References
1. Kunii D, Levenspiel O. Fluidization engineering (Chapter 1: Introduction). Butterworth-Heinemann series in chemical engineering . 2nd ed. Boston: Butterworth-Heinemann,; 1991.
2. Zhu C, Fan L-S. Dense-Phase Fluidized Beds. In: Zhu C, Fan L-S, eds. Principles of Gas-Solid Flows . Cambridge: Cambridge University Press; 1998:371-420.
3. Lim KS, Zhu JX, Grace JR. Hydrodynamics of gas-solid fluidization. International Journal of Multiphase Flow.1995/12/01/ 1995;21:141-193.
4. Bi HT, Grace JR. Flow regime diagrams for gas-solid fluidization and upward transport. International Journal of Multiphase Flow. 1995/11/01/ 1995;21(6):1229-1236.
5. Smolders K, Baeyens J. Gas fluidized beds operating at high velocities: a critical review of occurring regimes. Powder Technology. 2001/09/24/ 2001;119(2):269-291.
6. Kunii D, Levenspiel O. Fluidization engineering (Chapter 7: Turbulent fluidization). Butterworth-Heinemann series in chemical engineering . 2nd ed. Boston: Butterworth-Heinemann,; 1991.
7. Bi HT, Ellis N, Abba IA, Grace JR. A state-of-the-art review of gas–solid turbulent fluidization. Chemical Engineering Science. 2000/11/01/ 2000;55(21):4789-4825.
8. Mostoufi N, Chaouki J. Flow structure of the solids in gas–solid fluidized beds. Chemical Engineering Science.2004/10/01/ 2004;59(20):4217-4227.
9. Zhu C, Fan L-S. Circulating Fluidized Beds. In: Zhu C, Fan L-S, eds. Principles of Gas-Solid Flows . Cambridge: Cambridge University Press; 1998:421-460.
10. Jaiboon O-a, Chalermsinsuwan B, Mekasut L, Piumsomboon P. Effect of flow pattern on power spectral density of pressure fluctuation in various fluidization regimes. Powder Technology. 2013/01/01/ 2013;233:215-226.
11. Bai D, Issangya AS, Grace JR. Characteristics of Gas-Fluidized Beds in Different Flow Regimes. Industrial & Engineering Chemistry Research. 1999/03/01 1999;38(3):803-811.
12. Sun G, Grace JR. Effect of particle size distribution in different fluidization regimes. AIChE Journal. 1992/05/01 1992;38(5):716-722.
13. Horio M, Ishii H, Nishimuro M. On the nature of turbulent and fast fluidized beds. Powder Technology. 1992/06/01/ 1992;70(3):229-236.
14. Chew JW, Hays R, Findlay JG, et al. Species segregation of binary mixtures and a continuous size distribution of Group B particles in riser flow. Chemical Engineering Science. 2011/10/15/ 2011;66(20):4595-4604.
15. Chew JW, Hays R, Findlay JG, et al. Impact of material property and operating conditions on mass flux profiles of monodisperse and polydisperse Group B particles in a CFB riser. Powder Technology. 2011/11/25/ 2011;214(1):89-98.
16. Chew JW, Hays R, Findlay JG, et al. Cluster characteristics of Geldart group B particles in a pilot-scale CFB riser. II. Polydisperse systems. Chemical Engineering Science. 2012/01/22/ 2012;68(1):82-93.
17. Chew JW, Hays R, Findlay JG, et al. Cluster characteristics of Geldart Group B particles in a pilot-scale CFB riser. I. Monodisperse systems. Chemical Engineering Science. 2012/01/22/ 2012;68(1):72-81.
18. Anantharaman A, Karri SBR, Findlay JG, Hrenya CM, Cocco RA, Chew JW. Interpreting Differential Pressure Signals for Particle Properties and Operating Conditions in a Pilot-Scale Circulating Fluidized Bed Riser. Industrial & Engineering Chemistry Research. 2016/08/10 2016;55(31):8659-8670.
19. Anantharaman A, Issangya A, Karri SBR, et al. Annulus flow behavior of Geldart Group B particles in a pilot-scale CFB riser.Powder Technology. 2017/01/01/ 2017;305:816-828.
20. Chew JW, Parker DM, Cocco RA, Hrenya CM. Cluster characteristics of continuous size distributions and binary mixtures of Group B particles in dilute riser flow. Chemical Engineering Journal. 2011/12/15/ 2011;178:348-358.
21. Chew JW, Parker DM, Hrenya CM. Elutriation and Species Segregation Characteristics of Polydisperse Mixtures of Group B Particles in a dilute CFB Riser. AIChE Journal. 2013/01/01 2013;59(1):84-95.
22. Breiman L. Random Forests. Machine Learning.2001/10/01 2001;45(1):5-32.
23. Kohonen T. The self-organizing map. Proceedings of the IEEE. 1990;78(9):1464-1480.
24. Vesanto J, Alhoniemi E. Clustering of the self-organizing map. IEEE Transactions on Neural Networks. 2000;11(3):586-600.
25. Chew JW, Cocco RA. Application of machine learning methods to understand and predict circulating fluidized bed riser flow characteristics. Chemical Engineering Science. 2020/05/18/ 2020;217:115503.
26. Patel AM, Cocco RA, Chew JW. Key Influence of Clusters in a Circulating Fluidized Bed Riser. submitted, Chemical Engineering Journal. 2020.
27. Chew JW, Cocco RA. Do particle-related parameters influence circulating fluidized bed (CFB) riser flux and elutriation?Chemical Engineering Science. 2020;227:115935.
28. Kim SW, Kirbas G, Bi H, Jim Lim C, Grace JR. Flow behavior and regime transition in a high-density circulating fluidized bed riser.Chemical Engineering Science. 2004/09/01/ 2004;59(18):3955-3963.
29. Grace JR, Issangya AS, Bai D, Bi H, Zhu J. Situating the high-density circulating fluidized bed. AIChE Journal.1999;45(10):2108-2116.
30. Chew JW, Cahyadi A, Hrenya CM, Karri R, Cocco RA. Review of entrainment correlations in gas–solid fluidization. Chemical Engineering Journal. 2015/01/15/ 2015;260:152-171.
31. Rahaman MF, Sarhan AR, Naser J. Kinetic theory for multi-particulate flow: Description of granular flow with rotary movement of particles. Powder Technology. 2020/01/15/ 2020;360:780-788.
32. Songprawat S, Gidaspow D. Multiphase flow with unequal granular temperatures. Chemical Engineering Science. 2010/02/01/ 2010;65(3):1134-1143.
33. Das M, Meikap BC, Saha RK. Characteristics of axial and radial segregation of single and mixed particle system based on terminal settling velocity in the riser of a circulating fluidized bed.Chemical Engineering Journal. 2008/12/01/ 2008;145(1):32-43.
34. Du M, Wang S. Investigation of the segregation of a binary particle mixture in a square circulating fluidized bed with air staging.Particuology. 2019/12/01/ 2019;47:70-76.
35. Zhang H, Lu Y. A computational particle fluid-dynamics simulation of hydrodynamics in a three-dimensional full-loop circulating fluidized bed: Effects of particle-size distribution.Particuology. 2020/04/01/ 2020;49:134-145.
36. Mathiesen V, Solberg T, Hjertager BH. An experimental and computational study of multiphase flow behavior in a circulating fluidized bed. International Journal of Multiphase Flow.2000/03/01/ 2000;26(3):387-419.
37. Chew JW, Wolz JR, Hrenya CM. Axial segregation in bubbling gas-fluidized beds with Gaussian and lognormal distributions of Geldart Group B particles. AIChE Journal. 2010/12/01 2010;56(12):3049-3061.
38. Gauthier D, Zerguerras S, Flamant G. Influence of the particle size distribution of powders on the velocities of minimum and complete fluidization. Chemical Engineering Journal. 1999/07/19/ 1999;74(3):181-196.
39. Lin C-L, Wey M-Y, You S-D. The effect of particle size distribution on minimum fluidization velocity at high temperature.Powder Technology. 2002/08/12/ 2002;126(3):297-301.