References
1- G. A. Florides, P. Christodoulides. Global warming and carbon dioxide
through sciences. Environment International 2009 ,35 , 390-401. DOI: 10.1016/j.envint.2008.07.007
2- M. Bui, C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown,
P. S. Fennell, S. Fuss, A. Galindo, L. A. Hackett, J. P. Hallett, H. J.
Herzog, G. Jackson, J. Kemper, S. Krevor, G. C. Maitland, M.
Matuszewski, I. S. Metcalfe, C. Petit, G. Puxty, J. Reimer, D. M.
Reiner, E. S. Rubin, S. A. Scott, N. Shah, B. Smit, J. P. M. Trusler, P.
Webley, J. Wilcox, N. Mac Dowell. Carbon capture and storage (CCS): the
way forward. Energy Environmental Science 2018 ,11 , 1062-1176. DOI: 10.1039/c7ee02342a
3 - J. Gibbins, H. Chalmers. Carbon capture and storage. Energy
Policy 2008 , 36 , 4317-4322. Doi:
10.1016/j.enpol.2008.09.058
4- H. Eldardiry, E. Habib. Carbon capture and sequestration in power
generation: review of impacts and opportunities for water
sustainability, Energy, Sustainability and Society 2018 ,8 , 6. DOI 10.1186/s13705-018-0146-3
5- S. Chu, A. Majumdar. Opportunities and challenges for a sustainable
energy future. Nature 2012 , 488 , 294−303. DOI:
10.1038/nature11475 6- H. Arastoopour. The critical contribution of
chemical engineering to a pathway to sustainability. Chemical
Engineering Science 2019 , 203 , 247-258. DOI:
10.1016/j.ces.2019.03.069
7- R Chauvy, N. Meunier, D. Thomas, G. De Weireld, Selecting emerging
CO2 utilization products for short- to mid-term
deployment. Applied Energy 2019 , 236 , 662-680.
DOI: 10.1016/j.apenergy.2018.11.096
8- F. M. Baena-Moreno, M. Rodríguez-Galán, F. Vega, B. Alonso-Fariñas,
L. F. V. Arenas, B. Navarrete. Carbon capture and utilization
technologies: a literature review and recent advances. Energy
Sources, Part A: Recovery, Utilization, and Environmental Effects2019 , 41 , 1403–1433. DOI: 10.1080/15567036.2018.1548518
9- J. Hwang, J. Kim, H. W. Lee, J. Na, B. S. Ahn, S. D. Lee, H. S. Kim,
H. Lee, U. Lee. An experimental based optimization of a novel water lean
amine solvent for post combustion CO2 capture process.Applied Energy 2019 , 248 , 174-184. DOI:
10.1016/j.apenergy.2019.04.135
10- H.-M. Wen, C. Liao, L. Li, A. Alsalme, Z. Alothman, R. Krishna, H.
Wu, W. Zhou, J. Hu, B. Chen. A metal−organic framework with suitable
pore size and dual functionalities for highly efficient post-combustion
CO2 capture. Journal of Materials Chemistry A2019 , 7 , 3128-3134. DOI: 10.1039/C8TA11596F
11- A. Henrique, M. Karimi, J. A. C. Silva, A. E. Rodrigues. Statistical
and experimental analyses of adsorption behavior of CO2,
CH4, and N2 on different types of BETA
zeolites. Chemical Engineering & Technology 2019 ,42 , 327-342. DOI: 10.1002/ceat.201800386
12- M. Aghaie, N. Rezaei, S. Zendehboudi. A systematic review on
CO2 capture with ionic liquids: Current status and
future prospects. Renewable and Sustainable Energy Reviews2018 , 96 , 502-525. DOI: 10.1016/j.rser.2018.07.004
13- T. Song, G. M. A. Bonilla, O. Morales-Collazo, M. J. Lubben, J. F.
Brennecke. Recyclability of encapsulated ionic liquids for
post-combustion CO2 capture. Industrial &
Engineering Chemistry Research 2019 , 58 , 4997−5007.
DOI: 10.1021/acs.iecr.9b00251
14- G. Yu, X. Zou, L. Sun, B. Liu, Z. Wang,
P. Zhang, G. Zhu. Constructing Connected Paths between UiO-66 and PIM-1
to improve membrane CO2 separation with crystal-like gas
selectivity. Advanced Materials 2019, 31 , 1806853. DOI:
10.1002/adma.201806853
15- E. Orestes,
C. M. Ronconi, J. W. de
M. Carneiro. Insights
into the interactions of CO2 with amines: a DFT
benchmark study. Physical Chemistry Chemical Physics 2014,16 , 17213-17219. DOI:
10.1039/c4cp02254h
16- X. Yang, R. J. Rees, W. Conway∥, G.
Puxty∥, Q. Yang, D. A. Winkler. Computational modeling and simulation of
CO2 capture by aqueous amines. Chemical Review2017, 117 , 9524-9593. DOI:
10.1021/acs.chemrev.6b00662
17- D. G. Truhlar. Basis-set extrapolation.Chemical Physics Letters 1998, 294 , 4548. DOI:
10.1016/S0009-2614(98)00866-5
18- D. Harris, E. Bushnell. Density functional theory study of the
capture and release of carbon dioxide by benzyl–disulfide, −diselenide,
and −ditelluride. Journal of Physical Chemistry A 2019 ,123 , 3383-3388. DOI: 10.1021/acs.jpca.9b01862
19- A. J. C. Varandas. On carbon dioxide capture: An accurate ab initio
study of the Li3N + CO2 insertion
reaction. Computational and Theoretical Chemistry 2014 ,1036 , 61–71. DOI: 10.1016/j.comptc.2014.02.022
20- M. T.-Sucarrat, A. J. C. Varandas. Carbon dioxide capture with the
ozone-like polynitrogen molecule Li3N3.The Journal of Physical Chemistry
A 2014 , 118 , 12256-12261. DOI: 10.1021/jp509933x
21- M. T.-Sucarrat, A. J. C. Varandas. Carbon dioxide capture and
release by anions with solvent‐dependent behaviour: A theoretical study.Chemistry – A European Journal 2016 , 22 , 14056
– 14063. DOI: 10.1002/chem.201602538
22- M. M. Gonzalez, ̵́F. G. D. Xavier, J. Li, L. A. Montero-Cabrera, J. M.
G. de la Vega, A. J. C. Varandas. Role of augmented basis sets and quest
for ab initio performance/cost alternative to Kohn−Sham density
functional theory. The Journal of Physical Chemistry A2020 , 124 , 126−134. DOI: 10.1021/acs.jpca.9b09504
23- A. J. C. Varandas, M. M. González, L. A. Montero-Cabrera. J. M. G.
de la Vega. Assessing how correlated molecular orbital calculations can
perform versus Kohn–Sham DFT: barrier heights/isomerizations.Chemistry – A European Journal 2017 , 23, 9122−9129.
DOI: 10.1002/chem.201700928
24- J. Tomasi, B. Mennucci, R. Cammi. Quantum mechanical continuum
solvation models. Chemical Reviews 2005 , 105 ,
2999–3093. DOI: 10.1021/cr9904009
25- C. Møller, M. S. Plesset. Note on an approximation treatment for
many-electron systems. Physical Review 1934 , 46 ,
618-622. DOI: 10.1103/PhysRev.46.618
26- T. H. Dunning. Gaussian basis sets for use in correlated molecular
calculations. I. The atoms boron through neon and hydrogen. The
Journal of Chemical Physics 1989 , 90 , 1007–1023. DOI:
10.1063/1.456153
27- R. A. Kendall, T. H. Dunning, R. J. Harrison. Electron affinities of
the first‐row atoms revisited. Systematic basis sets and wave functions.The Journal of Chemical Physics . 1992 , 96 ,
6796–6806. DOI: 10.1063/1.462569
28- K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V.
Gurumoorthi, J. Chase, J. Li, T. L. Windus. Basis set exchange: A
community database for computational sciences. Journal of Chemical
Information and Modeling 2007 , 47 , 1045–1052. DOI:
10.1021/ci600510j
29- A. J. C. Varandas, F. N. N. Pansini Narrowing the error in electron
correlation calculations by basis set re-hierarchization and use of the
unified singlet and triplet electron-pair extrapolation scheme:
Application to a test set of 106 systems. The Journal of Chemical
Physics 2014 , 141 , 224113. DOI: 10.1063/1.4903193
30- F. N. N. Pansini, A. C. Neto, A. J. C. Varandas. Extrapolation of
Hartree–Fock and multiconfiguration self-consistent-field energies to
the complete basis set limit. Theoretical Chemistry Accounts2016 , 135 , 261. DOI: 10.1007/s00214-016-2016-4
31- A. J. C. Varandas. Extrapolation to the complete basis set limit
without counterpoise. The pair potential of helium revisited. The
Journal of Physical Chemistry A 2010 , 114 , 8505–8516.
DOI: 10.1021/jp908835v
32- A. J. C. Varandas. Can extrapolation to the basis set limit be an
alternative to the counterpoise correction? A study on the helium dimer.Theoretical Chemistry Accounts 2008 , 119 , 511.
DOI 10.1007/s00214-008-0419-6
33- A. J. C. Varandas. Straightening the hierarchical staircase for
basis set extrapolations: A low-cost approach to high-accuracy
computational chemistry. Annual Review of Physical Chemistry2018 , 69 , 177–203.
10.1146/annurev-physchem-050317-021148
34- A.J.C. Varandas. Publisher Correction to: Even numbered carbon
clusters: cost-effective wavefunction-based method for calculation and
automated location of most structural isomers. European Physical
Journal D 2018, 72 , 134. DOI:
10.1140/epjd/e2018-90492-0
35- A. Moser, K. Range, D. M. York. Accurate proton affinity and
gas-phase basicity values for molecules important in biocatalysis.The Journal of Physical Chemistry B 2010, 114,13911–13921. DOI: 10.1021/jp107450n
36- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A.
Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.
Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F.
Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.
Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M.
Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C.
Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O¨. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox,
Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT,2009 .
37- F. Teixidor, G. Barberà, A. Vaca, R. Kivekäs, R. Sillanpää, J.
Oliva, C. Viñas. Are methyl groups electron-donating or
electron-withdrawing in boron clusters? Permethylation ofo -Carborane. Journal of the American Chemical Society2005 , 127, 10158–10159. DOI: 10.1021/ja052981r
38- C. M. Teague, S. Dai, D. Jiang. Computational investigation of
reactive to nonreactive capture of carbon dioxide by oxygen-containing
Lewis bases. The Journal of Physical Chemistry A 2010,114, 11761–11767. DOI: 10.1021/jp1056072
39- M. Hou, Z. Liu, Q. Li. The π‐hole tetrel bond between
X2TO and CO2: Substituent effects and
its potential adsorptivity for CO2. International
Journal of Quantum Chemistry 2020 , 120 , 26251. DOI:
10.1002/qua.26251