References
Akamatsu, Y., Kume, G., Gotou, M., Kono, T., Fujii, T., Inui, R., &
Kurita, Y. (2020). Using environmental DNA analyses to assess the
occurrence and abundance of the endangered amphidromous fishPlecoglossus altivelis ryukyuensis . Biodiversity Data Journal, 8,
e39679.
Andruszkiewicz, E. A., Koseff, J. R., Fringer, O. B., Ouellette, N. T.,
Lowe, A. B., Edwards, C. A., & Boehm, A. B. (2019). Modeling
environmental DNA transport in the coastal ocean using Lagrangian
particle tracking. Frontiers in Marine Science, 6, 477.
Andruszkiewicz, E. A., Zhang, W. G., Lavery, A. C., & Govindarajan, A.
F. (2021). Environmental DNA shedding and decay rates from diverse
animal forms and thermal regimes. Environmental DNA, 3(2), 492-514.
Baker, C. S., Steel, D., Nieukirk, S., & Klinck, H. (2018).
Environmental DNA (eDNA) from the wake of the whales: droplet digital
PCR for detection and species identification. Frontiers in Marine
Science, 5, 133.
Balduzzi, S., Rücker, G., & Schwarzer, G. (2019). How to perform a
meta-analysis with R: a practical tutorial. Evidence-Based Mental
Health, 22(4), 153-160.
Bálint, M., Pfenninger, M., Grossart, H. P., Taberlet, P., Vellend, M.,
Leibold, M. A., … & Bowler, D. (2018). Environmental DNA time series
in ecology. Trends in Ecology & Evolution, 33(12), 945-957.
Barnes, M. A. & Turner, C. R. (2016). The ecology of environmental DNA
and implications for conservation genetics. Conservation Genetics,
17(1), 1-17.
Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R.
(2010). A basic introduction to fixed‐effect and random‐effects models
for meta‐analysis. Research Synthesis Methods, 1(2), 97-111.
Brown, G. G., Gadaleta, G., Pepe, G., Saccone, C., & SbisA, E. (1986).
Structural conservation and variation in the D-loop-containing region of
vertebrate mitochondrial DNA. Journal of Molecular Biology, 192(3),
503-511.
Bylemans, J., Furlan, E. M., Gleeson, D. M., Hardy, C. M., & Duncan, R.
P. (2018). Does size matter? An experimental evaluation of the relative
abundance and decay rates of aquatic environmental DNA. Environmental
Science & Technology, 52(11), 6408-6416.
Capo, E., Spong, G., Koizumi, S., Puts, I., Olajos, F., Königsson, H.,
… & Byström, P. (2021). Droplet digital PCR applied to environmental
DNA, a promising method to estimate fish population abundance from
humic‐rich aquatic ecosystems. Environmental DNA, 3(2), 343-352.
Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E., & Rinaldo, A.
(2018). Estimating species distribution and abundance in river networks
using environmental DNA. Proceedings of the National Academy of
Sciences, 115(46), 11724-11729.
Cerco, C. F., Schultz, M. T., Noel, M. R., Skahill, B., & Kim, S. C.
(2018). A fate and transport model for Asian carp environmental DNA in
the Chicago area waterways system. Journal of Great Lakes Research,
44(4), 813-823.
Currier, C. A., Morris, T. J., Wilson, C. C., & Freeland, J. R. (2018).
Validation of environmental DNA (eDNA) as a detection tool for at‐risk
freshwater pearly mussel species (Bivalvia: Unionidae). Aquatic
Conservation: Marine and Freshwater Ecosystems, 28(3), 545-558.
Deiner, K., & Altermatt, F. (2014). Transport distance of invertebrate
environmental DNA in a natural river. PLoS ONE, 9(2), e88786.
Deiner, K., Bik, H. M., Mächler, E., Seymour, M., Lacoursière‐Roussel,
A., Altermatt, F., … & Bernatchez, L. (2017). Environmental DNA
metabarcoding: Transforming how we survey animal and plant communities.
Molecular Ecology, 26(21), 5872-5895.
Djurhuus, A., Closek, C. J., Kelly, R. P., Pitz, K. J., Michisaki, R.
P., Starks, H. A., … & Breitbart, M. (2020). Environmental DNA
reveals seasonal shifts and potential interactions in a marine
community. Nature Communications, 11, 254.
Doi, H., Uchii, K., Takahara, T., Matsuhashi, S., Yamanaka, H., &
Minamoto, T. (2015). Use of droplet digital PCR for estimation of fish
abundance and biomass in environmental DNA surveys. PLoS ONE, 10(3),
e0122763.
Dougherty, M. M., Larson, E. R., Renshaw, M. A., Gantz, C. A., Egan, S.
P., Erickson, D. M., & Lodge, D. M. (2016). Environmental DNA (eDNA)
detects the invasive rusty crayfish Orconectes rusticus at low
abundances. Journal of Applied Ecology, 53(3), 722-732.
Eichmiller, J. J., Miller, L. M., & Sorensen, P. W. (2016). Optimizing
techniques to capture and extract environmental DNA for detection and
quantification of fish. Molecular Ecology Resources, 16(1), 56-68.
Everts, T., Halfmaerten, D., Neyrinck, S., De Regge, N., Jacquemyn, H.,
& Brys, R. (2021). Accurate detection and quantification of seasonal
abundance of American bullfrog (Lithobates catesbeianus ) using
ddPCR eDNA assays. Scientific Reports, 11, 11282.
Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008).
Species detection using environmental DNA from water samples. Biology
Letters, 4(4), 423-425.
Fukaya, K., Murakami, H., Yoon, S., Minami, K., Osada, Y., Yamamoto, S.,
… & Kondoh, M. (in press). Estimating fish population abundance by
integrating quantitative data on environmental DNA and hydrodynamic
modelling. Molecular Ecology. DOI: 10.1111/mec.15530
Hadley, N. F. (1986). The arthropod cuticle. Scientific American,
255(1), 104-113.
Hänfling, B., Lawson Handley, L., Read, D. S., Hahn, C., Li, J.,
Nichols, P., … & Winfield, I. J. (2016). Environmental DNA
metabarcoding of lake fish communities reflects long‐term data from
established survey methods. Molecular Ecology, 25(13), 3101-3119.
Hansen, B. K., Bekkevold, D., Clausen, L. W., & Nielsen, E. E. (2018).
The sceptical optimist: challenges and perspectives for the application
of environmental DNA in marine fisheries. Fish and Fisheries, 19(5),
751-768.
Jane, S. F., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M.
K., Lowe, W. H., … & Whiteley, A. R. (2015). Distance, flow and PCR
inhibition: e DNA dynamics in two headwater streams. Molecular Ecology
Resources, 15(1), 216-227.
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2019b).
Particle size distribution of environmental DNA from the nuclei of
marine fish. Environmental Science & Technology, 53(16), 9947-9956.
Jo, T., Arimoto, M., Murakami, H., Masuda, R., & Minamoto, T. (2020b).
Estimating shedding and decay rates of environmental nuclear DNA with
relation to water temperature and biomass. Environmental DNA, 2(2),
140-151.
Jo, T., Ikeda, S., Fukuoka, A., Inagawa, T., Okitsu, J., Katano, I., …
& Minamoto, T. (2021). Utility of environmental DNA analysis for
effective monitoring of invasive fish species in reservoirs. Ecosphere,
12(6), e03643.
Jo, T., & Minamoto, T. (2021). Complex interactions between
environmental DNA (eDNA) state and water chemistries on eDNA persistence
suggested by meta‐analyses. Molecular Ecology Resources, 21(5),
1490-1503.
Jo, T., Murakami, H., Masuda, R., & Minamoto, T. (2020a). Selective
collection of long fragments of environmental DNA using larger pore size
filter. Science of the Total Environment, 735, 139462.
Jo, T., Murakami, H., Masuda, R., Sakata, M. K., Yamamoto, S., &
Minamoto, T. (2017). Rapid degradation of longer DNA fragments enables
the improved estimation of distribution and biomass using environmental
DNA. Molecular Ecology Resources, 17(6), e25-e33.
Jo, T., Murakami, H., Yamamoto, S., Masuda, R., & Minamoto, T. (2019a).
Effect of water temperature and fish biomass on environmental DNA
shedding, degradation, and size distribution. Ecology and Evolution,
9(3), 1135-1146.
Johnsen, S. I., Strand, D. A., Rusch, J. C., & Vrålstad, T. (2020).
Environmental DNA (eDNA) monitoring of noble crayfish Astacus
astacus in lentic environments offers reliable presence-absence
surveillance–but fails to predict population density. Frontiers in
Environmental Science, 8, 612253.
Kakuda, A., Doi, H., Souma, R., Nagano, M., Minamoto, T., & Katano, I.
(2019). Environmental DNA detection and quantification of invasive
red-eared sliders, Trachemy scripta elegans , in ponds and the
influence of water quality. PeerJ, 7, e8155.
Kamoroff, C., & Goldberg, C. S. (2018). Environmental DNA
quantification in a spatial and temporal context: a case study examining
the removal of brook trout from a high alpine basin. Limnology, 19(3),
335-342.
Klymus, K. E., Richter, C. A., Chapman, D. C., & Paukert, C. (2015).
Quantification of eDNA shedding rates from invasive bighead carpHypophthalmichthys nobilis and silver carpHypophthalmichthys molitrix . Biological Conservation, 183, 77-84.
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017).
lmerTest package: tests in linear mixed effects models. Journal of
Statistical Software, 82(13), 1-26.
Li, J., Lawson Handley, L. J., Harper, L. R., Brys, R., Watson, H. V.,
Di Muri, C., … & Hänfling, B. (2019). Limited dispersion and quick
degradation of environmental DNA in fish ponds inferred by
metabarcoding. Environmental DNA, 1(3), 238-250.
Mächler, E., Deiner, K., Spahn, F., & Altermatt, F. (2016). Fishing in
the water: effect of sampled water volume on environmental DNA-based
detection of macroinvertebrates. Environmental Science & Technology,
50(1), 305-312.
Merkes, C. M., McCalla, S. G., Jensen, N. R., Gaikowski, M. P., &
Amberg, J. J. (2014). Persistence of DNA in carcasses, slime and avian
feces may affect interpretation of environmental DNA data. PLoS ONE,
9(11), e113346.
Minamoto, T., Uchii, K., Takahara, T., Kitayoshi, T., Tsuji, S.,
Yamanaka, H., & Doi, H. (2017). Nuclear internal transcribed spacer‐1
as a sensitive genetic marker for environmental DNA studies in common
carp Cyprinus carpio . Molecular Ecology Resources, 17(2),
324-333.
Pawlowski, J., Apothéloz‐Perret‐Gentil, L., & Altermatt, F. (2020).
Environmental DNA: What’s behind the term? Clarifying the terminology
and recommendations for its future use in biomonitoring. Molecular
Ecology, 29(22), 4258-4264.
Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P. (2013).
Estimating occupancy and abundance of stream amphibians using
environmental DNA from filtered water samples. Canadian Journal of
Fisheries and Aquatic Sciences, 70(8), 1123-1130.
R Core Team. (2021). R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria.
https://www.R-project.org/.
Rodriguez-Ezpeleta, N., Morissette, O., Bean, C., Manu, S., Banerjee,
P., Lacoursiere-Roussel, A., … & Deiner, K. (in press). Trade-offs
between reducing complex terminology and producing accurate
interpretations from environmental DNA: Comment on “Environmental DNA:
What’s behind the term?” by Pawlowski et al., (2020). Molecular
Ecology. DOI: 10.1111/mec.15942
Ruppert, K. M., Kline, R. J., & Rahman, M. S. (2019). Past, present,
and future perspectives of environmental DNA (eDNA) metabarcoding: A
systematic review in methods, monitoring, and applications of global
eDNA. Global Ecology and Conservation, 17, e00547.
Salter, I., Joensen, M., Kristiansen, R., Steingrund, P., &
Vestergaard, P. (2019). Environmental DNA concentrations are correlated
with regional biomass of Atlantic cod in oceanic waters. Communications
Biology, 2, 461.
Sansom, B. J., & Sassoubre, L. M. (2017). Environmental DNA (eDNA)
shedding and decay rates to model freshwater mussel eDNA transport in a
river. Environmental Science & Technology, 51(24), 14244-14253.
Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A., &
Boehm, A. B. (2016). Quantification of environmental DNA (eDNA) shedding
and decay rates for three marine fish. Environmental Science &
Technology, 50(19), 10456-10464.
Shogren, A. J., Tank, J. L., Egan, S. P., August, O., Rosi, E. J.,
Hanrahan, B. R., … & Bolster, D. (2018). Water flow and biofilm cover
influence environmental DNA detection in recirculating streams.
Environmental Science & Technology, 52(15), 8530-8537.
Spear, M. J., Embke, H. S., Krysan, P. J., & Vander Zanden, M. J.
(2021). Application of eDNA as a tool for assessing fish population
abundance. Environmental DNA, 3(1), 83-91.
Stewart, K. A. (2019). Understanding the effects of biotic and abiotic
factors on sources of aquatic environmental DNA. Biodiversity and
Conservation, 28(5), 983-1001.
Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying
effects of UV-B, temperature, and pH on eDNA degradation in aquatic
microcosms. Biological Conservation, 183, 85-92.
Takahara, T., Minamoto, T., & Doi, H. (2013). Using environmental DNA
to estimate the distribution of an invasive fish species in ponds. PLoS
ONE, 8(2), e56584.
Takahara, T., Minamoto, T., Yamanaka, H., Doi, H., & Kawabata, Z.
(2012). Estimation of fish biomass using environmental DNA. PLoS ONE,
7(4), e35868.
Thomsen, P. F., Kielgast, J. O. S., Iversen, L. L., Wiuf, C., Rasmussen,
M., Gilbert, M. T. P., … & Willerslev, E. (2012). Monitoring
endangered freshwater biodiversity using environmental DNA. Molecular
Ecology, 21(11), 2565-2573.
Turner, C. R., Barnes, M. A., Xu, C. C., Jones, S. E., Jerde, C. L., &
Lodge, D. M. (2014). Particle size distribution and optimal capture of
aqueous macrobial eDNA. Methods in Ecology and Evolution, 5(7), 676-684.
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor
package. Journal of Statistical Software, 36(3), 1-48.
Wu, Q., Kawano, K., Uehara, Y., Okuda, N., Hongo, M., Tsuji, S., … &
Minamoto, T. (2018). Environmental DNA reveals nonmigratory individuals
of Palaemon paucidens overwintering in Lake Biwa shallow waters.
Freshwater Science, 37(2), 307-314.
Yamanaka, H., & Minamoto, T. (2016). The use of environmental DNA of
fishes as an efficient method of determining habitat connectivity.
Ecological Indicators, 62, 147-153.
Yates, M. C., Fraser, D. J., & Derry, A. M. (2019). Meta‐analysis
supports further refinement of eDNA for monitoring aquatic
species‐specific abundance in nature. Environmental DNA, 1(1), 5-13.
Yates, M. C., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M.
K., & Derry, A. M. (2021). Allometric scaling of eDNA production in
stream‐dwelling brook trout (Salvelinus fontinalis ) inferred from
population size structure. Environmental DNA, 3(3), 553-560.