molecular Genetics , 21 (11), 2389–2398.
https://doi.org/10.1093/hmg/dds045
Ayala, Y. M., Pagani, F., & Baralle, F. E. (2006). TDP43 depletion
rescues aberrant CFTR exon 9 skipping. FEBS Letters ,580 (5), 1339–1344. https://doi.org/10.1016/j.febslet.2006.01.052
Balestra, D., Faella, A., Margaritis, P., Cavallari, N., Pagani, F.,
Bernardi, F., Arruda, V. R., & Pinotti, M. (2014). An engineered U1
small nuclear RNA rescues splicing-defective coagulation F7 gene
expression in mice. Journal of Thrombosis and Haemostasis ,12 (2), 177–185. https://doi.org/10.1111/jth.12471
Balestra, Dario, Scalet, D., Ferrarese, M., Lombardi, S., Ziliotto, N.,
Croes, C. C., Petersen, N., Bosma, P., Riccardi, F., Pagani, F.,
Pinotti, M., & van de Graaf, S. F. J. (2020). A compensatory U1snRNA
partially rescues FAH splicing and protein expression in a
splicing-defective mouse model of tyrosinemia type I.International Journal of Molecular Sciences , 21 (6).
https://doi.org/10.3390/ijms21062136
Balestra, Dario, Scalet, D., Pagani, F., Rogalska, M. E., Mari, R.,
Bernardi, F., & Pinotti, M. (2016). An exon-specific U1snRNA induces a
robust factor IX activity in mice expressing multiple human FIX splicing
mutants. Molecular Therapy - Nucleic Acids , 5 (10), e370.
https://doi.org/10.1038/mtna.2016.77
Berg, A., Hallowell, S., Tibbetts, M., Beasley, C., Brown-Phillips, T.,
Healy, A., Pustilnik, L., Doyonnas, R., & Pregel, M. (2019).
High-Throughput Surface Liquid Absorption and Secretion Assays to
Identify F508del CFTR Correctors Using Patient Primary Airway Epithelial
Cultures. SLAS Discovery , 24 (7), 724–737.
https://doi.org/10.1177/2472555219849375
Boj, S. F., Vonk, A. M., Statia, M., Su, J., Vries, R. R. G., Beekman,
J. M., & Clevers, H. (2017). Forskolin-induced swelling in intestinal
organoids: An in vitro assay for assessing drug response in cystic
fibrosis patients. Journal of Visualized Experiments ,2017 (120). https://doi.org/10.3791/55159
Boussaroque, A., Audrézet, M. P., Raynal, C., Sermet-Gaudelus, I.,
Bienvenu, T., Férec, C., Bergougnoux, A., Lopez, M., Scotet, V., Munck,
A., & Girodon, E. (2020). Penetrance is a critical parameter for
assessing the disease liability of CFTR variants. Journal of
Cystic Fibrosis , 0 (0). https://doi.org/10.1016/j.jcf.2020.03.019
Boyle, M. P., Bell, S. C., Konstan, M. W., McColley, S. A., Rowe, S. M.,
Rietschel, E., Huang, X., Waltz, D., Patel, N. R., & Rodman, D. (2014).
A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for
treatment of patients with cystic fibrosis who have a phe508del CFTR
mutation: A phase 2 randomised controlled trial. The Lancet
Respiratory Medicine , 2 (7), 527–538.
https://doi.org/10.1016/S2213-2600(14)70132-8
Buratti, E., & Baralle, F. E. (2004). Influence of RNA Secondary
Structure on the Pre-mRNA Splicing Process. Molecular and Cellular
Biology , 24 (24), 10505–10514.
https://doi.org/10.1128/mcb.24.24.10505-10514.2004
Buratti, E., Dörk, T., Zuccato, E., Pagani, F., Romano, M., & Baralle,
F. E. (2001). Nuclear factor TDP-43 and SR proteins promote in vitro and
in vivo CFTR exon 9 skipping. EMBO Journal , 20 (7),
1774–1784. https://doi.org/10.1093/emboj/20.7.1774
Burgel, P. R., Bellis, G., Olesen, H. V., Viviani, L., Zolin, A., Blasi,
F., Elborn, J. S., Bell, S., Castellani, C., Dembski, B., Drevinek, P.,
Heijerman, H., Innes, A., Lindblad, A., Madge, S., De Rijcke, K., &
Solé, A. (2015). Future trends in cystic fibrosis demography in 34
European countries. European Respiratory Journal , 46 (1),
133–141. https://doi.org/10.1183/09031936.00196314
Chaudary, N. (2018). Triplet CFTR modulators: Future prospects for
treatment of cystic fibrosis. In Therapeutics and Clinical Risk
Management (Vol. 14, pp. 2375–2383). Dove Medical Press Ltd.
https://doi.org/10.2147/TCRM.S147164
Choi, J. Y., Muallem, D., Kiselyov, K., Lee, M. G., Thomas, P. J., &
Muallem, S. (2001). Aberrant CFTR-dependent HCO3- transport in mutations
associated with cystic fibrosis. Nature , 410 (6824),
94–97. https://doi.org/10.1038/35065099
Clancy, J. P. (2018). Rapid therapeutic advances in CFTR modulator
science. Pediatric Pulmonology , 53 (S3), S4–S11.
https://doi.org/10.1002/ppul.24157
Cuppens, H., Lin, W., Jaspers, M., Costes, B., Teng, H., Vankeerberghen,
A., Jorissen, M., Droogmans, G., Reynaert, I., Goosens, M., Nilius, B.,
& Cassiman, J. J. (1998). Polyvariant mutant cystic fibrosis
transmembrane conductance regulator genes: The polymorphic (TG)m locus
explains the partial penetrance of the T5 polymorphism as a disease
mutation. Journal of Clinical Investigation , 101 (2),
487–496. https://doi.org/10.1172/JCI639
Dal Mas, A., Fortugno, P., Donadon, I., Levati, L., Castiglia, D., &
Pagani, F. (2015). Exon-specific U1s correct SPINK5 exon 11 skipping
caused by a synonymous substitution that affects a bifunctional splicing
regulatory element. Human Mutation , 36 (5), 504–512.
https://doi.org/10.1002/humu.22762
Dal Mas, A., Rogalska, M. E., Bussani, E., & Pagani, F. (2015).
Improvement of SMN2 pre-mRNA processing mediated by exon-specific U1
small nuclear RNA. American Journal of Human Genetics ,96 (1), 93–103. https://doi.org/10.1016/j.ajhg.2014.12.009
De Boeck, K., & Amaral, M. D. (2016). Progress in therapies for cystic
fibrosis. In The Lancet Respiratory Medicine (Vol. 4, Issue 8,
pp. 662–674). Lancet Publishing Group.
https://doi.org/10.1016/S2213-2600(16)00023-0
Dekkers, J. F., Berkers, G., Kruisselbrink, E., Vonk, A., De Jonge, H.
R., Janssens, H. M., Bronsveld, I., Van De Graaf, E. A., Nieuwenhuis, E.
E. S., Houwen, R. H. J., Vleggaar, F. P., Escher, J. C., De Rijke, Y.
B., Majoor, C. J., Heijerman, H. G. M., De Winter-De Groot, K. M.,
Clevers, H., Van Der Ent, C. K., & Beekman, J. M. (2016).
Characterizing responses to CFTR-modulating drugs using rectal organoids
derived from subjects with cystic fibrosis. Science Translational
Medicine , 8 (344), 344ra84-344ra84.
https://doi.org/10.1126/scitranslmed.aad8278
Dekkers, J. F., Wiegerinck, C. L., De Jonge, H. R., Bronsveld, I.,
Janssens, H. M., De Winter-De Groot, K. M., Brandsma, A. M., De Jong, N.
W. M., Bijvelds, M. J. C., Scholte, B. J., Nieuwenhuis, E. E. S., Van
Den Brink, S., Clevers, H., Van Der Ent, C. K., Middendorp, S., &
Beekman, J. M. (2013). A functional CFTR assay using primary cystic
fibrosis intestinal organoids. Nature Medicine , 19 (7),
939–945. https://doi.org/10.1038/nm.3201
Donadon, I., Bussani, E., Riccardi, F., Licastro, D., Romano, G.,
Pianigiani, G., Pinotti, M., Konstantinova, P., Evers, M., Lin, S.,
Rüegg, M. A., & Pagani, F. (2019). Rescue of spinal muscular atrophy
mouse models with AAV9-Exon-specific U1 snRNA. Nucleic Acids
Research , 47 (14), 7618–7632. https://doi.org/10.1093/nar/gkz469
Donadon, I., Pinotti, M., Rajkowska, K., Pianigiani, G., Barbon, E.,
Morini, E., Motaln, H., Rogelj, B., Mingozzi, F., Slaugenhaupt, S. A.,
& Pagani, F. (2018). Exon-specific U1 snRNAs improve ELP1 exon 20
definition and rescue ELP1 protein expression in a familial dysautonomia
mouse model. Human Molecular Genetics , 27 (14), 2466–2476.
https://doi.org/10.1093/hmg/ddy151
Du, Q., Li, Z., Pan, Y., Liu, X., Pan, B., & Wu, B. (2014). The CFTR
M470V, intron 8 poly-T, and 8 TG-repeats detection in Chinese males with
congenital bilateral absence of the vas deferens. BioMed Research
International , 2014 , 689185. https://doi.org/10.1155/2014/689185
Dujardin, G., Commandeur, D., Le Jossic-Corcos, C., Ferec, C., &
Corcos, L. (2011). Splicing defects in the CFTR gene: Minigene analysis
of two mutations, 1811+1G>C and 1898+3A>G.Journal of Cystic Fibrosis , 10 (3), 212–216.
https://doi.org/10.1016/j.jcf.2010.12.008
Fajac, I., & Wainwright, C. E. (2017). New treatments targeting the
basic defects in cystic fibrosis. In Presse Medicale (Vol. 46,
Issue 6P2, pp. e165–e175). Elsevier Masson SAS.
https://doi.org/10.1016/j.lpm.2017.01.024
Farinha, C. M., & Matos, P. (2016). Repairing the basic defect in
cystic fibrosis - One approach is not enough. In FEBS Journal(Vol. 283, Issue 2, pp. 246–264). Blackwell Publishing Ltd.
https://doi.org/10.1111/febs.13531
Farrell, P. M., White, T. B., Ren, C. L., Hempstead, S. E., Accurso, F.,
Derichs, N., Howenstine, M., McColley, S. A., Rock, M., Rosenfeld, M.,
Sermet-Gaudelus, I., Southern, K. W., Marshall, B. C., & Sosnay, P. R.
(2017). Diagnosis of Cystic Fibrosis: Consensus Guidelines from the
Cystic Fibrosis Foundation. Journal of Pediatrics , 181 ,
S4-S15.e1. https://doi.org/10.1016/j.jpeds.2016.09.064
Gees, M., Musch, S., Van Der Plas, S., Wesse, A. S., Vandevelde, A.,
Verdonck, K., Mammoliti, O., Hwang, T. C., Sonck, K., Stouten, P.,
Swensen, A. M., Jans, M., Van Der Schueren, J., Nelles, L., Andrews, M.,
& Conrath, K. (2018). Identification and characterization of novel CFTR
potentiators. Frontiers in Pharmacology , 9 (OCT).
https://doi.org/10.3389/fphar.2018.01221
Gentzsch, M., & Mall, M. A. (2018). Ion Channel Modulators in Cystic
Fibrosis. In Chest (Vol. 154, Issue 2, pp. 383–393). Elsevier
Inc. https://doi.org/10.1016/j.chest.2018.04.036
Giuliano, K. A., Wachi, S., Drew, L., Dukovski, D., Green, O., Bastos,
C., Cullen, M. D., Hauck, S., Tait, B. D., Munoz, B., Lee, P. S., &
Miller, J. P. (2018). Use of a High-Throughput Phenotypic Screening
Strategy to Identify Amplifiers, a Novel Pharmacological Class of Small
Molecules That Exhibit Functional Synergy with Potentiators and
Correctors. SLAS Discovery , 23 (2), 111–121.
https://doi.org/10.1177/2472555217729790
Gregory, R. J., Cheng, S. H., Rich, D. P., Marshall, J., Paul, S.,
Hehir, K., Ostedgaard, L., Klinger, K. W., Welsh, M. J., & Smith, A. E.
(1990). Expression and characterization of the cystic fibrosis
transmembrane conductance regulator. Nature , 347 (6291),
382–386. https://doi.org/10.1038/347382a0
Groman, J. D., Hefferon, T. W., Casals, T., Bassas, L., Estivill, X.,
Des Georges, M., Guittard, C., Koudova, M., Fallin, M. D., Nemeth, K.,
Fekete, G., Kadasi, L., Friedman, K., Schwarz, M., Bombieri, C.,
Pignatti, P. F., Kanavakis, E., Tzetis, M., Schwartz, M., …
Cutting, G. R. (2004). Variation in a Repeat Sequence Determines Whether
a Common Variant of the Cystic Fibrosis Transmembrane Conductance
Regulator Gene Is Pathogenic or Benign. American Journal of Human
Genetics , 74 (1), 176–179. https://doi.org/10.1086/381001
Guimbellot, J., Sharma, J., & Rowe, S. M. (2017). Toward inclusive
therapy with CFTR modulators: Progress and challenges. InPediatric Pulmonology (Vol. 52, Issue S48, pp. S4–S14).
https://doi.org/10.1002/ppul.23773
Hoy, S. M. (2019). Elexacaftor/Ivacaftor/Tezacaftor: First Approval. InDrugs (Vol. 79, Issue 18, pp. 2001–2007). Adis.
https://doi.org/10.1007/s40265-019-01233-7
Igreja, S., Clarke, L. A., Botelho, H. M., Marques, L., & Amaral, M. D.
(2015). Correction of a cystic fibrosis splicing mutation by antisense
oligonucleotides. In Human Mutation (Vol. 37, Issue 2, pp.
209–215). https://doi.org/10.1002/humu.22931
Kosorok, M. R., Wei, W. H., & Farrell, P. M. (1996). The incidence of
cystic fibrosis. Statistics in Medicine , 15 (5), 449–462.
https://doi.org/10.1002/(SICI)1097-0258(19960315)15:5<449::AID-SIM173>3.0.CO;2-X
Liang, F., Shang, H., Jordan, N. J., Wong, E., Mercadante, D., Saltz,
J., Mahiou, J., Bihler, H. J., & Mense, M. (2017). High-Throughput
Screening for Readthrough Modulators of CFTR PTC Mutations. SLAS
Technology , 22 (3), 315–324.
https://doi.org/10.1177/2472630317692561
Marcorelles, P., Friocourt, G., Uguen, A., Ledé, F., Férec, C., &
Laquerrière, A. (2014). Cystic Fibrosis Transmembrane Conductance
Regulator Protein (CFTR) Expression in the Developing Human Brain:
Comparative Immunohistochemical Study between Patients with Normal and
Mutated CFTR. Journal of Histochemistry and Cytochemistry ,62 (11), 791–801. https://doi.org/10.1369/0022155414546190
Mattioli, C., Pianigiani, G., De Rocco, D., Bianco, A. M. R., Cappelli,
E., Savoia, A., & Pagani, F. (2014). Unusual splice site mutations
disrupt FANCA exon 8 definition. Biochimica et Biophysica Acta -
Molecular Basis of Disease , 1842 (7), 1052–1058.
https://doi.org/10.1016/j.bbadis.2014.03.014
Merkert, S., Schubert, M., Olmer, R., Engels, L., Radetzki, S., Veltman,
M., Scholte, B. J., Zöllner, J., Pedemonte, N., Galietta, L. J. V., von
Kries, J. P., & Martin, U. (2019). High-Throughput Screening for
Modulators of CFTR Activity Based on Genetically Engineered Cystic
Fibrosis Disease-Specific iPSCs. Stem Cell Reports , 12 (6),
1389–1403. https://doi.org/10.1016/j.stemcr.2019.04.014
Nizzardo, M., Simone, C., Dametti, S., Salani, S., Ulzi, G., Pagliarani,
S., Rizzo, F., Frattini, E., Pagani, F., Bresolin, N., Comi, G., &
Corti, S. (2015). Spinal muscular atrophy phenotype is ameliorated in
human motor neurons by SMN increase via different novel RNA therapeutic
approaches. Scientific Reports , 5 .
https://doi.org/10.1038/srep11746
Ohkubo, A., Kondo, Y., Suzuki, M., Kobayashi, H., Kanamori, T., Masaki,
Y., Seio, K., Nagai, K., & Sekine, M. (2013). Chemical synthesis of U1
snRNA derivatives. Organic Letters , 15 (17), 4386–4389.
https://doi.org/10.1021/ol401917r
Ontalus, V., Cobianu, C., Vasiliu, F., & Parlog, C. (1996).
Crystallization behaviour and phase coexistence at morphotrophic phase
boundaries in PZT thin films prepared by sol-gel processing.Journal of Materials Science , 31 (14), 3639–3642.
https://doi.org/10.1007/BF00352771
Pagani, F., Buratti, E., Stuani, C., & Baralle, F. E. (2003). Missense,
nonsense, and neutral mutations define juxtaposed regulatory elements of
splicing in cystic fibrosis transmembrane regulator exon 9.Journal of Biological Chemistry , 278 (29), 26580–26588.
https://doi.org/10.1074/jbc.M212813200
Pagani, F., Buratti, E., Stuani, C., Bendix, R., Dörk, T., & Baralle,
F. E. (2002). A new type of mutation causes a splicing defect in ATM.Nature Genetics , 30 (4), 426–429.
https://doi.org/10.1038/ng858
Pagani, F., Buratti, E., Stuani, C., Romano, M., Zuccato, E., Niksic,
M., Giglio, L., Faraguna, D., & Baralle, F. E. (2000). Splicing factors
induce cystic fibrosis transmembrane regulator exon 9 skipping through a
nonevolutionary conserved intronic element. Journal of Biological
Chemistry , 275 (28), 21041–21047.
https://doi.org/10.1074/jbc.M910165199
Palomaki, G. E., Fitzsimmons, S. C., & Haddow, J. E. (2004). Clinical
sensitivity of prenatal screening for cystic fibrosis via CFTR carrier
testing in a United States panethnic population. Genetics in
Medicine , 6 (5), 405–414.
https://doi.org/10.1097/01.GIM.0000139505.06194.39
Paranjape, S. M., & Mogayzel, P. J. (2018). Cystic fibrosis in the era
of precision medicine. In Paediatric Respiratory Reviews (Vol.
25, pp. 64–72). W.B. Saunders Ltd.
https://doi.org/10.1016/j.prrv.2017.03.001
Pereira, S. V. N., Ribeiro, J. D., Ribeiro, A. F., Bertuzzo, C. S., &
Marson, F. A. L. (2019). Novel, rare and common pathogenic variants in
the CFTR gene screened by high-throughput sequencing technology and
predicted by in silico tools. Scientific Reports , 9 (1).
https://doi.org/10.1038/s41598-019-42404-6
Phuan, P. W., Son, J. H., Tan, J. A., Li, C., Musante, I., Zlock, L.,
Nielson, D. W., Finkbeiner, W. E., Kurth, M. J., Galietta, L. J.,
Haggie, P. M., & Verkman, A. S. (2018). Combination potentiator
(‘co-potentiator’) therapy for CF caused by CFTR mutants, including
N1303K, that are poorly responsive to single potentiators. Journal
of Cystic Fibrosis , 17 (5), 595–606.
https://doi.org/10.1016/j.jcf.2018.05.010
Pranke, I., Golec, A., Hinzpeter, A., Edelman, A., & Sermet-Gaudelus,
I. (2019). Emerging therapeutic approaches for cystic fibrosis. From
gene editing to personalized medicine. In Frontiers in
Pharmacology (Vol. 10, Issue FEB). Frontiers Media S.A.
https://doi.org/10.3389/fphar.2019.00121
Pranke, I. M., Hatton, A., Simonin, J., Jais, J. P., Le Pimpec-Barthes,
F., Carsin, A., Bonnette, P., Fayon, M., Stremler-Le Bel, N., Grenet,
D., Thumerel, M., Mazenq, J., Urbach, V., Mesbahi, M.,
Girodon-Boulandet, E., Hinzpeter, A., Edelman, A., & Sermet-Gaudelus,
I. (2017). Correction of CFTR function in nasal epithelial cells from
cystic fibrosis patients predicts improvement of respiratory function by
CFTR modulators. Scientific Reports , 7 (1), 1–11.
https://doi.org/10.1038/s41598-017-07504-1
Rogalska, M. E., Tajnik, M., Licastro, D., Bussani, E., Camparini, L.,
Mattioli, C., & Pagani, F. (2016). Therapeutic activity of modified U1
core spliceosomal particles. Nature Communications , 7 ,
1–13. https://doi.org/10.1038/ncomms11168
Roomans, G. M. (2014). Pharmacological treatment of the basic defect in
cystic fibrosis. Cell Biology International , 38 (11),
1244–1246. https://doi.org/10.1002/cbin.10312
Sato, T., Stange, D. E., Ferrante, M., Vries, R. G. J., Van Es, J. H.,
Van Den Brink, S., Van Houdt, W. J., Pronk, A., Van Gorp, J., Siersema,
P. D., & Clevers, H. (2011). Long-term expansion of epithelial
organoids from human colon, adenoma, adenocarcinoma, and Barrett’s
epithelium. Gastroenterology , 141 (5), 1762–1772.
https://doi.org/10.1053/j.gastro.2011.07.050
Sato, T., Vries, R. G., Snippert, H. J., Van De Wetering, M., Barker,
N., Stange, D. E., Van Es, J. H., Abo, A., Kujala, P., Peters, P. J., &
Clevers, H. (2009). Single Lgr5 stem cells build crypt-villus structures
in vitro without a mesenchymal niche. Nature , 459 (7244),
262–265. https://doi.org/10.1038/nature07935
Schram, C. A. (2012). Atypical cystic fibrosis: identification in the
primary care setting. Canadian Family Physician Medecin de Famille
Canadien , 58 (12), 1341–1345, e699-704.
http://www.ncbi.nlm.nih.gov/pubmed/23242890
Strug, L. J., Stephenson, A. L., Panjwani, N., & Harris, A. (2018).
Recent advances in developing therapeutics for cystic fibrosis.Human Molecular Genetics , 27 (R2), R173–R186.
https://doi.org/10.1093/hmg/ddy188
Tajnik, M., Rogalska, M. E., Bussani, E., Barbon, E., Balestra, D.,
Pinotti, M., & Pagani, F. (2016). Molecular Basis and Therapeutic
Strategies to Rescue Factor IX Variants That Affect Splicing and Protein
Function. PLoS Genetics , 12 (5), 1–16.
https://doi.org/10.1371/journal.pgen.1006082
Tang, Y.-Y., Hölzel, B. K., & Posner, M. I. (2015). The neuroscience of
mindfulness meditation. Nature Reviews Neuroscience ,16 (4), 213–225. https://doi.org/10.1038/nrn3916
Van Goor, F., Hadida, S., Grootenhuis, P. D. J., Burton, B., Cao, D.,
Neuberger, T., Turnbull, A., Singh, A., Joubran, J., Hazlewood, A.,
Zhou, J., McCartney, J., Arumugam, V., Decker, C., Yang, J., Young, C.,
Olson, E. R., Wine, J. J., Frizzell, R. A., … Negulescu, P.
(2009). Rescue of CF airway epithelial cell function in vitro by a CFTR
potentiator, VX-770. Proceedings of the National Academy of
Sciences of the United States of America , 106 (44), 18825–18830.
https://doi.org/10.1073/pnas.0904709106
Wang, P., Lin, Z., Su, X., & Tang, Z. (2017). Application of Au based
nanomaterials in analytical science. In Nano Today (Vol. 12,
Issue 13, pp. 64–97). https://doi.org/10.1016/j.nantod.2016.12.009
Wu, H. xia, Zhu, M., Xiong, X. feng, Wei, J., Zhuo, K. quan, & Cheng,
D. yun. (2019). Efficacy and Safety of CFTR Corrector and Potentiator
Combination Therapy in Patients with Cystic Fibrosis for the
F508del-CFTR Homozygous Mutation: A Systematic Review and Meta-analysis.Advances in Therapy , 36 (2), 451–461.
https://doi.org/10.1007/s12325-018-0860-4
Yeh, H. I., Sohma, Y., Conrath, K., & Hwang, T. C. (2017). A common
mechanism for CFTR potentiators. Journal of General Physiology ,149 (12), 1105–1118. https://doi.org/10.1085/jgp.201711886
Zielenski, J. (2000). Genotype and phenotype in cystic fibrosis. InRespiration (Vol. 67, Issue 2, pp. 117–133). S. Karger AG.
https://doi.org/10.1159/000029497
Zuccato, E., Buratti, E., Stuani, C., Baralle, F. E., & Pagani, F.
(2004). An Intronic Polypyrimidine-rich Element Downstream of the Donor
Site Modulates Cystic Fibrosis Transmembrane Conductance Regulator Exon
9 Alternative Splicing. Journal of Biological Chemistry ,279 (17), 16980–16988. https://doi.org/10.1074/jbc.M313439200
Zychlinski, D., Erkelenz, S., Melhorn, V., Baum, C., Schaal, H., &
Bohne, J. (2009). Limited complementarity between U1 snRNA and a
retroviral 5′ splice site permits its attenuation via RNA secondary
structure. Nucleic Acids Research , 37 (22), 7429–7440.
https://doi.org/10.1093/nar/gkp694