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ABSTRACT
In this work, we will design unexpected configurations for the optical soliton propagation in
lossy fiber system in presence the dispersion term solitons via two distinct and impressive
techniques. The first one is the (G'/G)-expansion method, while the second is solitary wave
ansatze method. The two methods are implemented in same vein and parallel. The obtained
perceptions are new and weren’t achieved before. The comparison between our achieved
visions and that achieved by other authors who used different schemas has been documented.

Keywords: The lossy fiber system under dispersion terms influence, the (G'/G)-expansion
method, the solitary wave ansatze method, the optical soliton solutions.

1-Introduction

The optical soliton propagation phenomenon is one of the famous optical fiber phenomenon
that have impressive effect in telecommunication processes. There are many models are
proposed to describe different kinds of propagation all are derived from the will known
Schrédinger equation with its various forms. The famous one of these various form is the
propagation of optical soliton in lossy fiber system in presence the dispersion term. The
suggested model is famous one of the variable-coefficient nonlinear Schrodinger equation that
describes the optical soliton propagation in dispersion management fiber systems. In the
achieved solutions the coefficients of the third order dispersion term, the group velocity
dispersion terms which achieved new improved results for the interference solitons as well as
the other parameters whose effect on the nature of the optical soliton propagation have been
exploring. It is important to upgrade this phenomenon to develop all visible and audio
telecommunications means.

The propagation of light in optical fiber which is one of important phenomena's in
telecommunication processes appearing for the first time in 1973 by [1]. This phenomena
caused revolution in modern telecommunications process because when a light ray incident
upon an optical fiber it will split into two rays or a lot which have slightly various paths under
the polarization property. Recently, some studies have been established to discuss this
phenomenon theoretically and experimentally via distinct published articles [2-22] through
which the scientists have been shored that when the dispersion effect and nonlinear effect of
the medium reach a stable equilibrium, the pulse can maintain its shape and velocity in the
form of solitons during the transmission process [23-25]. The optical fiber transmission
system is the ideal effective carriers one which possesses high rate, large channel capacity and
no limitation of transmission distance, hence ensure the high quality to long-distance



communications. The dispersion fiber management system by the variable coefficient NLSE
[26] which surrender to the self-steepness effect, simulated Raman scattering, fiber loss,
group velocity dispersion, and third-order dispersion.

We will extract the new configurations of the propagation of optical solitons in lossy
fiber system for the first time using two distinct and impressive techniques. The first one is
the (G'/G)-expansion method [27-30] which successes to design new impressive
representations for the propagation optical soliton in lossy fiber system in presence the
dispersion term solitons, while the second one is the famous solitary wave ansatze method
[31-35] which successes to detect other new impressive representations to the optical soliton
propagation in lossy fiber system. The two suggested techniques have been examined
previously for many other nonlinear problems and achieved good results. The achieved
solitons will help in improve amplifiers device, audio and optical telecommunications. We
will demonstrate comparisons between our achieved results and that achieved previously by
other authors who used different techniques to solve this system. According to [27] the
suggested model can be written as,
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where u =u(x,t)is a complex function measured small changes formal of the complex

valued electric field at position x and time t in the fiber, while the coefficients
B, (X),y(x)and S,(x) are respectively denoted to group velocity , kerr-nonlinearity and
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third-order dispersion. Moreover, «, u(X) are denotes to loss and periodic amplification of
the signal and y,,y, are the coefficients of self-steepness and simulated Raman scattering.
To solve this model let us firstly assume

u(x,t) =V () e ¢ =x—pt,p=q—kx+wt+6 @)
Hence,
u, =V=e*—-kve"? 3)
u, =—pve’+wve” 4)
u, = pV"e” —2pwV'e"” + we" (5)
UtV (6)

Via inserting the relations (2-6) into Eq. (1) the following real and imaginary parts must be
emerged
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2. Quick view -of the (G'/G)-expansion method
Any nonlinear evolution equation can be written in the form:

v(R,R,R, R, Ry ):O, ©)
where w is a function of R, its highest order partial derivatives and the nonlinear terms.
When Eq. (9) surrenders to the transformation R(x,t) = R({),¢ = x— pt it will be converted
to the following ODE:



S\V,V V" .. )=0, (10)
where S in terms ofV (£) and total derivatives with respect to &
The constructed solution according to this method is:
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Where the positive integer N in Eqg. (11) can be located by balancing the highest order
derivative term and the nonlinear term, while G(¢) satisfies the second order differential
equation G"+ uG'+ 4G =0.
This equation admits three forms of solutions depending on the cases
o —42=0, i’ =41 <0and y° =41 =0
Case 1: When 1> —44 =0, the solution is;
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Case 2: When ,u2 -4 <0, the solution is;
N YTV} Nt =42
G Y —|ls|n(“#)§+|2 COS(%){ u
G’ T 2 2 2 ) (13)
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Case 3: When ,u2 —41 =0, the solution is;

Gy (e y_#
=G 2 (14)

Where 1,1, are constants
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Firstly, we will implement the (%) -expansion for the real part Eq. (7) which is
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By balancing V",V in Eq. (15) leads toN =1, hence the solution according to the

suggested method is V () = A + AI.(%)

Via inserting V (&), its derivatives into Eq.(15),collecting and equating the coefficients of

. G’ . . .
various powers of (E)"to zero we get a system of algebraic equations by solving it we

obtain the following results
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For simplicity and similarity we will locate only one of these four results say the first one
which is
A= 3B, (2+ p)w-3,/36p+ f,(-12Kkp" 4w +5p +6pw* +6ap’ +12p‘wy,
18p\/Z
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This result can be simplified to be
p=w=a,=k=1A =-095,A =iy, =11, f, =13 1=-2.9, =05

This result will generate other four sub-results, we will plot only one say,
p=w=a,=k=1A =-095,A=i,7,=14=31=-29,u=05

From the point of view of the proposed method and the values of x, A the solution is
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Fig.1: The soliton of the Re. part Eq.(26) in 2D and 3D with value:
p=w=a=k=1A =-095,A=iy,=14=31=-29,u=051=11,=2,=0.1

Fig.2: The soliton of the Im. part Eq.(27) in 2D and 3D with value:
p=w=a=k=1A =-095A=iy=14=31=-29,u=051=11,=2,=0.1

Via the same method we can plot the other cases.
Secondly, we will implement the (G'/G)-expansion for the imaginary part Eq. (8)
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The above equation contains two nonlinear terms which are V3,V2V’, when we implement
the balance between V" and the first one which is V*it lead to N =1. Although the balance
is one, unfortunately the two families of this method don’t achieve any solutions. In other
trail, when we implement the balance rule between V" and the second one which is V2V’ it



leads toN = % this pushes us to take the transformation R =V *which will transform this

equation into the following form
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In this equation which also contains two nonlinear terms which are R*,R’R’, when we
implement the balance between RR"and any one of them lead to N =1, hence the solution

according to the suggested method is R({) = A, + AL(%) '
Via inserting R(¢), its derivatives into Eq. (15), collecting and equating the coefficients of
various powers of (%)"to zero we get a system of algebraic equations by solving it we

obtain the following results
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For simplicity and similarity we will choose only two different results of them say the first,

the ninth and draw them.
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This result can be simplified to be
k=p=w=y,=14,=03A=04A=19,1=4521=92,0=0.1

From the point of view of the proposed method and the values of x, A the solution is
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(

E) _994 Sinh 22.4§+2095h 22.4¢ _296
G Cosh22.44 +2Sinh 22.44

V(&) ={8.96(

L0t) = {Sl%(slnh 22.4¢ +2Cosh 22.4¢ j = 1} .

Sinh22.4¢ +2Cosh22.4¢)
Cosh22.4¢ +2Sinh22.4¢ )

Cosh 22.4¢ +2Sinh 22.4¢

Sinh 22.4¢ +2Cosh 22.4¢
Cosh 22.4¢ +2Sinh 22.4¢

Sinh22.4¢ +2Cosh 22.4¢
Cosh 22.4¢ +2Sinh 22.4¢

Reu(x,t):{8.96[ j—?.l}Cos(l.l—xH)
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Fig.3: The soliton of the Re. part Eq.(44) in 2D and 3D with value:
k=p=w=y,=1A=12A=56u=452,1=921=11,=2,0=01
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Fig.4: The soliton of the Im. part Eq.(45) in 2D and 3D with value:
k=p=w=y,=LA=12A=56u=452,1=921=11,=2,60=01

(2)The ninth results which is i:wﬁﬂz—;&m,yzo,ﬂh =0
p
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This result can be simplified to be
k=p=w=y,=1,4=03A=-1A=0,=01=427,0=01

From the point of view of the proposed method and the values of x, A the solution is
G!
V(@) =A+ A_L(E)

-1, Sin(VA 2% ”22_ e, Cos("”zz_ e
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Fig.5: The soliton of the Re. part Eq.(50) in 2D and 3D with value:
k=p=w=y,=14,=03 A=-1A=0,u=01=427,6=01
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Fig.6: The soliton of the Im. part Eq.(51) in 2D and 3D with value:
k=p=w=y,=14,=03 A=-1A=0,u=01=427,6=01

4. The SWAM formalism
The SWAM [31-35] can be introduced as follows:

u(x,t) = p(x,t)e"*n (52)
Such that y(X,t) is the portion argument, while R(X,t)is the phase portion of soliton and we
can easily obtain the following relations:

U, = (V/t + i‘//Rt)elR

u, = (v, +iyR,)e"

Uy = (Wxx + 2"//x Rx + il//Rxx _'//sz)eiR

U = (l//xxx +3il/jxxRx - II//RS _3!//x Rf + il//Rxxx +3"//xR _3V/RXRxx)eiR (53)
The suggested model Eqg. (1) in the framework of the relations mentioned in Eg. (53) will be
converted into the following real and imaginary equations respectively

XX

W, + (% — 1)y~ % W) + 3y °y, — (% R +3R%)y, =0 (54)
(k+%—%Rf —Rf)y/+%l//n +( Ry —%%R =27y, =0 (55)

The bright soliton solutions
w(x,t) = A sech™t,, wheret, = B, (x—wt)and R, (x,t) = kx — Ot
w, = ABWR sech®t tanht,
w, =—ABR sech™t tanht,
v, =—AB’R (1+R)sech™?t + AB?R?sech®t,
v, =—ABWR (1+R)sech™?t + AB’wW’R’sech™ t,
W = ABIR (R +1)(R, +2)sech™t tanht, — AB’R?sech™t, tanht,
Ve =—ABWR (R +1)(R, +2)sech™?t tanht, + ABW’R’sech™t, tanht, (56)

Via substituting the relations (56) into the real and imaginary parts equations (54), (55) at the
same time we get,



R =1A =06i,B =187, kx—~Qt=1,0=17, 4=05,5, = j,

—~ABR sech™t tanht, + (%—y)Alsecth t,

+% ABWR (R, +1)(R, +2)sech™t, tanht, —% ABXW’R’sech™t tanht,
+3B,W,R 7 A’ sech®® t, tanht, + (Q% ~-30%)ABWR sech™t, tanht, =0
((k+%—%§22 o BfwfRf[%Jr%Q]insecth {

~ABMWR, (L+ Rl)(%+%(2jsechRl+2 t,
+(y,Q-y) A’ sech®™ t —2BwR y, A’sech®® t, tanht, =0

Equations (57), (58) implies the following results,

(57)

(58)

R =1A =+0.6i,B =+1.87,kx—Qt=1,Q=17,8,= B, =7, =k =a=w, =1 (59)

This solution will generate 4-solutions according to the probability of exchange the signs of
different parameters, for simplicity we will plot only one of these four solutions which is

R =1A=06iB =187,kx-Qt=1,0=17,8,=8,=y. =k=a=w,=1 (60)

The bright solution is

u(x,t) = A (sech™ B, (x—wt) Je'®

u(x,t) =0.6i(sech[1.9x —1.9t])e'**™

u(x,t) =0.6i(sech[1.9x—1.9t])x (cos(x—1.7t) +isin(x —1.7t))
Reu(x,t) =—0.6(sech[1.9x —1.9t])xsin(x—1.7t)

Im u(x,t) = 0.6(sech[1.9x—1.9t]) x cos(x —1.7t)

: ; ; -oX
2 12 1 1 2
Fig.8 The bright soliton of the Im. part Eq.(63) in 2D and 3D with values:

By the same manner we can easily drawing the other three solutions.
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The dark soliton solutions

w(x,t) = A tanh™t,, where t, = B,(x —w,t) and R, (x,t) = kx —Qt

v, =—AB,R,w,[tanh® " t, —tanh ™" t,]

v, = A,B,R,[tanh™*t, —tanh™"1,]

¥ = AR, (R, —1)B; tanh™t, —2 A R7B; tanh™ t, + 2A,R, (R, +1) B} tanh %,

v, = ARBW[(R, 1) tanh™2t, — 2R, tanh™ t, + (R, +1) tanh % *21,]

Ve = ARB;I(R, ~1)(R, —2) tanh™*t, - (R, ~1)(R, —2) + 2R;) tanh ™ 't,
+((R, +D(R, +2) + 2R?) tanh ™™ t, — (R, +1)(R, + 2) tanh®*° t, ]

Vi == AR BAEI(R, ~D)(R, ~2)tanh™*t, ~ (R, ~1)(R, ~2) + 2R} tanh ™,
+((R, +1)(R, +2) + 2R?) tanh ™™ t, — (R, +1)(R, +2) tanh ", ]

Via inserting the relations (64) into the real and imaginary parts equations (54), (55) at the
same time we obtain,

(64)

(AszRz +%((R2 (R, —2)+2R§)_(97/32—392)@32R2W2Jtanhm1t2

Qzﬂz —:aQZ)AZBZRZWZjtanth*lt2

5, )_
i?«RZ F1)(R, +2)+2R?) ~ AB,R, +( (65)

+(%— L)A, tanh® t, +% AR,BMWZ[(R, ~1)(R, — 2) tanh®2t,

+%(R2 +1)(R, +2)tanh™®**t, — 3y A’B,R,w, tanh***t, + 3y A’B,R,w, tanh**t, =0

[k+%—%92 ~0° - BRIBW —Qﬁ3R§B§W§jAz tanh™t,

2,2 2,2
+[ﬁ2A2R2E’2W2 +Qﬂ3AszBZW2 j(RZ _Dtanth—ztz

2 2 (66)
2412 2002
+[ﬁ2AzR;Bzwz +Qﬂ3Az§szWz j(Rz L)k,

+(7.Q-7)A tanh® t, + 27, AB,R,w, (tanh*™*t, ~tanh**t, ) =0
Via equating the highest order of tanh' t,implies R, =1hence we get the following values:

u=0.5y :O,AZ2 =-05Q=05£05,4,=0k=B,=a=4,=w, =1 (67)
The solution in the framework of these values is

u(x,t) =+0.7i tanh(x —t) x @'* 5" x g*0 (68)

This solution will generate 4-solutions; for simplicity we will take only one of them say,
u(x,t) = 0.7i tanh(x —t) x e'* %% x g2 (69)
Reu(x,t) = —0.7e>*" x tanh(x —t) xsin(x — 0.5t) (70)

Im u(x,t) =0.7e>*" x tanh(x —t) x cos(x — 0.5t) (71)
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Fig.9: The dark soliton of the Re. part Eq.(70) in 2D and 3D with values:
u=05y =0A=07,Q2=05+05,4,=0k=B,=a=4,=w,=1
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Fig.10: The dark soliton of the Im. part Eq.(71) in 2D and 3D with values:
u=057 =0A =07i,Q=05+05i,8=0k=B,=a=4,=w,=1

By the same manner we can easily drawing the other three solutions.

5-Conclusion

In this paper, new configuration designs of solitons arising in lossy fiber system under
influence dispersion terms via two distinct methods have been documented. The two
suggested methods are previously examined for many other nonlinear partial differential
equations and achieved good results. The first one has profile name the (G'/G)-expansion
method, while the second one has profile name the SWAM. The two schemes are
implemented in the same time and parallel. The (G'/G)-expansion has been used successfully
to detect new solitons configurations for some achieved solutions that emerged from the real
and imaginary part of the suggested model figures (1-6). Moreover, the SWAM also applied
effectively to demonstrate other new configurations of the solitons propagation in this model
figures (7-10). In all achieved solutions the coefficients of the third order dispersion term, the
group velocity dispersion term as well as the other parameters are not only detected but also
its explore their effects on nature of the optical soliton propagation are established. Some of
the achieved solitons via these two various methods isomorphic with that achieved previously
by [36] who used different techniques to investigate this model while the majority “which
weren’t achieved before” are considered to be novelty solitons of this model. Hence, new
distinct configurations perceptions of solitons of this model have been documented and will
add future visions not only for this model but also for all related phenomena.
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