References:
1. Xiao, C., et al., Defective epithelial barrier function in asthma. J Allergy Clin Immunol, 2011. 128 (3): p. 549-56.e1-12.
2. Holgate, S.T., The sentinel role of the airway epithelium in asthma pathogenesis. Immunol Rev, 2011. 242 (1): p. 205-19.
3. Cooper, B.G., An update on contraindications for lung function testing. Thorax, 2011. 66 (8): p. 714-23.
4. Lim, H.F. and P. Nair, Airway Inflammation and Inflammatory Biomarkers. Semin Respir Crit Care Med, 2018. 39 (1): p. 56-63.
5. Moheimani, F., et al., The genetic and epigenetic landscapes of the epithelium in asthma. Respir Res, 2016. 17 (1): p. 119.
6. Vieira Braga, F.A., et al., A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med, 2019.25 (7): p. 1153-1163.
7. Bonser, L.R. and D.J. Erle, The airway epithelium in asthma.Adv Immunol, 2019. 142 : p. 1-34.
8. Georas, S.N. and F. Rezaee, Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol, 2014. 134 (3): p. 509-20.
9. Hartsock, A. and W.J. Nelson, Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta, 2008. 1778 (3): p. 660-9.
10. Frey, A., et al., More Than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Front Immunol, 2020. 11 : p. 761.
11. Potaczek, D.P., et al., Role of airway epithelial cells in the development of different asthma phenotypes. Cell Signal, 2020.69 : p. 109523.
12. Bonser, L.R. and D.J. Erle, Airway Mucus and Asthma: The Role of MUC5AC and MUC5B. J Clin Med, 2017. 6 (12).
13. Bonser, L.R., et al., Epithelial tethering of MUC5AC-rich mucus impairs mucociliary transport in asthma. J Clin Invest, 2016.126 (6): p. 2367-71.
14. Lambrecht, B.N. and H. Hammad, The airway epithelium in asthma. Nat Med, 2012. 18 (5): p. 684-92.
15. Hellings, P.W. and B. Steelant, Epithelial barriers in allergy and asthma. J Allergy Clin Immunol, 2020. 145 (6): p. 1499-1509.
16. Van Lommel, A., Pulmonary neuroendocrine cells (PNEC) and neuroepithelial bodies (NEB): chemoreceptors and regulators of lung development. Paediatr Respir Rev, 2001. 2 (2): p. 171-6.
17. Garg, A., et al., Consider the lung as a sensory organ: A tip from pulmonary neuroendocrine cells. Curr Top Dev Biol, 2019.132 : p. 67-89.
18. Sui, P., et al., Pulmonary neuroendocrine cells amplify allergic asthma responses. Science, 2018. 360 (6393).
19. Schneider, C., C.E. O’Leary, and R.M. Locksley, Regulation of immune responses by tuft cells. Nat Rev Immunol, 2019. 19 (9): p. 584-593.
20. Kimura, S., et al., Airway M Cells Arise in the Lower Airway Due to RANKL Signaling and Reside in the Bronchiolar Epithelium Associated With iBALT in Murine Models of Respiratory Disease. Front Immunol, 2019. 10 : p. 1323.
21. Ruan, Y.C., et al., CFTR interacts with ZO-1 to regulate tight junction assembly and epithelial differentiation through the ZONAB pathway. J Cell Sci, 2014. 127 (Pt 20): p. 4396-408.
22. Ye, W.J., et al., Differences in airway remodeling and airway inflammation among moderate-severe asthma clinical phenotypes. J Thorac Dis, 2017. 9 (9): p. 2904-2914.
23. Lefaudeux, D., et al., U-BIOPRED clinical adult asthma clusters linked to a subset of sputum omics. J Allergy Clin Immunol, 2017. 139 (6): p. 1797-1807.
24. Kuruvilla, M.E., F.E. Lee, and G.B. Lee, Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol, 2019. 56 (2): p. 219-233.
25. Desai, M. and J. Oppenheimer, Elucidating asthma phenotypes and endotypes: progress towards personalized medicine. Ann Allergy Asthma Immunol, 2016. 116 (5): p. 394-401.
26. Kulkarni, N.S., et al., Eosinophil protein in airway macrophages: a novel biomarker of eosinophilic inflammation in patients with asthma. J Allergy Clin Immunol, 2010. 126 (1): p. 61-9.e3.
27. Kuo, C.S., et al., A Transcriptome-driven Analysis of Epithelial Brushings and Bronchial Biopsies to Define Asthma Phenotypes in U-BIOPRED. Am J Respir Crit Care Med, 2017. 195 (4): p. 443-455.
28. Roan, F., K. Obata-Ninomiya, and S.F. Ziegler, Epithelial cell-derived cytokines: more than just signaling the alarm. J Clin Invest, 2019. 129 (4): p. 1441-1451.
29. O’Leary, C.E., C. Schneider, and R.M. Locksley, Tuft Cells-Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annu Rev Immunol, 2019. 37 : p. 47-72.
30. Moffatt, M.F., et al., A large-scale, consortium-based genomewide association study of asthma. N Engl J Med, 2010.363 (13): p. 1211-1221.
31. Kabata, H., et al., Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat Commun, 2013. 4 : p. 2675.
32. Chen, R., et al., Allergen-induced Increases in Sputum Levels of Group 2 Innate Lymphoid Cells in Subjects with Asthma. Am J Respir Crit Care Med, 2017. 196 (6): p. 700-712.
33. Bahrami Mahneh, S., et al., Serum IL-33 Is Elevated in Children with Asthma and Is Associated with Disease Severity. Int Arch Allergy Immunol, 2015. 168 (3): p. 193-6.
34. Guo, Z., et al., IL-33 promotes airway remodeling and is a marker of asthma disease severity. J Asthma, 2014. 51 (8): p. 863-9.
35. Cheng, D., et al., Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma. Am J Respir Crit Care Med, 2014. 190 (6): p. 639-48.
36. Corren, J., et al., Tezepelumab in Adults with Uncontrolled Asthma. N Engl J Med, 2017. 377 (10): p. 936-946.
37. Choy, D.F., et al., TH2 and TH17 inflammatory pathways are reciprocally regulated in asthma. Sci Transl Med, 2015.7 (301): p. 301ra129.
38. Raundhal, M., et al., High IFN-γ and low SLPI mark severe asthma in mice and humans. The Journal of Clinical Investigation, 2015.125 (8): p. 3037-3050.
39. Faul, J.L., et al., Lung immunopathology in cases of sudden asthma death. Eur Respir J, 1997. 10 (2): p. 301-7.
40. Nakagome, K. and M. Nagata, Pathogenesis of airway inflammation in bronchial asthma. Auris Nasus Larynx, 2011.38 (5): p. 555-63.
41. Davies, D.E., et al., Airway remodeling in asthma: new insights. J Allergy Clin Immunol, 2003. 111 (2): p. 215-25; quiz 226.
42. Campbell, A., et al., Functional assessment of viability of epithelial cells. Comparison of viability and mediator release in healthy subjects and asthmatics. Chest, 1992. 101 (3 Suppl): p. 25s-27s.
43. Shrine, N., et al., Author Correction: New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat Genet, 2019.51 (6): p. 1067.
44. Shrine, N., et al., Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. Lancet Respir Med, 2019. 7 (1): p. 20-34.
45. Pohunek, P., et al., Markers of eosinophilic inflammation and tissue re-modelling in children before clinically diagnosed bronchial asthma. Pediatr Allergy Immunol, 2005. 16 (1): p. 43-51.
46. Saglani, S., et al., Ultrastructure of the reticular basement membrane in asthmatic adults, children and infants. Eur Respir J, 2006.28 (3): p. 505-12.
47. Kicic, A., et al., Decreased fibronectin production significantly contributes to dysregulated repair of asthmatic epithelium. Am J Respir Crit Care Med, 2010. 181 (9): p. 889-98.
48. Iosifidis, T., et al., Airway epithelial repair in health and disease: Orchestrator or simply a player? Respirology, 2016.21 (3): p. 438-48.
49. Holgate, S.T., The airway epithelium is central to the pathogenesis of asthma. Allergol Int, 2008. 57 (1): p. 1-10.
50. Puddicombe, S.M., et al., Involvement of the epidermal growth factor receptor in epithelial repair in asthma. Faseb j, 2000.14 (10): p. 1362-74.
51. Flood-Page, P., et al., Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest, 2003. 112 (7): p. 1029-36.
52. Le Cras, T.D., et al., Epithelial EGF receptor signaling mediates airway hyperreactivity and remodeling in a mouse model of chronic asthma. Am J Physiol Lung Cell Mol Physiol, 2011.300 (3): p. L414-21.
53. Grayson, M.H., et al., Advances in asthma in 2017: Mechanisms, biologics, and genetics. J Allergy Clin Immunol, 2018. 142 (5): p. 1423-1436.
54. Sehra, S., et al., Periostin regulates goblet cell metaplasia in a model of allergic airway inflammation. J Immunol, 2011.186 (8): p. 4959-66.
55. Anderson, H.M., et al., Relationships among aeroallergen sensitization, peripheral blood eosinophils, and periostin in pediatric asthma development. J Allergy Clin Immunol, 2017. 139 (3): p. 790-796.
56. Takahashi, K., et al., Serum periostin levels serve as a biomarker for both eosinophilic airway inflammation and fixed airflow limitation in well-controlled asthmatics. J Asthma, 2019.56 (3): p. 236-243.
57. Kanemitsu, Y., et al., Increased periostin associates with greater airflow limitation in patients receiving inhaled corticosteroids. J Allergy Clin Immunol, 2013. 132 (2): p. 305-12.e3.
58. Semprini, R., et al., Longitudinal variation of serum periostin levels in adults with stable asthma. J Allergy Clin Immunol, 2017. 139 (5): p. 1687-1688.e9.
59. Jia, G., et al., Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J Allergy Clin Immunol, 2012. 130 (3): p. 647-654.e10.
60. Li, H., et al., A meta-analysis of anti-interleukin-13 monoclonal antibodies for uncontrolled asthma. PLoS One, 2019.14 (1): p. e0211790.
61. Hanania, N.A., et al., Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir Med, 2016. 4 (10): p. 781-796.
62. Pavlidis, S., et al., ”T2-high” in severe asthma related to blood eosinophil, exhaled nitric oxide and serum periostin. Eur Respir J, 2019. 53 (1).
63. Hanania, N.A., et al., Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med, 2013. 187 (8): p. 804-11.
64. Wagener, A.H., et al., External validation of blood eosinophils, FE(NO) and serum periostin as surrogates for sputum eosinophils in asthma. Thorax, 2015. 70 (2): p. 115-20.
65. Lakind, J.S., et al., A critical review of the use of Clara cell secretory protein (CC16) as a biomarker of acute or chronic pulmonary effects. Biomarkers, 2007. 12 (5): p. 445-67.
66. Zhai, J., et al., Club Cell Secretory Protein Deficiency Leads to Altered Lung Function. Am J Respir Crit Care Med, 2019.199 (3): p. 302-312.
67. Guerra, S., et al., Relation between circulating CC16 concentrations, lung function, and development of chronic obstructive pulmonary disease across the lifespan: a prospective study. Lancet Respir Med, 2015. 3 (8): p. 613-20.
68. Emmanouil, P., et al., Sputum and BAL Clara cell secretory protein and surfactant protein D levels in asthma. Allergy, 2015.70 (6): p. 711-4.
69. Rosas-Salazar, C., et al., Urine Club Cell 16-kDa Secretory Protein and Childhood Wheezing Illnesses After Lower Respiratory Tract Infections in Infancy. Pediatr Allergy Immunol Pulmonol, 2015.28 (3): p. 158-164.
70. Jia, M., et al., Ezrin, a Membrane Cytoskeleton Cross-Linker Protein, as a Marker of Epithelial Damage in Asthma. Am J Respir Crit Care Med, 2019. 199 (4): p. 496-507.
71. Wu, Q. and O. Eickelberg, Ezrin in Asthma: A First Step to Early Biomarkers of Airway Epithelial Dysfunction. Am J Respir Crit Care Med, 2019. 199 (4): p. 408-410.
72. Kalinauskaite-Zukauske, V., et al., Serum levels of epithelial-derived mediators and interleukin-4/interleukin-13 signaling after bronchial challenge with Dermatophagoides pteronyssinus in patients with allergic asthma. Scand J Immunol, 2019. 90 (5): p. e12820.
73. Sun, Y., et al., YKL-40 mediates airway remodeling in asthma via activating FAK and MAPK signaling pathway. Cell Cycle, 2020.19 (11): p. 1378-1390.
74. Tang, H., et al., YKL-40 in asthmatic patients, and its correlations with exacerbation, eosinophils and immunoglobulin E. Eur Respir J, 2010. 35 (4): p. 757-60.
75. Guerra, S., et al., The relation of circulating YKL-40 to levels and decline of lung function in adult life. Respir Med, 2013.107 (12): p. 1923-30.
76. Gomez, J.L., et al., Characterisation of asthma subgroups associated with circulating YKL-40 levels. Eur Respir J, 2017.50 (4).
77. Konradsen, J.R., et al., The chitinase-like protein YKL-40: a possible biomarker of inflammation and airway remodeling in severe pediatric asthma. J Allergy Clin Immunol, 2013. 132 (2): p. 328-35.e5.
78. James, A.J., et al., Increased YKL-40 and Chitotriosidase in Asthma and Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med, 2016. 193 (2): p. 131-42.
79. Wang, J., et al., Plasma YKL-40 and NGAL are useful in distinguishing ACO from asthma and COPD. Respir Res, 2018.19 (1): p. 47.
80. Moffatt, M.F., et al., Association between quantitative traits underlying asthma and the HLA-DRB1 locus in a family-based population sample. Eur J Hum Genet, 2001. 9 (5): p. 341-6.
81. Préfontaine, D., et al., Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin Immunol, 2010.125 (3): p. 752-4.
82. Woodruff, P.G., et al., Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci U S A, 2007. 104 (40): p. 15858-63.
83. Balaci, L., et al., IRAK-M is involved in the pathogenesis of early-onset persistent asthma. Am J Hum Genet, 2007. 80 (6): p. 1103-14.
84. Koppelman, G.H., et al., Identification of PCDH1 as a novel susceptibility gene for bronchial hyperresponsiveness. Am J Respir Crit Care Med, 2009. 180 (10): p. 929-35.
85. Moffatt, M.F., et al., Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature, 2007.448 (7152): p. 470-3.
86. Hallstrand, T.S., et al., Epithelial regulation of eicosanoid production in asthma. Pulm Pharmacol Ther, 2012. 25 (6): p. 432-7.
87. Luo, W., et al., Airway Epithelial Expression Quantitative Trait Loci Reveal Genes Underlying Asthma and Other Airway Diseases. Am J Respir Cell Mol Biol, 2016. 54 (2): p. 177-87.
88. Yang, I.V., et al., The nasal methylome and childhood atopic asthma. J Allergy Clin Immunol, 2017. 139 (5): p. 1478-1488.
89. Stefanowicz, D., et al., DNA methylation profiles of airway epithelial cells and PBMCs from healthy, atopic and asthmatic children.PLoS One, 2012. 7 (9): p. e44213.
90. Breton, C.V., et al., DNA methylation in the arginase-nitric oxide synthase pathway is associated with exhaled nitric oxide in children with asthma. Am J Respir Crit Care Med, 2011. 184 (2): p. 191-7.
91. Stefanowicz, D., et al., Elevated H3K18 acetylation in airway epithelial cells of asthmatic subjects. Respir Res, 2015.16 (1): p. 95.
92. Wanet, A., et al., miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res, 2012.40 (11): p. 4742-53.
93. Martinez-Nunez, R.T., et al., A microRNA network dysregulated in asthma controls IL-6 production in bronchial epithelial cells. PLoS One, 2014. 9 (10): p. e111659.
94. Haj-Salem, I., et al., MicroRNA-19a enhances proliferation of bronchial epithelial cells by targeting TGFβR2 gene in severe asthma.Allergy, 2015. 70 (2): p. 212-9.
95. Woodruff, P.G., Subtypes of asthma defined by epithelial cell expression of messenger RNA and microRNA. Ann Am Thorac Soc, 2013.10 Suppl (Suppl): p. S186-9.
96. Solberg, O.D., et al., Airway epithelial miRNA expression is altered in asthma. Am J Respir Crit Care Med, 2012. 186 (10): p. 965-74.
97. Fitzpatrick, A.M., Biomarkers of asthma and allergic airway diseases. Ann Allergy Asthma Immunol, 2015. 115 (5): p. 335-40.
98. Caballero Balanza, S., et al., Leukotriene B4 and 8-isoprostane in exhaled breath condensate of children with episodic and persistent asthma. J Investig Allergol Clin Immunol, 2010.20 (3): p. 237-43.
99. Horvath, I., et al., A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur Respir J, 2017.49 (4).
100. Brinkman, P., A.M. Zee, and A.H. Wagener, Breathomics and treatable traits for chronic airway diseases. Curr Opin Pulm Med, 2019.25 (1): p. 94-100.
101. Simpson, J.L., P. McElduff, and P.G. Gibson, Assessment and reproducibility of non-eosinophilic asthma using induced sputum.Respiration, 2010. 79 (2): p. 147-51.
102. McGrath, K.W., et al., A large subgroup of mild-to-moderate asthma is persistently noneosinophilic. Am J Respir Crit Care Med, 2012. 185 (6): p. 612-9.
103. Noah, T.L., et al., Nasal lavage cytokines in normal, allergic, and asthmatic school-age children. Am J Respir Crit Care Med, 1995. 152 (4 Pt 1): p. 1290-6.
104. Vieira Braga, F.A., et al., A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med, 2019.25 (7): p. 1153-1163.
105. Lee, P.H., et al., Alteration in Claudin-4 Contributes to Airway Inflammation and Responsiveness in Asthma. Allergy Asthma Immunol Res, 2018. 10 (1): p. 25-33.
106. Sweerus, K., et al., Claudin-18 deficiency is associated with airway epithelial barrier dysfunction and asthma. J Allergy Clin Immunol, 2017. 139 (1): p. 72-81.e1.
107. Hillas, G., et al., Increased levels of osteopontin in sputum supernatant of smoking asthmatics. Cytokine, 2013. 61 (1): p. 251-5.
108. Samitas, K., et al., Osteopontin expression and relation to disease severity in human asthma. Eur Respir J, 2011. 37 (2): p. 331-41.
109. Xu, H., W. Lou, and F. Fu, Association between osteopontin expression and asthma: a meta-analysis. J Int Med Res, 2019.47 (8): p. 3513-3521.
110. Chauhan, A., et al., Correlation of TSLP, IL-33, and CD4 + CD25 + FOXP3 + T regulatory (Treg) in pediatric asthma. J Asthma, 2015.52 (9): p. 868-72.
111. Ketelaar, M.E., et al., The challenge of measuring IL-33 in serum using commercial ELISA: lessons from asthma. Clin Exp Allergy, 2016. 46 (6): p. 884-7.
112. Corrigan, C.J., et al., Allergen-induced expression of IL-25 and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous responses. J Allergy Clin Immunol, 2011. 128 (1): p. 116-24.
113. Seys, S.F., et al., Sputum cytokine mapping reveals an ’IL-5, IL-17A, IL-25-high’ pattern associated with poorly controlled asthma.Clin Exp Allergy, 2013. 43 (9): p. 1009-17.
114. Bazan-Socha, S., et al., Increased blood levels of cellular fibronectin in asthma: Relation to the asthma severity, inflammation, and prothrombotic blood alterations. Respir Med, 2018. 141 : p. 64-71.
115. Desai, D., et al., Sputum mediator profiling and relationship to airway wall geometry imaging in severe asthma. Respir Res, 2013.14 : p. 17.
116. Shikotra, A., et al., Increased expression of immunoreactive thymic stromal lymphopoietin in patients with severe asthma. J Allergy Clin Immunol, 2012. 129 (1): p. 104-11.e1-9.
117. Zissler, U.M., et al., Biomatrix for upper and lower airway biomarkers in patients with allergic asthma. J Allergy Clin Immunol, 2018. 142 (6): p. 1980-1983.
118. O’Neil, S.E., et al., Quantitative expression of osteopontin in nasal mucosa of patients with allergic rhinitis: effects of pollen exposure and nasal glucocorticoid treatment. Allergy Asthma Clin Immunol, 2010. 6 (1): p. 28.
119. Boulay, M.E., et al., Metalloproteinase-9 in induced sputum correlates with the severity of the late allergen-induced asthmatic response. Respiration, 2004. 71 (3): p. 216-24.
120. Karakoc, G.B., et al., Exhaled breath condensate MMP-9 level and its relationship with asthma severity and interleukin-4/10 levels in children. Ann Allergy Asthma Immunol, 2012. 108 (5): p. 300-4.
121. Shan, L., et al., Inverse relationship between Sec14l3 mRNA/protein expression and allergic airway inflammation. Eur J Pharmacol, 2009. 616 (1-3): p. 293-300.