Reference
Ahmad, M., Lin, C., and Cashmore, A.R. (1995). Mutations throughout an Arabidopsis blue‐light photoreceptor impair blue‐light‐responsive anthocyanin accumulation and inhibition of hypocotyl elongation.The Plant Journal 8(5), 653-658. doi: 10.1046/j.1365-313X.1995.08050653.x.
Andersen, O.M., and Markham, K.R. (2006). Flavonoids: chemistry, biochemistry and applications. Boca Raton: CRC Taylor & Francis.
Baroli, I., and Niyogi, K.K. (2000). Molecular genetics of xanthophyll–dependent photoprotection in green algae and plants.Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355(1402), 1385-1394. doi: 10.1098/rstb.2000.0700.
Boussiba, S. (2000). Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiologia Plantarum 108(2), 111-117. doi: 10.1034/j.1399-3054.2000.108002111.x.
Burkholder, J.M., Tomasko, D.A., and Touchette, B.W. (2007). Seagrasses and eutrophication. Journal of experimental marine biology and ecology 350(1-2), 46-72. doi: 10.1016/j.jembe.2007.06.024.
Chalker‐Scott, L. (1999). Environmental significance of anthocyanins in plant stress responses. Photochemistry and photobiology70(1), 1-9. doi: 10.1111/j.1751-1097.1999.tb01944.x.
Costa, A.C.P., Garcia, T.M., Paiva, B.P., Neto, A.R.X., and de Oliveira Soares, M. (2020). Seagrass and rhodolith beds are important seascapes for the development of fish eggs and larvae in tropical coastal areas.Marine Environmental Research 161, 105064. doi: 10.1016/j.marenvres.2020.105064.
Cullen-Unsworth, L.C., Jones, B.L., Seary, R., Newman, R., and Unsworth, R.K. (2018). Reasons for seagrass optimism: local ecological knowledge confirms presence of dugongs. Marine Pollution Bulletin134, 118-122. doi: 10.1016/j.marpolbul.2017.11.007.
Du, H., Zhang, L., Liu, L., Tang, X.-F., Yang, W.-J., Wu, Y.-M., et al. (2009). Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Moscow)74(1), 1-11. doi: 10.1134/S0006297909010015.
Duarte, B., Martins, I., Rosa, R., Matos, A.R., Roleda, M.Y., Reusch, T.B., et al. (2018). Climate change impacts on seagrass meadows and macroalgal forests: an integrative perspective on acclimation and adaptation potential. Frontiers in Marine Science 5,190. doi: 10.3389/fmars.2018.00190.
Fan, D.D., Sun, M.J., Wang, L.H., and Jiao, B.H. (2008). Advance in study of acyltransferase. Chemistry of Life 28(6),701-703. doi: 10.3969/j.issn.1000-1336.2008.06.009.
Fourqurean, J.W., Duarte, C.M., Kennedy, H., Marbà, N., Holmer, M., Mateo, M.A., et al. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature geoscience 5(7),505-509. doi: 10.1038/ngeo1477.
Frank, H.A., Chynwat, V., Desamero, R.Z., Farhoosh, R., Erickson, J., and Bautista, J. (1997). On the photophysics and photochemical properties of carotenoids and their role as light-harvesting pigments in photosynthesis. Pure and applied chemistry 69(10),2117-2124. doi: 10.1351/pac199769102117.
Fristedt, R., Willig, A., Granath, P., Crevecoeur, M., Rochaix, J.-D., and Vener, A.V. (2009). Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. The Plant Cell 21(12), 3950-3964. doi: 10.1105/tpc.109.069435.
Gupta, R. (2020). The oxygen-evolving complex: a super catalyst for life on earth, in response to abiotic stresses. Plant Signaling & Behavior 15(12), 1824721. doi: 10.1080/15592324.2020.1824721.
Hakala, M., Tuominen, I., Keränen, M., Tyystjärvi, T., and Tyystjärvi, E. (2005). Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1706(1-2), 68-80. doi: 10.1016/j.bbabio.2004.09.001.
Hall-Spencer, J.M., and Harvey, B.P. (2019). Ocean acidification impacts on coastal ecosystem services due to habitat degradation. Emerging Topics in Life Sciences 3(2), 197-206. doi: 10.1042/ETLS20180117.
Hormaetxe, K., Becerril, J.M., Fleck, I., Pinto, M., and García-Plazaola, J.I. (2005). Functional role of red (retro)-carotenoids as passive light filters in the leaves of Buxus sempervirens L.: increased protection of photosynthetic tissues? Journal of Experimental Botany 56(420), 2629-2636. doi: 10.1093/jxb/eri255.
Jenkins, G.I., Long, J.C., Wade, H.K., Shenton, M.R., and Bibikova, T.N. (2001). UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis. New Phytologist151(1), 121-131. doi: 10.1046/j.1469-8137.2001.00151.x.
Kondo, S., Tomiyama, H., Rodyoung, A., Okawa, K., Ohara, H., Sugaya, S., et al. (2014). Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night. Journal of Plant Physiology 171(10), 823-829. doi: 10.1016/j.jplph.2014.01.001.
Kovinich, N., Kayanja, G., Chanoca, A., Otegui, M.S., and Grotewold, E. (2015). Abiotic stresses induce different localizations of anthocyanins in Arabidopsis. Plant signaling & behavior 10(7),e1027850. doi: 10.1080/15592324.2015.1027850.
Kovinich, N., Kayanja, G., Chanoca, A., Riedl, K., Otegui, M.S., and Grotewold, E. (2014). Not all anthocyanins are born equal: distinct patterns induced by stress in Arabidopsis. Planta240(5), 931-940. doi: 10.1007/s00425-014-2079-1.
Landi, M., Tattini, M., and Gould, K.S. (2015). Multiple functional roles of anthocyanins in plant-environment interactions.Environmental and Experimental Botany 119, 4-17. doi: 10.1016/j.envexpbot.2015.05.012.
Li, Y.-Y., Mao, K., Zhao, C., Zhao, X.-Y., Zhang, R.-F., Zhang, H.-L., et al. (2013). Molecular cloning and functional analysis of a blue light receptor gene MdCRY2 from apple (Malus domestica). Plant cell reports 32(4), 555-566. doi: 10.1007/s00299-013-1387-4.
Luo, J., Nishiyama, Y., Fuell, C., Taguchi, G., Elliott, K., Hill, L., et al. (2007). Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. The Plant Journal50(4), 678-695. doi: 10.1111/j.1365-313X.2007.03079.x.
Ma, X., Olsen, J.L., Reusch, T.B., Procaccini, G., Kudrna, D., Williams, M., et al. (2021). Improved chromosome-level genome assembly and annotation of the seagrass, Zostera marina (eelgrass).F1000Research 10(289), 289. doi: 10.12688/f1000research.38156.1.
Merzlyak, M., Solovchenko, A., and Pogosyan, S. (2005). Optical properties of rhodoxanthin accumulated in Aloe arborescens Mill. leaves under high-light stress with special reference to its photoprotective function. Photochemical & Photobiological Sciences4(4), 333-340. doi: 10.1039/b417802e.
Merzlyak, M.N., and Solovchenko, A.E. (2002). Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence. Plant Science 163(4), 881-888. doi: 10.1016/S0168-9452(02)00241-8.
Neff, M.M., and Chory, J. (1998). Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant physiology 118(1), 27-35. doi: 10.1104/pp.118.1.27.
Nguyen, H.M., Ralph, P.J., Marín‐Guirao, L., Pernice, M., and Procaccini, G. (2021). Seagrasses in an era of ocean warming: a review.Biological Reviews 96(5), 2009-2030. doi: 10.1111/brv.12736.
Olsen, J.L., Rouzé, P., Verhelst, B., Lin, Y.-C., Bayer, T., Collen, J., et al. (2016). The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530(7590),331-335. doi: 10.1038/nature16548.
Orth, R.J., Carruthers, T.J., Dennison, W.C., Duarte, C.M., Fourqurean, J.W., Heck, K.L., et al. (2006). A global crisis for seagrass ecosystems. Bioscience 56(12), 987-996. doi: 10.1641/0006-3568(2006)56[987:AGCFSE]2.0.CO;2.
Porra, R., Thompson, W., and Kriedemann, P. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics 975(3), 384-394. doi: 10.1016/S0005-2728(89)80347-0.
Rinaldo, A.R., Cavallini, E., Jia, Y., Moss, S.M., McDavid, D.A., Hooper, L.C., et al. (2015). A grapevine anthocyanin acyltransferase, transcriptionally regulated by VvMYBA, can produce most acylated anthocyanins present in grape skins. Plant physiology169(3), 1897-1916. doi: 10.1104/pp.15.01255.
Shick, J.M., and Dunlap, W.C. (2002). Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annual review of Physiology64(1), 223-262. doi: 10.1146/annurev.physiol.64.081501.155802.
Solovchenko, A. (2010). Photoprotection in plants: optical screening-based mechanisms. Springer Science & Business Media.
Solovchenko, A., and Merzlyak, M. (2003). Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit. Photochemical & Photobiological Sciences2(8), 861-866. doi: 10.1039/B302478D.
Solovchenko, A., and Merzlyak, M. (2008). Screening of visible and UV radiation as a photoprotective mechanism in plants. Russian Journal of Plant Physiology 55(6), 719-737. doi: 10.1134/S1021443708060010.
Stintzing, F.C., and Carle, R. (2004). Functional properties of anthocyanins and betalains in plants, food, and in human nutrition.Trends in food science & technology 15(1), 19-38. doi: 10.1016/j.tifs.2003.07.004.
Strasser, R.J., Tsimilli-Michael, M., Qiang, S., and Goltsev, V. (2010). Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1797(6-7), 1313-1326. doi: 10.1016/j.bbabio.2010.03.008.
Takahashi, S., and Badger, M.R. (2011). Photoprotection in plants: a new light on photosystem II damage. Trends in plant science16(1), 53-60. doi: 10.1016/j.tplants.2010.10.001.
Tamagnone, L., Merida, A., Parr, A., Mackay, S., Culianez-Macia, F.A., Roberts, K., et al. (1998). The AmMYB308 and AmMYB330 transcription factors from Antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. The Plant Cell10(2), 135-154. doi: 10.1105/tpc.10.2.135.
Tan, Y., Zhang, Q.S., Zhao, W., Liu, Z., Ma, M.Y., Zhong, M.Y., et al. (2020). The highly efficient NDH-dependent photosystem I cyclic electron flow pathway in the marine angiosperm Zostera marina.Photosynthesis research 144(1), 49-62. doi: 10.1007/s11120-020-00732-z.
Tao, R., Bai, S., Ni, J., Yang, Q., Zhao, Y., and Teng, Y. (2018). The blue light signal transduction pathway is involved in anthocyanin accumulation in ‘Red Zaosu’pear. Planta 248(1), 37-48. doi: 10.1007/s00425-018-2877-y.
Wang, B., Zarka, A., Trebst, A., and Boussiba, S. (2003). Astaxanthin Accumulation in Haematococcus pluvialis (Chlorophyceae) AS An active photoprotective process under high irradiance Journal of Phycology 39(6), 1116-1124. doi: 10.1111/j.0022-3646.2003.03-043.x.
Wang, M., Zhao, W., Ma, M., Zhang, D., Wen, Y., Zhong, M., et al. (2022). Intrinsic photosensitivity of the vulnerable seagrass Phyllospadix iwatensis: Photosystem II oxygen-evolving complex is prone to photo-inactivation. Frontiers in Plant Science , 399. doi: 10.3389/fpls.2022.792059.
Wissler, L., Codoñer, F.M., Gu, J., Reusch, T.B., Olsen, J.L., Procaccini, G., et al. (2011). Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life. BMC evolutionary biology 11(1), 1-13. doi: 10.1186/1471-2148-11-8.
Yanovsky, M.J., Alconada-Magliano, T.M., Mazzella, M.A., Gatz, C., Thomas, B., and Casal, J.J. (1998). Phytochrome A affects stem growth, anthocyanin synthesis, sucrose-phosphate-synthase activity and neighbour detection in sunlight-grown potato. Planta 205(2),235-241. doi: 10.1007/s004250050316
Yonekura-Sakakibara, K., Nakayama, T., Yamazaki, M., and Saito, K. (2008). ”Modification and stabilization of anthocyanins,” inAnthocyanins . Springer), 169-190.
Yonekura-Sakakibara, K., Nakayama, T., Yamazaki, M., and Saito, K. (2009). Modification and Stabilization of Anthocyanins. Springer New York , 169-190. doi: 10.1007/978-0-387-77335-3_6.
Yonekura‐Sakakibara, K., Fukushima, A., Nakabayashi, R., Hanada, K., Matsuda, F., Sugawara, S., et al. (2012). Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana. The Plant Journal 69(1), 154-167. doi: 10.1111/j.1365-313X.2011.04779.x.
Zhang, Y., Jiang, L., Li, Y., Chen, Q., Ye, Y., Zhang, Y., et al. (2018). Effect of red and blue light on anthocyanin accumulation and differential gene expression in strawberry (Fragaria× ananassa).Molecules 23(4), 820. doi: 10.3390/molecules23040820.
Zhao, W., Yang, X.-Q., Zhang, Q.-S., Tan, Y., Liu, Z., Ma, M.-Y., et al. (2021). Photoinactivation of the oxygen-evolving complex regulates the photosynthetic strategy of the seagrass Zostera marina. Journal of Photochemistry and Photobiology B: Biology 222, 112259. doi: 10.1016/j.jphotobiol.2021.112259.
Zhu, H., Zhang, T.-J., Zheng, J., Huang, X.-D., Yu, Z.-C., Peng, C.-L., et al. (2018). Anthocyanins function as a light attenuator to compensate for insufficient photoprotection mediated by nonphotochemical quenching in young leaves of Acmena acuminatissima in winter.Photosynthetica 56(1), 445-454. doi: 10.1007/s11099-017-0740-1
Zoratti, L., Sarala, M., Carvalho, E., Karppinen, K., Martens, S., Giongo, L., et al. (2014). Monochromatic light increases anthocyanin content during fruit development in bilberry. BMC plant biology14(1), 1-10. doi: 10.1186/s12870-014-0377-1
Table 1. Summary of the raw sequencing data