References
Arnosti, C. (2014). Patterns of microbially driven carbon cycling in the
ocean: links between extracellular enzymes and microbial communities.
Advances in Oceanography, 706082.
Barnes, M. A., & Turner, C. R. (2016). The ecology of environmental DNA
and implications for conservation genetics. Conservation Genetics,
17(1), 1-17.
Bartoń, K. (2019). MuMIn: Multi-Model Inference. R package version
1.43.6.https://CRAN.R-project.org/package=MuMIn
Beng, K. C., & Corlett, R. T. (2020). Applications of environmental DNA
(eDNA) in ecology and conservation: opportunities, challenges and
prospects. Biodiversity and Conservation, 29, 2089-2121.
Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S.,
Knapp, M., … & De Bruyn, M. (2014). Environmental DNA for wildlife
biology and biodiversity monitoring. Trends in Ecology & Evolution,
29(6), 358-367.
Burnham, K. P., & Anderson, D. R. (2002). Model selection and
inference: a practical information–theoretic approach, 2nd edn.
Springer, Berlin.
Bylemans, J., Furlan, E. M., Gleeson, D. M., Hardy, C. M., & Duncan, R.
P. (2018). Does size matter? An experimental evaluation of the relative
abundance and decay rates of aquatic environmental DNA. Environmental
Science & Technology, 52(11), 6408-6416.
Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E., & Rinaldo, A.
(2018). Estimating species distribution and abundance in river networks
using environmental DNA. Proceedings of the National Academy of
Sciences, 115(46), 11724-11729.
Collins, R. A., Wangensteen, O. S., O’Gorman, E. J., Mariani, S., Sims,
D. W., & Genner, M. J. (2018). Persistence of environmental DNA in
marine systems. Communications Biology, 1(1), 1-11.
Darling, J. A., & Mahon, A. R. (2011). From molecules to management:
adopting DNA-based methods for monitoring biological invasions in
aquatic environments. Environmental Research, 111(7), 978-988.
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière‐Roussel,
A., Altermatt, F., … & Bernatchez, L. (2017). Environmental DNA
metabarcoding: Transforming how we survey animal and plant communities.
Molecular Ecology, 26(21), 5872-5895.
Eichmiller, J. J., Best, S. E., & Sorensen, P. W. (2016). Effects of
temperature and trophic state on degradation of environmental DNA in
lake water. Environmental Science & Technology, 50(4), 1859-1867.
Ernster, L., & Schatz, G. (1981). Mitochondria: a historical review.
The Journal of Cell Biology, 91(3), 227s-255s.
Fahrenkrog, B., & Aebi, U. (2003). The nuclear pore complex:
nucleocytoplasmic transport and beyond. Nature Reviews Molecular Cell
Biology, 4(10), 757-766.
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008).
Species detection using environmental DNA from water samples. Biology
Letters, 4(4), 423-425.
Fukaya, K., Murakami, H., Yoon, S., Minami, K., Osada, Y., Yamamoto, S.,
… & Kondoh, M. (2020). Estimating fish population abundance by
integrating quantitative data on environmental DNA and hydrodynamic
modelling. Molecular Ecology, in press.
Hansen, B. K., Bekkevold, D., Clausen, L. W., & Nielsen, E. E. (2018).
The sceptical optimist: challenges and perspectives for the application
of environmental DNA in marine fisheries. Fish and Fisheries, 19(5),
751-768.
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2020b).
Estimating shedding and decay rates of environmental nuclear DNA with
relation to water temperature and biomass. Environmental DNA, 2(2),
140-151.
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2019b).
Particle size distribution of environmental DNA from the nuclei of
marine fish. Environmental Science & Technology, 53(16), 9947-9956.
Jo, T., Fukuoka, A., Uchida, K., Ushimaru, A., & Minamoto, T. (2020a).
Multiplex real-time PCR enables the simultaneous detection of
environmental DNA from freshwater fishes: a case study of three exotic
and three threatened native fishes in Japan. Biological Invasions,
22(2), 455-471.
Jo, T., Murakami, H., Masuda, R., & Minamoto, T. (2020c). Selective
collection of long fragments of environmental DNA using larger pore size
filter. Science of The Total Environment, 139462.
Jo, T., Murakami, H., Masuda, R., Sakata, M. K., Yamamoto, S., &
Minamoto, T. (2017). Rapid degradation of longer DNA fragments enables
the improved estimation of distribution and biomass using environmental
DNA. Molecular Ecology Resources, 17(6), e25-e33.
Jo, T., Murakami, H., Yamamoto, S., Masuda, R., & Minamoto, T. (2019a).
Effect of water temperature and fish biomass on environmental DNA
shedding, degradation, and size distribution. Ecology and Evolution,
9(3), 1135-1146.
Lance, R. F., Klymus, K. E., Richter, C. A., Guan, X., Farrington, H.
L., Carr, M. R., … & Baerwaldt, K. L. (2017). Experimental
observations on the decay of environmental DNA from bighead and silver
carps. Management of Biological Invasions, 8(3), 343-359.
Levy-Booth, D. J., Campbell, R. G., Gulden, R. H., Hart, M. M., Powell,
J. R., Klironomos, J. N., … & Dunfield, K. E. (2007). Cycling of
extracellular DNA in the soil environment. Soil Biology and
Biochemistry, 39(12), 2977-2991.
Minamoto, T., Yamanaka, H., Takahara, T., Honjo, M. N., & Kawabata, Z.
(2012). Surveillance of fish species composition using environmental
DNA. Limnology, 13(2), 193-197.
Moushomi, R., Wilgar, G., Carvalho, G., Creer, S., & Seymour, M.
(2019). Environmental DNA size sorting and degradation experiment
indicates the state of Daphnia magna mitochondrial and nuclear
eDNA is subcellular. Scientific Reports, 9, 12500.
Okabe, S., & Shimazu, Y. (2007). Persistence of host-specificBacteroides–Prevotella 16S rRNA genetic markers in environmental
waters: effects of temperature and salinity. Applied Microbiology and
Biotechnology, 76(4), 935-944.
Price, P. B., & Sowers, T. (2004). Temperature dependence of metabolic
rates for microbial growth, maintenance, and survival. Proceedings of
the National Academy of Sciences, 101(13), 4631-4636.
R Core Team. (2019). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.https://www.R-project.org/.
Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A., &
Boehm, A. B. (2016). Quantification of environmental DNA (eDNA) shedding
and decay rates for three marine fish. Environmental Science &
Technology, 50(19), 10456-10464.
Schulz, C. J., & Childers, G. W. (2011). Fecal Bacteroidalesdiversity and decay in response to variations in temperature and
salinity. Applied and Environmental Microbiology, 77(8), 2563-2572.
Seymour, M., Durance, I., Cosby, B. J., Ransom-Jones, E., Deiner, K.,
Ormerod, S. J., … & Creer, S. (2018). Acidity promotes degradation of
multi-species environmental DNA in lotic mesocosms. Communications
Biology, 1, 4.
Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying
effects of UV-B, temperature, and pH on eDNA degradation in aquatic
microcosms. Biological Conservation, 183, 85-92.
Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. H. (2012).
Environmental DNA. Molecular Ecology, 21(8), 1789-1793.
Thomsen, P. F., Kielgast, J., Iversen, L. L., Møller, P. R., Rasmussen,
M., & Willerslev, E. (2012). Detection of a diverse marine fish fauna
using environmental DNA from seawater samples. PLoS ONE, 7(8), e41732.
Tillotson, M. D., Kelly, R. P., Duda, J. J., Hoy, M., Kralj, J., &
Quinn, T. P. (2018). Concentrations of environmental DNA (eDNA) reflect
spawning salmon abundance at fine spatial and temporal scales.
Biological Conservation, 220, 1-11.
Turner, C. R., Barnes, M. A., Xu, C. C., Jones, S. E., Jerde, C. L., &
Lodge, D. M. (2014). Particle size distribution and optimal capture of
aqueous macrobial eDNA. Methods in Ecology and Evolution, 5(7), 676-684.
Wei, N., Nakajima, F., & Tobino, T. (2018). A microcosm study of
surface sediment environmental DNA: decay observation, abundance
estimation, and fragment length comparison. Environmental Science &
Technology, 52(21), 12428-12435.
Weltz, K., Lyle, J. M., Ovenden, J., Morgan, J. A., Moreno, D. A., &
Semmens, J. M. (2017). Application of environmental DNA to detect an
endangered marine skate species in the wild. PLoS ONE, 12(6), e0178124.
Yamamoto, S., Minami, K., Fukaya, K., Takahashi, K., Sawada, H.,
Murakami, H., … & Kondoh, M. (2016). Environmental DNA as a
‘snapshot’ of fish distribution: A case study of Japanese jack mackerel
in Maizuru Bay, Sea of Japan. PLoS ONE, 11(3), e0149786.