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Abstract
For the ionic liquid (IL)-solute systems of broad interest, a deep neural network based recommender system (RS) for predicting the infinite dilution activity coefficient (γ∞) is proposed and applied for a large extension of the UNIFAC model. In the RS, neural network entity embeddings are employed for mapping each IL and solute and neural collaborative filtering is utilized to handle the nonlinearities of IL-solute interactions. A comprehensive experimental γ∞ database covering 215 ILs and 112 solutes (totally 41,553 data points) is established for training the RS, where the cross-validation and test are performed based on a rigorous dataset split by IL-solute combinations. The obtained RS shows superior performance than the state-of-the-art γ∞ models and is thus taken to complete the solute-in-IL γ∞ matrix. Based on the completed γ∞ database, a large extension of the UNIFAC-IL model is finally presented, filling all the parameters between involved groups.
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1. INTRODUCTION
[bookmark: OLE_LINK22][bookmark: OLE_LINK23]The knowledge of activity coefficient is of central importance to key activities in dealing with liquid phase involved chemical processes, such as the analysis of solvent effect, the optimal solvent selection, the process design and optimization , and so on.1 However, for a specific process, the experimental measurement of activity coefficients of interest is cumbersome as one usually has to consider the effect of different solvents, mixture compositions, and temperature conditions. This challenge becomes even more serious when some types of neoteric solvents are to be considered. One such example is ionic liquids (ILs), which have gained intensive attention in the last decades as promising alternatives to conventional organic solvents due to their unique physicochemical properties, such as negligible vapor pressure, wide liquid range, and so on.2 The numerous cation-anion combinations of ILs make it possible to tune their properties in a wide range, thereby satisfying the requirement for various applications; however, it is inevitable that the experimental trial-and-error method is impractical to cover the huge variety of ILs for any specific application. Therefore, to exploit the full potentials of ILs, particularly for separations like gas absorption, liquid-liquid extraction, and extractive distillation, reliable activity coefficient models covering ILs are highly desirable.3–6
So far, the empirical equations (e.g., van Laar, Margules),7 local composition models (e.g., Wilson, NRTL, UNIQUAC),8 and group contribution extensions of local compositions models (e.g., ASOG9 and UNIFAC10) have been widely applied for the activity coefficient calculation of IL-involving mixtures. Among them, the UNIFAC model has recently attracted increasing interest due to its group contribution character and high accuracy for many IL-solutes systems.11–16 Nevertheless, all these classical thermodynamic methods require a certain number of parameters regressed from experimental data, making them not applicable for systems containing compounds or molecular groups that have not been experimentally covered. Another type of activity coefficient method is the COSMO-based models (e.g., COSMO-RS and COSMO-SAC)17,18 that employ the statistical thermodynamic approaches based on the results of quantum chemical calculations. Due to the fully predictive character, the COSMO-based activity coefficient methods are virtually applicable to arbitrary pure liquid and liquid mixtures, including ILs and IL-involving mixtures; but on the flip side, predictions by COSMO-based methods are, in some cases, only qualitative rather than quantitative. Taking account of merits of the UNIFAC and COSMO-based methods, the usage of COSMO-based activity coefficient predictions for the regression of missing UNIFAC model parameters is also proposed by several researchers.16,19,20 However, it is inadvisable to fill all the gaps in the UNIFAC parameter table in this manner considering the unsatisfactory quantitative accuracy of COSMO-based methods for several systems.16
In addition to the above methods, the machine learning (ML) technique and its implementation in cheminformatics have recently gained in popularity, which are promoting broad applications of data-driven models in chemical engineering studies.21,22 . For predicting the physicochemical and thermodynamic properties of ILs, a number of ML-based models have also been developed, taking advantage of databases, e.g., the NIST Ionic Liquids Database (ILThermo).23–27 For instance, (1) Nami and Deyhimi25 reported a multi-layer feed-forward network for the prediction of infinite dilution activity coefficients (γ∞) of molecular solutes in ILs; however, this model is only based on 16 imidazolium ILs and 914 γ∞ data points, suffering from a high overfitting risk and a narrow application range. (2) In 2016, Paduszyński26 proposed three models for solute-in-IL γ∞ based on different ML algorithms: stepwise multiple linear regression (SWMLR), feed-forward artificial neural network (FFANN), and least-squares support vector machine (LSSVM). Over 34,000 data points covering 188 ILs and 128 solutes were used for the development of these models, which are demonstrated to be able to provide reasonable γ∞ prediction, particularly for systems involving ILs similar to those in the development dataset. Despite this progress, only the conventional ML methods have been considered in the above γ∞ models, which is actually also the case for most of previously reported ML models for other properties of interest in chemical engineering.28,29 In very recent years, ML methods, especially deep neural networks (DNN), have evolved very rapidly. DNN-based ML systems have aroused great interest by overcoming obstacles of conventional models and obtaining high prediction quality for complex tasks.30,31 These successes of DNN indicate that more reliable ML-based model for activity coefficient prediction should also be achievable.
By comparing the above options for activity coefficient prediction, well-developed ML-based γ∞ prediction methods can be expected to be useful alternatives to the classical thermodynamic models and COSMO-based models in applications like solvent screening. However, the data-driven nature of ML-based γ∞ models also brings about certain limitations: (1) Not deriving from thermodynamic principles, the ML-based methods cannot be extrapolated to finite concentration and multi-component mixture, which are mostly considered in practical processes. (2) The ML-based methods are currently not available in process simulators for process simulation and optimization. On the other hand, some classical thermodynamic models with strong theory basis have already covered a considerable application range of high reliability (e.g., the UNIFAC models). To combine the advantages of different types of models, it is highly valuable to utilize reliable ML-based predictions for the extension of classical thermodynamic models.
Taking account of all the essential aspects mentioned above, this contribution explores an ML-based γ∞ prediction model using the state-of-the-art DNN method and its application in the UNIFAC model extension for the IL-solute systems. Based on the latest γ∞ database compiled from the ILThermo (v2.0, by November 2019), the γ∞ prediction model is formulated and developed as a DNN-based recommender system (RS). All the missing entries in the experimental solute-in-IL γ∞ matrix are predicted by the obtained RS, resulting in a completed γ∞ database for all the involved IL-solute systems. Subsequently, this completed γ∞ database is employed for a large extension of the UNIFAC-IL model, which fills the whole interaction parameter table for the covered IL and solute groups.

[bookmark: OLE_LINK7]2. DNN-BASED RECOMMENDER SYSTEM FOR  PREDICTION
2.1 Fundamentals

In literature, activity coefficients of IL-solute systems are mostly available at the infinite dilution condition (i.e., solute-in-IL γ∞) as it is much easier to measure in comparison to the data at finite concentration. Such solute-in-IL γ∞ essentially depends only on the nature of the involved molecules and temperature. At a certain temperature T,  of solute i in IL j can be represented as one entry in a matrix Mij with rows and columns corresponding to different solutes and ILs, respectively. However, due to the distinct scopes of different experimental studies on γ∞, the matrix Mij indexing all covered ILs and solutes in literature generally has a large proportion of missing entries, that is, missing γ∞ for the corresponding IL-solute combinations. This problem can be clearly seen from the γ∞ database (as illustrated in Figures 1 and 2 and tabulated in Table S1 in Supporting Information), which is compiled from the ILThermo database according to the following rules:
(1) ions and solutes only contain CHONPSB and halogen;
(2) charge of ions equals to ±1;
(3) each solute and IL must have more than 10 data points.
The obtained database totally involves 215 ILs (comprising 96 cations and 38 anions) and 112 molecular solutes with 41,553 experimental γ∞ data points. When arranging these γ∞ data in three dimension (3D), that is, the Mij at different temperatures, a clear sparsity of the resultant 3D matrix (Figure 1a) can be observed. For a specific temperature, the Mij becomes much sparser as exemplified in Figure 1b with the case of 303 K. Regardless of the temperature condition, γ∞ is only available for 8,047 of all the 24,080 involved IL-solute combinations (Figure 2), demonstrating also a remarkable sparsity.
It should be noted that the involved 215 ILs and 112 solutes basically represent most of known IL cation/anion and conventional solute families; it is the large sparsity of the available γ∞ data that limits the application range of classical thermodynamic models. A good example is the recently reported UNIFAC-IL model, which has about one quarter of absent entries in the experimental-data-based interaction parameter table.16 In this context, the completion of the above experimental γ∞ database is particularly considered for two purposes: (1) A completed database with the γ∞ for all the involved IL-solute combinations can be built, which allows practical uses such as fast screening of already existing ILs for separation problems of many conventional mixtures. (2) The completed γ∞ database enables the extension of the UNIFAC-IL model to cover all group-wise parameters. Moreover, from the model accuracy point of view, it is also of high reliability to complete the missing γ∞ for combinations of already involved ILs and solutes as the techniques to solve such matrix completion problems have strong theoretical basis and already many successful applications.
Matrix completion techniques, generally termed as recommender systems (RS), are widely applied and encountered in our daily lives, such as online shopping sites, music/movie services sites, mobile application stores, among others. The RS assist users, decision makers or information seekers to select or choose from a subset of choices with the support of historical user preferences, where the indicated preferences often take the form of explicit or implicit ratings.32 In a typical RS, the preferences of m users for n items are generally modelled as an m×n matrix (known as a preference, rating or utility matrix). The preference matrix is a sparse matrix with many blank entries (exactly like the γ∞ database ) and RS aims to predict these blank entries using appropriate algorithms (collaborative filtering, content based, and hybrid RS).33
Inspired by the ability of RS to complete the preference matrix, several researchers in bioinformatics and cheminformatics have modelled their prediction problems as RS.34,35 The common idea is that the underlying associations or interactions are studied as links between entities represented using nodes in a network and the problem is reduced to predict the future or tentative associations/interactions among these nodes. Hence, the recommender techniques or algorithms can be extended to similar problems, including the completion of γ∞ database focused here.36 Furthermore, deep learning has recently been revolutionizing the recommendation architectures dramatically, which bring more opportunities to improve the recommender performance by overcoming obstacles of conventional RS models.37 DNN-based RS enables the codification of more complex abstractions as data representations in the higher layers and the effective capture of non-linear links between entities, which particularly fits the requirements for solute-in-IL γ∞ matrix completion task.
2.2 Recommender system development
For the development of RS, the γ∞ is replaced by lnγ∞ and the min-max normalization is performed on temperature (Equation 1) to meet the requirements of the neural network model and improve the convergence speed of the gradient descent optimization algorithm.

									(1)
[bookmark: OLE_LINK8][bookmark: OLE_LINK9]The RS for predicting solute-in-IL γ∞ is built based on a simple principle: solutes with similar γ∞ value in similar ILs are similar to each other. To create the representation of similar solutes and ILs, the concept of neural network entity embeddings is used, mapping each solute and each IL to a 128-number vector. Neural network embeddings have been proven to be very powerful both for modelling language and for representing categorical variables.38 The idea of entity embeddings is to map high-dimensional categorical variables to a low-dimensional learned representation that places similar entities closer together in the embedding space. If the one-hot-encoding (another representation of categorical data) is used for the ILs and solutes, one would have a vector of as many dimensions as the number of the ILs and solutes, with a single “1” indicating the specific IL or solute (all other elements in the vector are “0”). In such one-hot encoding, the vectors representing similar ILs or solutes would not be "closer". In contrast, by training a neural network to learn entity embeddings, all the ILs and solutes can be represented in a reduced dimension while keeping similar ILs and solutes closer to each other in the embedding space. The entity embedding can be learned as part of the neural network for γ∞ prediction where the embedding layer weights are adjusted during training to minimize the loss on the prediction problem. In this work, the embedding layers were implemented using the gluon.nn.Embedding function provided by MXNet.39
[bookmark: OLE_LINK11][bookmark: OLE_LINK12]The collaborative filtering40 approach based on matrix factorization (MF)41 is employed to develop the RS for completing the γ∞ database. Typically, the MF method factorizes the user-item interaction matrix (e.g., preference matrix) into the product of two lower-rank matrices, capturing the low-rank structure of the user-item interactions; the entries of the matrix are approximated by MF with a simple, fixed function (the inner product) acting on the latent feature vectors for the corresponding row and column. However, it is usually challenging to employ the inner product for effectively modelling the non-linear interactions between users and items, which are extremely significant in the γ∞ completion task for IL-solute systems according to the knowledge of this property. To better deal with the nonlinearities of IL-solute interactions, we consider replacing the inner product by an arbitrary function that can be learned at the same time as learning the latent feature vectors (IL and solute embeddings), as inspired by neural collaborative filtering (NCF).42,43 Specifically, the inner product is replaced by a multilayer perceptron (MLP) neural network for MF, where MLP adds nonlinear transformation to existing RS approaches and can be interpreted into neural extensions. The MLP neural network is learned by alternating between optimizing the network for fixed latent features, and optimizing the latent features for a fixed network. Meanwhile, the weights of the linear embedding layer for the IL or solute embeddings don’t have to be limited. Instead, more complex pipelines such as the MLP or residual network (ResNet)44 block can be applied after the embedding layer to build a deep network, which combines fully connected layers and non-linear activations. The deep network of the whole neural MF can be regularized by dropout layers to ensure good model performance without over-fitting.
From above, the whole RS for solute-in-IL γ∞ prediction is proposed, as illustrated in Figure 3. The indexes of ILs and solutes as well as optional inputs (namely cation, anion, cation family, and anion family) first enter the embedding layer and then pass through a series of MLP/ResNet hidden layers, followed by the concatenation together with the temperature input and finally output after several fully connected MF layers. For activation functions, rectifier units (ReLU) are used as recommended by He et al.42 A more detailed layer by layer description of the entire network is provided in the Supporting Information (Figure S1). For the implementation and training of the proposed RS, the MXNet framework with GPU acceleration (on a single RTX2080Ti and CUDA 10.1) is employed. The Adam algorithm45 is used to train for 40 epochs with a batch size of 64, following the recommended standard settings: learning rate = 0.001, wd= 0.0001. The dropout rates of 0.05 for ResNet block and 0.03 for Neural MF layer are included to reduce overfitting. The mean squared error (MSE) function (also called L2 loss) is used as the loss function for training. Optimal values of hyper parameters of the neural networks are obtained by performing an extensive grid search.
Considering the overall 41,553 experimental data are the γ∞ for the involved 8,047 IL-solute combinations at different temperatures, it is highly possible that many IL-solute combinations appear in both the training and test set if the entire database is randomly split. With only differences in temperature, the same IL-solute combination in both the training and test set is essentially data leakage and may bias a higher score on the test set. Therefore, this work takes a rigorous method of randomly dividing the IL-solute combinations so that data points of the same IL-solute combination at different temperatures enter either the test or the training set. This can avoid data leakage and give a more reliable test score. A 10-fold cross-validation (CV) is first performed to select the best model structure and inputs as well as to determine the model hyper parameters. Afterwards, 10% (805) of the IL-solute combinations (4,166 data points) in the collected γ∞ database are randomly held out to form the test set, and the remaining 90% (7,242 combinations and 37,387 data points) are used for RS training.
2.3 RS Model Evaluation
Table 1 summarizes the statistical results on the 10-fold CV when using different inputs (features of ILs and solutes) and different network blocks for the RS model (see the detailed results in Table S2, Supporting Information). All these model options generally lead to very low MSE and high coefficient of determination (R2) in both the training and the CV datasets, where the statistics of CV are only slightly worse than those of training. Comparing with the three ML-based (SWMLR, FFANN, LSSVM) models in literature, the training MSE of the explored model options are all notably lower (0.0101 – 0.0182 versus 0.0303 – 0.2052); except the first model option, the other ones also lead to a lower MSE of CV (0.0186 – 0.0373 versus 0.0286 – 0.1875).26 It is worth mentioning again that the CV results of the explored RS model options could better indicate the truly predictive performance as a more rigorous split of training and validation dataset by IL-solute combination rather than γ∞ data points is used for CV. Such encouraging results demonstrate the suitability of the RS method for the solute-in-IL γ∞ prediction. When comparing the effect of inputs and network blocks, it is found that: (1) based on identical inputs, the ResNet block gives rise to a lower MSE in both datasets in comparison to the MLP block; (2) in the case of the same network block, the MSE in both datasets slightly decreases with inputting more features of ILs and solutes.
Among these explored model options, the one based on the inputs of [cation, anion, IL, cationic family, solute, solute family] and the ResNet block has the best performance in both the training and CV. For this model option, the evolution of the training and validation loss with the increasing training epochs is recorded in Figure 4. As seen, the model training has converged after 35 epochs with the loss of 0.010 and the very close validation loss to that reveals no overfitting. This best performing model option is then applied to train the RS, where the experimental γ∞ in the test set with the corresponding predictions by the trained RS model are compared in Figure 5. In terms of different cation families of ILs and different solutes, the RS-predicted γ∞ distribute closely along the diagonal line in the parity plot against the experimental γ∞, where over 99% data points fall in the region with ±0.5 absolute error of lnγ∞. These comparisons clearly show the high-quality prediction of solute-in-IL γ∞ by the RS model.
To demonstrate the competitiveness of the trained RS model, it is further compared with some state-of-the-art methods. First, the test result of the RS model is compared with that of COSMO-RS. This comparison is made separately for different types of solutes as such calibrations of COSMO-RS has been performed based on extensive experimental data, which are proved to give much lower mean absolute percentage error (MAPE) for solute-in-IL γ∞ prediction than those directly predicted by COSMO-RS.16 However, even comparing with the calibrated COSMO-RS results, the trained RS model generates significantly lower MAPEs in all cases of different solutes (see Figure 6), which ranges from 5.35% for alkynes to 16.73% for Cl/F compounds. Second, the solute type specific comparison is also made between the RS model predictions with the UNIFAC-IL calculations, where the lower MAPE of the RS model is generally observed with only an exception for the carboxylic acids. To summarize, the developed RS model outperforms the state-of-the-art methods for predicting solute-in-IL γ∞.

3. APPLICATION OF RECOMMENDER SYSTEM
3.1 Completion of solute-in-IL γ∞ matrix
From the neural RS obtained above, all the missing entries in the experimental solute-in-IL γ∞ matrix can be reliably predicted for matrix completion. Consequently, a completed γ∞ matrix containing 2,262,416 (41,553 experimental and 2,220,863 RS predicted) data points are generated, where the covered IL-solute combinations increases from 8,047 to 24,080 (see Table S3, Supporting Information). The experimental data only account for 1.84% in the completed γ∞ matrix, directly demonstrating the great advantage and significance of the RS method for sparse database completion. As all the included 215 ILs are the already existing ones and the 112 solutes basically represent most conventional solute families, this completed γ∞ matrix could be directly used for practical IL screening for many separation problems. For instance, for the extractive desulfurization of fuel oils (modelled by thiophene/n-octane mixture), which is an extensively studied IL-based separation in literature,15 a fast IL screening is performed by the following two criteria:

									(2)
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where  and  denote the infinite dilution activity coefficient of thiophene and n-octane in IL(the data at 298.15 K are used); MWthiophene and MWIL are the molecular weights of thiophene and IL, respectively. These two criteria, suggesting the mass-based capacity and selectivity of ILs, have been demonstrated to be suitable for quickly prescreening promising ILs as extraction solvents.46,47 Figure 7 shows the IL screening results from the completed γ∞ database for the extractive desulfurization task. As seen, except few ILs with both experimental γ∞ for thiophene and n-octane available (marked with red triangle), the majority of these ILs are screened with the help of one or two γ∞ predicted from the obtained RS. Six ILs can be connected to form a pseudo Pareto front and no ILs can overwhelm them from both  and . The extractive desulfurization performance of these six ILs are highly worth evaluating while so far none of them have been experimentally studied in terms of liquid-liquid extraction. This example clearly shows the value of the completed matrix for fast screening of already existing ILs.
It should be mentioned that once experimental γ∞ data for new ILs and/or new solutes become available, the developed neural RS and γ∞ matrix is readily extendable in the following steps: (1) Add new indexes for the new ILs and/or new solutes after the existing ones (in numerical order); (2) Add the new experimental γ∞ data to the existing database; (3) Retrain the neural RS using the updated γ∞ database and then complete the missing γ∞ entries related to the newly added ILs and/or solutes. It is estimated that such a retraining process takes about only five minutes on a single RTX2080Ti.
3.2 Extension of UNIFAC-IL Model
The completed γ∞ matrix (Table S3, Supporting Information) allows the UNIFAC-IL model extension to cover the group-wise interaction parameters that cannot be initially regressed from experimental γ∞ data.16 As a continuation of the experimental-γ∞-based UNIFAC-IL model reported recently,16 the original UNIFAC model is employed here. Considering the detailed introduction of the original UNIFAC model can be found elsewhere,48 only its major features for understanding the present model extension are briefly summarized as follows.




In the original UNIFAC model, activity coefficients are calculated from two parts: a combinational part and a residual part. The combinational part accounts for the entropic contribution resulting from the size and shape of molecules, which is essentially the function of the composition of liquid mixture and the van der Waals volume and surface parameters (Rk and Qk) of involved groups. The residual part is the enthalpic contribution and takes account of the interactions between groups, which essentially depends on the group-wise binary interaction parameters. For two different main groups n and m, there are two different binary interaction parameters  and ; the group interaction parameters for identical main groups are zero by definition. It is worth mentioning that each main group may consist of more than one subgroups; different subgroups have different Rk and Qk but share the same interaction parameters with other main groups. To summarize, for the calculation of activity coefficients, the original UNIFAC model requires the Rk and Qk of different subgroups and the  and  between the main groups involved in the mixture components.
Prior to the UNIFAC-IL extension, all the main groups and subgroups that are covered by the solute-in-IL γ∞ matrix should be figured out. To this end, the solutes are decomposed into functional groups in the same manner as in the original UNIFAC model while the ILs are decomposed into several groups with the anion and the cation skeleton as two separate groups. As a result, 22 conventional main groups, 11 cation main groups and 38 anion main groups, with overall 102 subgroups, are obtained from all the involved 112 solutes and 215 ILs (see detailed list in Table S4, Supporting Information). Comparing with the very recent UNIFAC-IL model extension16, one more conventional group, two more cation groups, and eight anion groups are newly introduced in this work, as listed in Table 2. The fragmentation of the ILs and solutes into their subgroups is conduct automatically by a flexible heuristic algorithm developed by Simon Müller49 and implemented with the RDKit python module. The Simplified Molecular Input Line Entry System (SMILES) and the SMiles ARbitrary Target Specification (SMARTS) languages used in the automatic molecule fragmentation algorithm for specifying the molecular structures and the functional group patterns respectively can be found in Table S4. The Rk and Qk for these newly introduced groups are estimated from:
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where  and  are the volume and surface area of group k, respectively;  (15.17 cm3/mol) and  (2.5×109 cm2/mol) are the standard segment volume and surface area, respectively, and  is the Avogardro’s number (6.023×1023/mol). The Rk and Qk for other already-existing UNIFAC groups are kept constant as in the literature 15,11,50, which is summarized in Table S4 (Supporting Information).
After knowing the Rk and Qk for all involved groups, the binary interaction parameters between different main groups are regressed by correlating the UNIFAC-IL model to the experimental and/or RS-derived γ∞. It should be pointed out that the interaction parameters between conventional UNIFAC groups are kept the same as the original UNIFAC model (UNIFAC consortium parameter matrix, Delivery 2017) while the already reported ones between IL-solute group pairs are taken directly from the very recent model extension. Moreover, the interaction parameters between IL groups are assumed to be zero because of the strong interaction and weak dissociation of ion pairs11,12. Consequently, only the interaction parameters for newly covered IL-solute group pairs are determined by minimizing the objective function OF:

										(6)
The  OF represents the summation of MAPE between the experimental or RS-predicted γ∞ and the UNIFAC-IL correlated γ∞ of solutes in ILs, where ND is the number of data points. The nonlinear programming solver “fmincon” in Matlab (2017) is selected to solve this minimization problem in a sequential procedure. To be specific, the interaction parameters between IL groups and “-CH2” are regressed first from the γ∞ of alkanes and cycloalkanes, then those interaction parameters between IL groups and “ACH”/“ACCH2” are fitted from the γ∞ data of aromatics, and so forth.
As detailed in Table 3, 21 sequences are performed in the UNIFAC-IL extension, each of which corresponds to one or two types of conventional main groups. In each sequence, depending on the size of all the involved γ∞ data, 10% or 20% of them are randomly held out as the validation set and the rest 90% or 80% are taken as the regression set. Moreover, due to the non-convexity of the problem, several different initial guesses are used to ensure a high-quality solution in every sequence. Based on the finally adopted solution, the MAPEs between the experimental or RS-predicted γ∞ and the UNIFAC-IL correlated γ∞ of solutes in ILs range from 4.31% in the “CCN” sequence to 36.11% in the “CH=CH” sequence; meanwhile, the corresponding MAPEs in the validation set are very close to those in the regression set in different sequences. Such results generally demonstrate a good quantitative performance of the regressed UNIFAC-IL model.
The UNIFAC-IL parameters obtained in this work are tabulated in Table S5 (Supporting Information) and overviewed in Figure 8. Overall, 484 pairs of IL-solute group-wise interaction parameters are obtained, which include not only the ones associated with newly introduced groups but also the previous gaps between already existing groups. It can be seen that all the binary interaction parameters involved in the IL-solute group matrix are filled in the UNIFAC-IL extension thanks to the advantage of the neural RS established above. Such an extended UNIFAC-IL model can be directly applied for activity coefficient estimation in computer-aided design of ILs and IL-involved processes, where a large molecular design space and application range of tasks can be achieved.

4. CONCLUSION
The recommender system (RS) method based on matrix completion is introduced for the prediction of γ∞ for IL-solutes systems. Neural RS with entity embedding layers for the input of ILs and solutes and a neural collaborative filtering network for matrix completion are proposed, which are rigorously trained and tested on a large database of 41,553 experimental γ∞ data. It is demonstrated that the proposed RS model can exhibit excellent prediction accuracy that outperforms the previous ML models, the COSMO-RS calibrations, and the UNIFAC-IL model. The best trained RS model is utilized to complete the solute-in-IL γ∞ matrix, giving rise to an extensive database of 2,262,416 data. This extensive γ∞ database can be directly used for practical IL screening for many separations, as illustrated with the example of extractive desulfurization. Besides, a large extension of the UNIFAC-IL model is realized based on the completed solute-in-IL γ∞ matrix, which covers 13 new groups and 484 pairs of new group-wise interaction parameters. Due to the advantage of the RS model, the whole interaction parameter table for the covered IL and solute groups is filled, thereby enabling a wide application range of the UNIFAC-IL model.
As one of the most useful advantages of ML is flexibility, a similar model structure can be used to learn and predict various databases. The neural RS method proposed in this work can be applied to predict various physicochemical properties in chemical engineering, especially those focused on interactions between two or more different chemical species.

ACKNOWLEDGEMENTS
The financial support from National Natural Science Foundation of China (21861132019 and 21776074) and 111 Project (B08021) is greatly acknowledged. Z. S. and K. S. gratefully acknowledge the support of the Sino-German joint research project leaded by Deutsche Forschungsgemeinshaft (DFG) under the grants SU 189/9-1.

REFERENCES
1. 	Gmehling J, Kleiber M, Kolbe B, Rarey J. Chemical Thermodynamics for Process Simulation. NewYork:John Wiley & Sons, Inc., 2019.
2. 	Brennecke JF, Maginn EJ. Ionic liquids: Innovative fluids for chemical processing. AIChE Journal. 2001;47(11):2384-2389.
3. 	Song Z, Zhang J, Zeng Q, Cheng H, Chen L, Qi Z. Effect of cation alkyl chain length on liquid-liquid equilibria of {ionic liquids + thiophene + heptane}: COSMO-RS prediction and experimental verification. Fluid Phase Equilibria. 2016;425:244-251.
4. 	Lei Z, Dai C, Zhu J, Chen B. Extractive distillation with ionic liquids: A review. AIChE Journal. 2014;60(9):3312-3329.
5. 	Zeng S, Zhang X, Bai L, Zhang X, Wang H, Wang J, Bao D, Li M, Liu X, Zhang S.  Ionic-Liquid-Based CO 2 Capture Systems: Structure, Interaction and Process. Chemical Reviews. 2017;117(14):9625-9673.
6. 	Ventura SPM, e Silva FA, Quental MV, Mondal D, Freire MG, Coutinho JAP. Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chemical Reviews. 2017;117(10):6984-7052.
7. 	Dohnal V, Baránková E, Blahut A. Separation of methyl acetate+methanol azeotropic mixture using ionic liquid entrainers. Chemical Engineering Journal. 2014;237:199-208.
8. 	Marciniak A. Influence of cation and anion structure of the ionic liquid on extraction processes based on activity coefficients at infinite dilution. A review. Fluid Phase Equilibria. 2010;294(1):213-233.
9. 	Robles PA, Cisternas LA. Correlation of liquid–liquid equilibrium for binary and ternary systems containing ionic liquids with the tetrafluoroborate anion using ASOG. Fluid Phase Equilibria. 2015;404:42-48.
10. 	Wang J, Sun W, Li C, Wang Z. Correlation of infinite dilution activity coefficient of solute in ionic liquid using UNIFAC model. Fluid Phase Equilibria. 2008;264(1):235-241.
11. 	Roughton BC, Christian B, White J, Camarda KV, Gani R. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes. Computers & Chemical Engineering. 2012;42:248-262.
12. 	Lei Z, Zhang J, Li Q, Chen B. UNIFAC Model for Ionic Liquids. Industrial & Engineering Chemistry Research. 2009;48(5):2697-2704.
13. 	Lei Z, Dai C, Wang W, Chen B. UNIFAC model for ionic liquid-CO2 systems. AIChE Journal. 2014;60(2):716-729.
14. 	Liu X, Zhou T, Zhang X, Zhang S, Liang X, Gani R. Application of COSMO-RS and UNIFAC for ionic liquids based gas separation. Chemical Engineering Science. 2018;192:816-828.
15. 	Song Z, Zhang C, Qi Z, Zhou T, Sundmacher K. Computer-aided design of ionic liquids as solvents for extractive desulfurization. AIChE Journal. 2018;64(3):1013-1025.
16. 	Song Z, Zhou T, Qi Z, Sundmacher K. Extending the UNIFAC model for ionic liquid–solute systems by combining experimental and computational databases. AIChE J. 2020;66(2):e16821.
17. 	Hsieh C-M, Sandler SI, Lin S-T. Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilibria. 2010;297(1):90-97.
18. 	Eckert F, Klamt A. Fast solvent screening via quantum chemistry: COSMO-RS approach. AIChE Journal. 2002;48(2):369-385.
19. 	Constantinescu D, Gmehling J. Further Development of Modified UNIFAC (Dortmund): Revision and Extension 6. Journal of Chemical & Engineering Data.   2016;61(8):2738-2748.
20. 	Dong Y, Zhu R, Guo Y, Lei Z. A United Chemical Thermodynamic Model: COSMO-UNIFAC. Industrial & Engineering Chemistry Research.  2018;57(46):15954-15958.
21. 	Venkatasubramanian V. The promise of artificial intelligence in chemical engineering: Is it here, finally? AIChE Journal. 2019;65(2):466-478.
22. 	Lee JH, Shin J, Realff MJ. Machine learning: Overview of the recent progresses and implications for the process systems engineering field. Computers & Chemical Engineering. 2018;114:111-121.
23. 	Sakloth K, Beckner W, Pfaendtner J, Goh GB. IL-Net: Using Expert Knowledge to Guide the Design of Furcated Neural Networks. In: 2018 IEEE International Conference on Big Data (Big Data). 2018;1465-1473.
24. 	Paduszyński K, Domańska U. Viscosity of Ionic Liquids: An Extensive Database and a New Group Contribution Model Based on a Feed-Forward Artificial Neural Network. Journal of Chemical Information and Modeling. 2014;54(5):1311-1324.
25. 	Nami F, Deyhimi F. Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network. The Journal of Chemical Thermodynamics. 2011;43(1):22-27.
26. 	Paduszyński K. In Silico Calculation of Infinite Dilution Activity Coefficients of Molecular Solutes in Ionic Liquids: Critical Review of Current Methods and New Models Based on Three Machine Learning Algorithms. Journal of Chemical Information and Modeling. 2016;56(8):1420-1437.
27. 	Song Z, Shi H, Zhang X, Zhou T. Prediction of CO2 solubility in ionic liquids using machine learning methods. Chemical Engineering Science. 2020;223:115752.
28. 	Zhang X, Zhou T, Zhang L, Fung KY, Ng KM. Food Product Design: A Hybrid Machine Learning and Mechanistic Modeling Approach. Industrial & Engineering Chemistry Research. 2019;58(36):16743-16752.
29. 	Zhang L, Mao H, Liu L, Du J, Gani R. A machine learning based computer-aided molecular design/screening methodology for fragrance molecules. Computers & Chemical Engineering. 2018;115:295-308.
30. 	Sivaram A, Das L, Venkatasubramanian V. Hidden representations in deep neural networks: Part 1. Classification problems. Computers & Chemical Engineering. 2020;134:106669.
31. 	Das L, Sivaram A, Venkatasubramanian V. Hidden representations in deep neural networks: Part 2. Regression problems. Computers & Chemical Engineering. 2020;139:106895.
32. 	Hu Y, Koren Y, Volinsky C. Collaborative Filtering for Implicit Feedback Datasets. In: 2008 Eighth IEEE International Conference on Data Mining. 2008;263-272.
33. 	Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering. 2005;17(6):734-749.
34. 	Suphavilai C, Bertrand D, Nagarajan N. Predicting Cancer Drug Response using a Recommender System. Wren J, ed. Bioinformatics. 2018;34(22):3907-3914.
35. 	Seko A, Hayashi H, Tanaka I. Compositional descriptor-based recommender system for the materials discovery. The Journal of Chemical Physics. 2018;148(24):241719.
36. 	Jirasek F, Alves RAS, Damay J, Vandermeulen R, Bamler R, Bortz M, Mandt S, Kloft M, Hasse H. Machine Learning in Thermodynamics: Prediction of Activity Coefficients by Matrix Completion. The Journal of Physical Chemistry Letters. 2020;11(3):981-985.
37. 	Zhang S, Yao L, Sun A, Tay Y. Deep Learning based Recommender System: A Survey and New Perspectives. ACM Computing Surveys. 2019;52(1):1-38.
[bookmark: OLE_LINK20][bookmark: OLE_LINK21]38. 	Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems 26. 2013:3111–3119.
39. 	Chen T, Li M, Li Y, Lin M, Wang N, Wang M, Xiao T, Xu B, Zhang C, Zhang Z. MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. arXiv:151201274; 2015.
40. 	Zhang H, Shen F, Liu W, He X, Luan H, Chua T-S. Discrete Collaborative Filtering. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR ’16. 2016;325-334.
41. 	Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Systems. Computer. 2009;42(8):30-37.
42. 	He X, Liao L, Zhang H, Nie L, Hu X, Chua T-S. Neural Collaborative Filtering. arXiv:170805031; 2017.
43. 	Dziugaite GK, Roy DM. Neural Network Matrix Factorization. arXiv:151106443; 2015.
44. 		He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. arXiv:151203385; 2015.
45. 		Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv:14126980; 2017.
46. 	Song Z, Zhou T, Qi Z, Sundmacher K. Systematic Method for Screening Ionic Liquids as Extraction Solvents Exemplified by an Extractive Desulfurization Process. ACS Sustainable Chemistry & Engineering. 2017;5(4):3382-3389.
47. 	Song Z, Hu X, Zhou Y, Zhou T, Qi Z, Sundmacher K. Rational design of double salt ionic liquids as extraction solvents: Separation of thiophene/n-octane as example. AIChE Journal. 2019;65(8):e16625.
48. 	Fredenslund A, Jones RL, Prausnitz JM. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal. 1975;21(6):1086-1099.
49. 	Müller S. Flexible heuristic algorithm for automatic molecule fragmentation: application to the UNIFAC group contribution model. J Cheminform. 2019;11(1):57.
50. 	Song Z, Li X, Chao H, et al. Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process. Green Energy & Environment. 2019;4(2):154-165.


Table 1. Summary of the model performances with different inputs and network blocks.
	Inputs
	Block
	Train MSE
	Train R2
	CV MSE
	CV R2

	IL, solute
	MLP
	0.0182
	0.9874
	0.0373
	0.9743

	IL, solute
	ResNet
	0.0143
	0.9902
	0.0244
	0.9832

	cation, anion, solute
	MLP
	0.0130
	0.9911
	0.0225
	0.9846

	cation, anion, solute
	ResNet
	0.0116
	0.9920
	0.0221
	0.9848

	cation, anion, solute, solute family
	MLP
	0.0125
	0.9914
	0.0215
	0.9853

	cation, anion, solute, solute family
	ResNet
	0.0117
	0.9920
	0.0209
	0.9856

	cation, anion, IL, solute, solute family
	MLP
	0.0113
	0.9922
	0.0194
	0.9867

	cation, anion, IL, solute, solute family
	ResNet
	0.0101
	0.9931
	0.0190
	0.9869

	cation, anion, cation family, solute, solute family
	MLP
	0.0119
	0.9918
	0.0209
	0.9857

	cation, anion, cation family, solute, solute family
	ResNet
	0.0110
	0.9924
	0.0201
	0.9861

	cation, anion, IL, cation family, solute, solute family
	MLP
	0.0113
	0.9922
	0.0193
	0.9868

	cation, anion, IL, cation family, solute, solute family
	ResNet
	0.0101
	0.9930
	0.0186
	0.9872




Table 2. Rk and Qk for the UNIFAC-IL groups newly introduced in this work.
	Main group
	Subgroup
	Rk
	Qk
	Remarks

	“CCl”
	CH2Cl
	1.4654
	1.2640
	Original UNIFAC

	“Dabco”
	Dabco
	6.3314
	2.4711
	this work

	“Quinu”
	Quinu
	6.4527
	2.5326
	this work

	“C14H29Ac”
	C14H29Ac
	14.9138
	8.8063
	this work

	“C16H33Ac”
	C16H33Ac
	16.6318
	9.7629
	this work

	“CH3C2H4SO4”
	CH3C2H4SO4
	6.2767
	4.0808
	this work

	“C2H5C2H4SO4”
	C2H5C2H4SO4
	7.0898
	4.5689
	this work

	“FSI”
	FSI
	5.4736
	3.4898
	this work

	“TDI”
	TDI
	7.3491
	4.5894
	this work

	“NPF2”
	NPF2
	11.7416
	6.1032
	this work

	“TMPP”
	TMPP
	16.3172
	8.3828
	this work

	“CH3PO3H”
	CH3PO3H
	3.7084
	2.6497
	this work

	“C2H5PO3H”
	C2H5PO3H
	4.5495
	3.1441
	this work




Table 3. Overview of different sequences for the extension of UNIFAC-IL model based on the completed solute-in-IL γ∞ matrix.
	Sequence
	Functional groups
	Involved parameters (pair)
	Regression set
	Validation set

	
	
	
	ND
	MAPE%
	ND
	MAPE%

	1
	“CH2”
	12
	652
	28.20
	72
	31.05

	2
	“ACH”, “ACCH2”
	24
	344
	8.25
	39
	8.71

	3
	“CH=CH”
	13
	380
	36.11
	94
	37.59

	4
	“OH”
	13
	422
	13.13
	105
	13.50

	5
	“CH2O”
	14
	468
	26.60
	116
	30.22

	6
	“CCN”
	15
	87
	4.31
	9
	3.25

	7
	“CCOO”
	20
	1199
	31.11
	299
	30.54

	8
	“CH2CO”
	16
	588
	23.77
	146
	25.00

	9
	“C#C”
	18
	673
	21.98
	168
	2.37

	10
	“CH3OH”
	14
	96
	7.90
	10
	6.05

	11
	“COOH”
	42
	1304
	34.29
	325
	32.57

	12
	“CHO”
	31
	2621
	32.23
	655
	33.47

	13
	“CNO2”
	21
	561
	14.26
	62
	14.75

	14
	“C3N”
	38
	935
	28.38
	233
	31.72

	15
	“thiophene”
	21
	221
	9.78
	24
	12.20

	16
	“pyridine”
	27
	435
	13.99
	48
	13.53

	17
	“H2O”
	23
	639
	25.22
	109
	20.48

	18
	“CCl”
	50
	607
	10.87
	400
	13.34

	19
	“CCl2”
	24
	386
	8.39
	42
	9.73

	20
	“CCl3”
	23
	356
	9.30
	38
	9.54

	21
	“CCl4”
	25
	387
	8.25
	41
	13.96




Figure 1. Availabilty of experimental γ∞ (marked by blue squares) for the involved 215 ILs and 112 solutes in the collected database. (a) Three-dimensional illustration for different temperatures; (b) Two-dimensional illustration for 303 K.
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Figure 2. Illustration of all covered IL-solute combinations in the collected γ∞ database. The square indicates the availability and the color indicates the number of available data at different temperatures.
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Figure 3. Fundamental architecture of the proposed neural recommender system network for γ∞ prediction. Black arrows indicate the flow of input data.
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Figure 4. The optimal RS model development based on the training and validation mean square error (MSE) between predicted and experimental values of γ∞.
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Figure 5. Comparison of experimental and recommender system predicted solute-in-IL γ∞ on the test set in terms of different cation families of ILs (a) and types of solutes (b).
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Figure 6. Solute type specific comparison of the test result of the trained recommender system with COSMO-RS calibrations and UNIFAC-IL predictions.
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Figure 7. IL screening results for the example of extractive desulfurization.
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Figure 8. UNIFAC-IL parameter table extended in this work.
 [image: ]
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