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Abstract19

The IPCC’s scientific assessment of the timing of net-zero emissions and 2030 emission20

reduction targets consistent with limiting warming to 1.5°C or 2°C rests on large scenario21

databases. Updates to this assessment, such as between the IPCC’s Special Report on22

Global Warming of 1.5°C (SR1.5) of warming and the Sixth Assessment Report (AR6),23

are the result of intertwined, sometimes opaque, factors. Here we isolate one factor: the24

Earth System Model emulators used to estimate the global warming implications of sce-25

narios. We show that warming projections using AR6-calibrated emulators are consis-26

tent, to within around 0.1°C, with projections made by the emulators used in SR1.5. The27

consistency is due to two almost compensating changes: the increase in assessed histor-28

ical warming between the IPCC’s Fifth Assessment Report (AR5) and AR6, and a re-29

duction in projected warming due to improved agreement between the emulators’ response30

to emissions and the underlying assessment.31

Plain Language Summary32

The IPCC’s latest physical science report, the Working Group 1 (WG1) Contri-33

bution to the Sixth Assessment Report (AR6), was released in August 2021. That re-34

port includes an update to the tools used to project the climate outcome of emission sce-35

narios. Here we apply these newly calibrated tools, called earth system model emula-36

tors, to the set of scenarios assessed in the IPCC’s Special Report on warming of 1.5°C37

(SR1.5). We find that two compensating changes lead to a remarkable consistency (peak38

warming projections within 0.1°C) between the projections made by the emulators used39

in SR1.5 and their updated, AR6-calibrated descendants. Firstly, updates to the histor-40

ical warming assessment since the IPCC’s 2013 physical science report (AR5) increase41

future warming projections. However, improved consistency between the emulators and42

the assessment of the underlying physics, particularly the short-term warming response43

to emissions, lowers warming projections by an approximately equivalent amount. Our44

work reinforces the key messages from the IPCC: limiting warming to around 1.5°C is45

a great and urgent challenge, and it is up to us to decide whether we pull out all the stops46

to hold temperatures around 1.5°C or whether we sail on by.47
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1 Introduction48

To assess the characteristics of scenarios in line with different levels of global warm-49

ing, emission scenarios are grouped in distinct categories based on their global-mean tem-50

perature outcomes (Rogelj et al., 2011). This practice was followed in both SR1.5 (Rogelj51

et al., 2018) and the Working Group 3 (WG3) Contribution to AR6. The emissions sce-52

narios are typically generated by Integrated Assessment Models (IAMs, Weyant, 2017),53

which combine assumptions about future population, economy, climate policy and tech-54

nology to project internally consistent evolutions of future greenhouse gas and other emis-55

sions.56

Over 400 scenarios were assessed in SR1.5 (Huppmann et al., 2018), and AR6 WG357

assessed over 1200 (Riahi et al., 2022). During the IPCC drafting process, projections58

for these scenarios have to be delivered in a matter of weeks, which requires computa-59

tionally efficient models, also known as Earth System model emulators. These emula-60

tors quantify the climate implications of each scenario’s emissions, which in turn are used61

to categorise scenarios according to their global warming outcomes (Riahi et al., 2022).62

Before AR5, IAMs self-reported climate outcomes of scenarios. However, climate63

system representations vary in complexity, sophistication, and accuracy between IAMs64

(van Vuuren et al., 2011; Harmsen et al., 2015), so comparing self-reported climate out-65

comes from different IAMs can be complex and inaccurate. To eliminate the unneces-66

sary noise that results from the use of an unwieldy set of poorly calibrated climate mod-67

els, the WG3 Contribution to AR5 initiated a harmonised approach to the climate as-68

sessment of IAM scenarios (Clarke et al., 2014). IAM scenarios were assessed with a sin-69

gle calibrated climate model, also referred to as a climate emulator, in a probabilistic setup70

(Meinshausen et al., 2009, 2011; Rogelj et al., 2012). The probabilistic calibration aims71

to make the climate response of the emulator reflect the state of climate science knowl-72

edge and its surrounding uncertainties as closely as possible.73

IPCC AR5 used the MAGICC6 model to assess the scenarios submitted to the AR574

scenario database as part of the wider assessment process. The 2018 IPCC Special Re-75

port on Global Warming of 1.5°C (SR1.5, Forster et al., 2018; Rogelj et al., 2018) used76

the exact same AR5-setup of MAGICC6, together with a second climate emulator, the77

SR1.5-setup of FaIR1.3 (Millar et al., 2017; C. J. Smith et al., 2018). At the time of SR1.5,78

differences in the temperature projections by these emulators remained unexplained and79
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were instead highlighted as a knowledge gap. This affected the accuracy by which the80

global warming implications of scenarios could be assessed and scenarios could be grouped81

in 1.5°C compatible or 2°C compatible classes (Rogelj et al., 2018). For consistency with82

AR5, the AR5-setup of MAGICC6 was used for classification of scenarios in SR1.5 and83

information from the SR1.5-setup of FaIR 1.3 was used to inform the overall uncertainty84

assessment (Rogelj et al., 2018).85

Scientific efforts and lessons learned since SR1.5 have now closed this knowledge86

gap. Climate emulator intercomparison exercises have developed protocols to compare87

and understand differences between emulators and their calibrations (Nicholls & Lewis,88

2021; Nicholls et al., 2021). These advances were applied as part of the AR6 physical sci-89

ence assessment (WGI), where a cross-chapter activity calibrated and vetted four em-90

ulators using a wide range of assessed climate system characteristics. This activity en-91

sured that the probabilistic parameterisations of the emulators closely matched AR6 find-92

ings related to equilibrium climate sensitivity (ECS), transient climate response (TCR),93

transient climate response to emissions (TCRE), ocean heat uptake, historical temper-94

ature observations and the assessed projected global-mean temperatures under various95

ScenarioMIP scenarios (O’Neill et al., 2016; Tebaldi et al., 2021).96

Comparing this set of AR6-calibrated climate emulators with previous setups al-97

lows us to explore how advances in our understanding of the physical climate system af-98

fect which emissions pathways are consistent with holding warming below 1.5°C com-99

pared to preindustrial levels. Given the widespread use of these emulators in the liter-100

ature, the analysis is also useful for teams who wish to anticipate and under the changes101

when updating from the AR5- to the AR6-versions of the emulators. Throughout this102

paper we focus on the difference between the AR5-setup of MAGICC6, which was used103

for scenario categorisation in SR1.5, and AR6-calibrated MAGICCv7.5.3, which is used104

for scenario categorisation in AR6 WG3. The differences with the SR1.5-setup of FaIR1.3105

and AR6-calibrated FaIRv1.6.2, used for SR1.5 and AR6, respectively, are discussed where106

appropriate, but are not examined in the same detail.107

2 Materials and Methods108

We use the 368 scenarios underlying Table 2.4 in SR1.5, a subset of the SR1.5 sce-109

nario database’s complete set of more than 400 scenarios (Rogelj et al., 2018; Huppmann110
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et al., 2019). We focus on this subset as it formed the basis of many of SR1.5’s top-level111

statements and excludes scenarios that have greenhouse gas emissions that were deemed112

unrealistic at the time of SR1.5 or bias the full set because of strong similarity (Rogelj113

et al., 2018). For these 368 scenarios, we reassess their climate outcomes with the newly114

AR6-calibrated emulators and reapply the scenario classification rules from SR1.5. Any115

differences can thus be attributed to changes in the calibrated climate emulators and as-116

sociated changes in our physical science understanding.117

We reassess the SR1.5 scenarios with the AR6-calibrated emulators using the WG3118

climate assessment pipeline (Kikstra et al., 2022 (in prep.)). The pipeline is built on three119

key tools: Aneris for harmonising the emissions timeseries to historical emissions (M. J. Gid-120

den et al., 2018; M. Gidden et al., 2022), Silicone for infilling emissions species not na-121

tively reported by the IAMs (Lamboll et al., 2020), and OpenSCM-Runner for running122

the climate models (Nicholls et al., 2020).123

The MAGICCv7.5.3 and FaIRv1.6.2 AR6 setups are documented in Forster et al.124

(2021). For the SR1.5 emulators, we use output from the SR1.5 database (Huppmann125

et al., 2018) without modification. To run MAGICCv7.5.3 in an AR5-like setup, we use126

MAGICCv7.5.3’s RCMIP Phase 2 HadCRUT4.6.0.0 calibration and the AR5 recent past127

warming estimate of 0.61°C for 1986-2005 relative to 1850-1900.128

3 Results129

3.1 Scenario categorisation130

We find that the key outputs used for categorisation are broadly consistent between131

the AR5-setup of MAGICC6 and AR6-calibrated MAGICCv7.5.3 (Figure 1). Differences132

are limited to 0.7% in the median across all the scenarios (5-95% range across scenar-133

ios of -3.5% to 4.9%) for peak 1.5°C exceedance probability, 0.0% (-9.1% to 3.4%) for134

peak 2.0°C exceedance probability and 0.0% (-11.1% to 2.5%) for 2100 1.5°C exceedance135

probability (Supplementary Figure S1). In terms of median temperature projections, the136

median difference across the scenarios is 0.02°C (-0.15°C to 0.06°C) for median peak warm-137

ing and -0.05°C (-0.16°C to 0.05°C) for median 2100 warming (Supplementary Figures138

S2 and S3).139

These differences are smaller than the usually applied rounding precision of 0.1°C140

and natural variability. They demonstrate a remarkable consistency between the SR1.5141
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Figure 1. The classification-relevant exceedance probabilities of SR1.5 scenarios are similar

when re-assessed with the AR6-calibrated MAGICCv7.5.3, slightly lower with the AR6-calibrated

FaIRv1.6.2 and lower in the SR1.5-calibration of FaIR1.3. a) 1.5°C exceedance probabilities in

2100 from AR6-calibrated MAGICCv7.5.3 (blue dots), AR6-calibrated FaIRv1.6.2 (red dots) and

SR1.5-calibrated FaIR1.3 (grey dots) compared to the data used for SR1.5 categorisation based

on the AR5-setup of MAGICC6. b) As in panel a, but for peak warming. c) As in panel a, but

for 2°C warming. d) As in panel a, but for 2°C peak warming. The vertical and horizontal lines

delineate the scenario classifications. To aid comparisons, dashed diagonal lines show the 1:1 line

(points below the diagonal indicate higher outcomes with the AR5-setup of MAGICC6 than with

the other considered emulator setups).
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and updated AR6 emulator setups. For example, AR6 reports assessed temperature pro-142

jections to the nearest tenth of a degree (Lee et al., 2021). The reason for this choice is143

the scientific uncertainties that must be considered when making long-term projections,144

such as the historical anthropogenic warming uncertainty of 0.8 - 1.3°C (likely range for145

2000-2019 relative to 1850-1900, Eyring et al., 2021), the contribution of internal vari-146

ability of about 0.15°C for a 20-year average (5-95% range, Lee et al., 2021) or uncer-147

tainty in the zero emissions commitment (Jones et al., 2019; MacDougall et al., 2020)148

of about 15% of total warming (1-sigma Lee et al., 2021). The contribution of internal149

variability is key to keep in mind: our climate model emulators only model the exter-150

nally forced warming response, almost entirely human driven with a small (approximately151

1%) contribution from the solar cycle, and natural variations around this are not included152

in the assessment of warming performed here.153

Using the AR5 MAGICC6 setup, 42 scenarios were classified as 1.5°C with no or154

low overshoot, 36 were classified as 1.5°C with high overshoot and 54 were classified as155

lower 2°C (Table 1). Using the AR6-calibrated MAGICCv7.5.3 setup, 41 scenarios are156

classified as 1.5°C with no or low overshoot, 38 are classified as 1.5°C with high overshoot157

and 64 are classified as lower 2°C.158

Using the AR6-calibrated FaIRv1.6.2 and especially FaIR1.3, more scenarios are159

classified in these low categories due to cooler projections. Specifically, 78 scenarios are160

assessed as 1.5°C with low or no overshoot with the AR6-calibrated FaIRv1.6.2 emula-161

tor (red dots below the 67% exceedance probability line in Figure 1b). The lower pro-162

jections from AR6-calibrated FaIRv1.6.2 are the result of a slightly lower TCR (Forster163

et al., 2021; C. Smith et al., 2021) and lower projections of atmospheric CO2 and CH4164

concentrations (a topic we return to in Section 4.3). At the time of SR1.5, a total of 149165

scenarios would have been classified as 1.5°C with low or no overshoot had the SR1.5-166

setup of FaIR1.3 been chosen for the classification of scenarios (grey dots below the 67%167

exceedance probability line in Figure 1).168

We see the broad consistency between the AR5 MAGICC6 setup’s and the AR6-169

calibrated MAGICCv7.5.3’s projections reflected in the similarity of the scenario clas-170

sification. The only case where this isn’t true is if we draw a distinction between 1.5°C171

no overshoot and 1.5°C low overshoot scenarios (where 5 scenarios are classified as no172

overshoot with the AR5 MAGICC6 setup while no scenarios are classified as no over-173
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Table 1. Classification rules for scenarios from the IPCC SR1.5 (only scenarios in-

cluded in SR1.5 Table 2.4, adapted from Rogelj et al., 2018), classification of scenarios in

SR1.5 and classification based on AR6-calibrated emulators.

Class name Classification rule

(P(1.5°C) is the

probability that

temperatures exceed

1.5°C)

Number

of

scenarios

in SR1.5

Table 2.4

Number

of

scenarios

with

other

SR15

emulator

Number of scenarios

with AR6-calibrated

emulator

Emulator MAGICC6 FaIR1.3 MAGICCv7.5.3 FaIRv1.6.2

Below 1.5°C 0.34 < P(1.5°C) ≤ 0.5 5 127 0 36

1.5°C

low-overshoot

0.5 < P(1.5°C) ≤ 0.67

AND P(1.5°C in 2100) ≤

0.5

37 22 41 42

1.5°C no and

low overshoot

Combination of two

categories above i.e.,

P(1.5°C) ≤ 0.67 AND

P(1.5°C in 2100) ≤ 0.5

42 149 41 78

1.5°C

high-overshoot

0.67 < P(1.5°C) AND

P(1.5°C in 2100) ≤ 0.5

36 1 38 19

Lower 2°C P(2°C) ≤ 0.34 AND

P(1.5°C in 2100) > 0.5

54 76 64 92

Higher 2°C 0.34 < P(2°C) ≤ 0.5 AND

P(1.5°C in 2100) > 0.5

54 13 52 36

Above 2°C P(2°C) > 0.5 182 128 173 143
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shoot using the AR6-calibrated MAGICCv7.5.3, Figure 1). However, following the SR1.5174

choice means that scenarios in the ‘1.5°C with low overshoot’ category must have a peak175

1.5°C exceedance probability between 50% and 67% (a range of approximately 0.12°C176

in terms of median warming, Supplementary Figure S4). While across all scenarios the177

changes of 1.5°C exceedance probabilities are much less than this, the very strong mit-178

igation scenarios discussed feature approximately 10% changes, which is enough to cause179

them all to change category. The small difference between warming to date and the 1.5°C180

limit means that the 1.5°C no overshoot and 1.5°C low overshoot categories are very close.181

3.2 Temperature threshold crossing times182

Alongside the changes in categories, we also consider the change in the point in time183

when overshoot scenarios cross and return below the 1.5°C threshold (Figure 2). We find184

that, while scenarios cross the 1.5°C threshold 4 years earlier (in the median) using the185

AR6-calibrated MAGICCv7.5.3 compared to the AR5-setup of MAGICC6, many sce-186

narios also return below 1.5°C sooner than previously thought. However, there is quite187

some uncertainty in the change in the year in which temperatures return below 1.5°C,188

with the median being a 4 year earlier return and a 5-95% range of 19 years earlier to189

12 years later. The range reflects the fact that small changes in the rate of cooling lead190

to large changes in crossing times (a result of the geometry of determining the point at191

which two nearly parallel lines, the 1.5°C limit and the declining temperatures, cross).192

In addition, both the uncertainty in the climate system’s response to net zero or net neg-193

ative CO2 emissions and the wide range of non-CO2 emissions pathways (specifically af-194

ter net zero CO2) in the SR1.5 database contribute to the uncertainty as to when ex-195

actly temperature will return back below the 1.5°C limit if temporarily overshot. This196

uncertainty and the ill-defined geometrical nature of estimating the time of returning be-197

low a temperature threshold after an overshoot suggests that this characteristic can be198

more robustly described by the decade of peak warming and the decadal rate of temper-199

ature reduction thereafter, be it zero or negative (Rogelj et al., 2019).200
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4 Discussion201

4.1 Causes of categorisation changes202

We find two key causes for changes in the IPCC categorisation: changes in the his-203

torical temperature assessment and other changes in the physical science assessment, which204

includes the ability of calibrated emulators to reflect that science. The upwards revision205

of the historical warming in AR6 meant that the best-estimate for 1986-2005 relative to206

1850-1900 was 0.69°C, compared to 0.61°C in AR5 (Gulev et al., 2021). Similarly, for207

2003-2012 relative to 1850-1900, AR6’s best-estimate warming was 0.90°C, compared to208

0.78°C in AR5. These increases are 0.1°C, or around 15% in terms of 1.5°C exceedance209

probabilities (Supplementary Figure S4).210

To disentangle the multiple updates between the AR5 setup of MAGICC6 and AR6-211

calibrated MAGICCv7.5.3 – apart from historical temperatures – we first compare re-212

sults using the AR5 setup of MAGICC6 and the MAGICCv7.5.3 calibration presented213

in RCMIP Phase 2 (Nicholls et al., 2021). The latter is calibrated to HadCRUT.4.6.0.0214

(Morice et al., 2012) and literature published before AR6, hence is a rough approxima-215

tion of how a MAGICCv7.5.3 calibration to AR5 would perform. The RCMIP Phase 2216

calibration of MAGICCv7.5.3 projects median peak warming that is 0.13°C less (5-95%217

range across scenarios of 0.25°C less to 0.06°C less) than the AR5 setup of MAGICC6218

(Figure 3 and Supplementary Figures S5 and S6). In other words, updating from MAG-219

ICC6’s AR5-setup to a setup more directly calibrated to AR5 would likely cause a drop220

in projections. The major driver for this change is the different historical warming es-221

timate, with other effects playing only a minor role (Supplementary Text S1).222

Next, we consider the overall change i.e., the difference in warming projections by223

the AR5-setup of MAGICC6 and the AR6-calibration of MAGICCv7.5.3 (Supplemen-224

tary Figure S7). The difference can arise from changes in any of the steps (specifically225

parameterisations thereof) along the cause-effect chain from emissions to atmospheric226

concentrations to effective radiative forcing to warming. We firstly observe that the AR5-227

setup of MAGICC6 generally has lower effective radiative forcing than the AR6-calibration228

of MAGICCv7.5.3 (Supplementary Figure S8, with a breakdown of the contribution of229

different climate forcers discussed in Supplementary Text S2). Therefore, differences in230

the parameterisations that link emissions and effective radiative forcing are not the rea-231

son for higher warming projections when using the MAGICC6 AR5-setup.232
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Figure 3. Contributions to changes in temperature projections, illustrated using the SSP1-1.9

scenario. We compare the AR5-setup of MAGICC6 as used in SR1.5 (pink line), MAGICCv.7.5.3

as calibrated in RCMIP Phase 2 (green line) and MAGICCv7.5.3 as calibrated in AR6 (blue

line). For comparison, we also plot HadCRUT4.6.0.0 (grey dashed line) and HadCRUT5.0.1.0

(black dashed line). HadCRUT4.6.0.0 is used as a proxy for the AR5 historical temperature as-

sessment (which the AR5-setup of MAGICC6 and MAGICCv.7.5.3 as used in RCMIP Phase 2

are calibrated to) while HadCRUT5.0.1.0 is used as a proxy for the AR6 historical temperature

assessment (which MAGICCv7.5.3 as used in AR6 is calibrated to).
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Given that effective radiative forcings do not explain the change, we instead focus233

on the parameterisation linking effective radiative forcing and warming. A key measure234

of this is the transient climate response (TCR). In MAGICC, TCR is not a model pa-235

rameter, but an emergent property that is influenced by multiple parameters that con-236

trol ocean heat uptake and climate feedbacks. In AR5, the assessment was a likely range237

from 1 to 2.5°C (with no explicit central assessment) while in AR6 the range slightly nar-238

rowed to 1.4 to 2.2°C with a central assessment of 1.8°C. As the AR6-calibrated MAG-239

ICCv7.5.3 matches the AR6 TCR assessment well (see AR6 WG1 Cross-Chapter Box240

7.1, Table 2, Forster et al., 2021), we conclude that the calibration of MAGICC6 used241

in SR1.5 had a TCR which was higher than assessed ranges available at the time (as also242

suggested by Leach et al., 2018).243

The overall change in projections between AR6-calibrated MAGICCv7.5.3 and the244

AR5-setup of MAGICC6 includes both the warming from changes in the IPCC assess-245

ment of historically observed warming and the cooling from other forcing and feedback246

related changes, which manifest in a lower TCR in the AR6-calibrated MAGICCv7.5.3247

version compared to the AR5-setup of MAGICC6. The two contributions (historical warm-248

ing and other effects) approximately cancel, leading to changes in exceedance probabil-249

ities of around 10% as discussed previously.250

4.2 Implications for mitigation251

The relatively small differences in climate projections lead to small changes in key252

mitigation milestones describing scenario categories, such as net zero CO2 years (Fig-253

ure 4) or 2030 emissions reductions. Using the AR5-setup of MAGICC6, no and low over-254

shoot 1.5°C scenarios had a net zero CO2 year of 2050 (2038 to 2061 5-95% range). In255

contrast, the AR6-calibrated MAGICCv7.5.3 has a net zero CO2 year of 2050 (2038 to256

2075) and the AR6-calibrated FaIRv1.6.2 has a net zero CO2 year of 2052 (2042 to 2070).257

The importance of these changes for policy and economic transition is a separate258

question, but they may not be seen as zero in all contexts (e.g., the difference in the 95th259

percentile is 14 years). These differences in mitigation milestones arise even though cli-260

mate science has remained remarkably consistent (differences of 0.05°C in the median).261

A key point from SR1.5 remains relevant, “because of numerous geophysical uncertain-262

ties and model dependencies [...] absolute temperature characteristics of the various path-263
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Figure 4. Sensitivity of net zero CO2 year in different categories to emulator choice. For each

category (x-axis), we show the distribution (black line shows median, box shows 5-95% range

and dots show individual scenarios) of net zero CO2 year based on either the SR1.5 classification

emulator (AR5-setup of MAGICC6), the AR6-calibrated MAGICCv7.5.3 or the AR6-calibrated

FaIRv1.6.2. For the number of scenarios in each distribution, see Table 1.

way categories are more difficult to distinguish than relative features” (Rogelj et al., 2018).264

The fact that our classifications rely on absolute temperatures, in which we have lower265

confidence, raises the question of whether there are ways to analyse mitigation pathways266

that rely on the relative differences where we have more confidence.267

Another point which is not always immediately obvious is that the connection be-268

tween changes in physical climate assessment and emissions milestones for scenario cat-269

egories is not one-to-one. For example, the net zero CO2 years of 1.5°C with low and high270

overshoot scenarios are similar despite their (by definition) different climate outcomes271

(Figure fig:mitigation-metric-changes). The key reason is that the SR1.5 scenario database272

can be described as an ensemble of opportunity (Tebaldi & Knutti, 2007; Rogelj et al.,273

2011; Huppmann et al., 2018) and is not a systematic sample of the underlying scenario274

space (Fujimori et al., 2019).275

4.3 Emissions-driven uncertainty276

The MAGICC and FaIR emulators show improved agreement in AR6 compared277

to SR1.5. This is particularly so in experiments where concentrations of greenhouse gases278

are prescribed to the models, where the emulators’ median warming projections agree279
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to within 0.05°C under the SSP1-1.9 and SSP1-2.6 scenarios (Forster et al., 2021; C. Smith280

et al., 2021). These concentration-driven experiments are directly comparable to both281

the WG1 temperature assessment (Gulev et al., 2021; Eyring et al., 2021) and CMIP Sce-282

narioMIP (Eyring et al., 2016; O’Neill et al., 2016) experiments, both of which are based283

on large scientific efforts.284

However, the agreement between emulators is reduced once we consider experiments285

where emissions of greenhouse gases are prescribed to the models, rather than concen-286

trations. The switch to emissions-driven experiments introduces uncertainty in green-287

house gas cycles, particularly the carbon and methane cycles (Forster et al., 2021). An-288

other key uncertainty in these emissions-driven experiments is the zero emissions com-289

mitment, which has a range of -0.34°C to 0.28°C (for the change in temperature 50 years290

after CO2 emissions compatible with warming of around 2°C cease) across Earth Sys-291

tem Models (Lee et al., 2021), and was assessed by AR6 be centred around zero and likely292

(with greater than 66% probability) fall in the ±0.3°C range. In their AR6-calibrations,293

MAGICCv7.5.3 projects higher CO2 and methane concentrations than FaIRv1.6.2 (Sup-294

plementary Figure S9). Unfortunately, a lack of validation data for emissions-driven ex-295

periments, particularly in scenarios where emissions are falling or net negative, restricts296

our ability to derive robust conclusions about which one of the two projections are more297

likely. The AR6-calibrated FaIRv1.6.2’s airborne fraction is slightly closer to Earth Sys-298

tem Model (ESM) experiments (Forster et al., 2021), although this is based on idealised299

rather than scenario-based experiments. There are also few ESM experiments to com-300

pare with the methane projections and none which are directly comparable.301

These carbon and methane cycle differences are part of the reason for differences302

in the AR6-calibrated MAGICCv7.5.3 and FaIRv1.6.2 models’ temperature projections303

(Supplementary Figures S10 and S11). Improvements in reduced complexity carbon and304

methane cycle representations and their evaluation is a clear area for future research. Nonethe-305

less, the difference in model projections of order 0.1°C is a reasonable representation of306

our current emissions-driven uncertainty. It is also worth noting the progress seen since307

SR1.5, where emulator disagreement was around 0.3°C in the median and largely unex-308

plained.309
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5 Conclusions310

When applied to the SR1.5 scenarios database, the projections from the AR6-calibrated311

emulators are remarkably close to their predecessors used in SR1.5. From a climate model312

emulator perspective, the key insights from SR1.5 remain valid and policies enacted based313

on the key insights from SR1.5 are supported by the latest scientific evidence. For ex-314

ample, reducing CO2 emissions by 50% by 2030 and reaching net zero CO2 emissions315

around 2050 will – from a geophysical perspective – more likely than not limit peak warm-316

ing to around 1.5°C (i.e., with greater than 50% likelihood). Updates to the design of317

scenarios (Rogelj et al., 2019; Riahi et al., 2021) with stronger reductions early on and318

slower approaches towards net-zero might add further insights into how near-term ac-319

tion can help push back net zero years, but they do not change the validity of a 2050 net-320

zero CO2 year as a guide to mitigation action in the next one or two decades given cur-321

rent emission trends.322

Our best projection remains that the world is going to see 1.5°C warming by the323

early 2030s (averaged over a 20-year period and acknowledging that individual years will324

exceed 1.5°C beforehand due to natural variability). Thus, while decisive mitigation ef-325

forts this decade will be crucial in determining whether we shoot beyond 1.5°C, adap-326

tation actions will have to be taken on the basis of a minimal warming level around 1.5°C.327

Assuming we do reach net zero and then achive net negative CO2 emissions, the328

response of the Earth System thereafter is uncertain (Jones et al., 2019; MacDougall et329

al., 2020; Lee et al., 2021). Despite this uncertainty, there is robust evidence that every330

tonne of CO2 matters and every avoided emission lowers the risk of climate damage (Canadell331

et al., 2021). Our results reinforce this and other key messages that have been delivered332

by the IPCC for many years. On the other hand, the lack of sufficient action and global333

emissions reductions is irrefutably pushing the Paris Agreement goals out of reach and334

putting our global society at risk.335
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