References
André, J. P., Catesson, A. M., & Liberman, M. (1999). Characters and
origin of vessels with heterogenous structure in leaf and flower
abscission zones. Canadian Journal of Botany , 77 (2),
253-261.
André, J. P. (2005). Vascular organization of angiosperms: a new
vision . Science Publishers.
Bouda, M., Windt, C. W., McElrone, A. J., & Brodersen, C. R. (2019). In
vivo pressure gradient heterogeneity increases flow contribution of
small diameter vessels in grapevine. Nature
communications , 10 (1), 1-10.
Bréda, N., Cochard, H., Dreyer, E., & Granier, A. (1993). Field
comparison of transpiration, stomatal conductance and vulnerability to
cavitation of Quercus petraea and Quercus robur under
water stress. Annales des Sciences Forestières , 50 ,
571-582.
Brodersen, C. R., McElrone, A. J., Choat, B., Lee, E. F., Shackel, K.
A., & Matthews, M. A. (2013). In vivo visualizations of drought-induced
embolism spread in Vitis vinifera . Plant
Physiology , 161 (4), 1820-1829.
Brodribb, T. J., Feild, T. S., & Sack, L. (2010). Viewing leaf
structure and evolution from a hydraulic perspective. Functional
Plant Biology , 37 (6), 488-498.
Brodribb, T. J., Skelton, R. P., McAdam, S. A., Bienaimé, D., Lucani, C.
J., & Marmottant, P. (2016a). Visual quantification of embolism reveals
leaf vulnerability to hydraulic failure. New
Phytologist , 209 (4), 1403-1409.
Brodribb, T. J., Bienaimé, D., & Marmottant, P. (2016b). Revealing
catastrophic failure of leaf networks under stress. Proceedings of
the National Academy of Sciences , 113 (17), 4865-4869.
Brodribb, T. J., Carriqui, M., Delzon, S., & Lucani, C. (2017). Optical
measurement of stem xylem vulnerability. Plant
Physiology , 174 (4), 2054-2061.
Chatelet, D. S., Matthews, M. A., & Rost, T. L. (2006). Xylem structure
and connectivity in grapevine (Vitis vinifera ) shoots provides a
passive mechanism for the spread of bacteria in grape
plants. Annals of Botany , 98 (3), 483-494.
Choat, B., Cobb, A. R., & Jansen, S. (2008). Structure and function of
bordered pits: new discoveries and impacts on whole‐plant hydraulic
function. New Phytologist , 177 (3), 608-626.
Choat, B., Drayton, W. M., Brodersen, C., Matthews, M. A., Shackel, K.
A., Wada, H., & Mcelrone, A. J. (2010). Measurement of vulnerability to
water stress‐induced cavitation in grapevine: a comparison of four
techniques applied to a long‐vesseled species. Plant, Cell &
Environment , 33 (9), 1502-1512.
Choat, B., Brodersen, C. R., & McElrone, A. J. (2015). Synchrotron
X‐ray microtomography of xylem embolism in Sequoia sempervirenssaplings during cycles of drought and recovery. New
Phytologist , 205 (3), 1095-1105.
Choat, B., Badel, E., Burlett, R., Delzon, S., Cochard, H., & Jansen,
S. (2016). Noninvasive measurement of vulnerability to drought-induced
embolism by X-ray microtomography. Plant
Physiology , 170 (1), 273-282.
Coasne, B., & Farrusseng, D.
(2019). Gas oversolubility in nanoconfined liquids: Review and
perspectives for adsorbent design. Microporous and Mesoporous
Materials , 288 , article 109561.
Cochard, H., Badel, E., Herbette, S., Delzon, S., Choat, B., & Jansen,
S. (2013). Methods for measuring plant vulnerability to cavitation: a
critical review. Journal of Experimental Botany , 64 (15),
4779-4791.
Cohen, S., Bennink, J., & Tyree, M. (2003). Air method measurements of
apple vessel length distributions with improved apparatus and
theory. Journal of Experimental Botany , 54 (389),
1889-1897.
Crombie, D. S., Hipkins, M. F., & Milburn, J. A. (1985). Gas
penetration of pit membranes in the xylem of Rhododendron as the cause
of acoustically detectable sap cavitation. Functional Plant
Biology , 12 (5), 445-453.
Dixon, H. H., & Joly, J. (1895). On the ascent of sap.Philosophical Transactions of the Royal Society of London. (B)
186 , 563-576.
Domec, J. C., & Gartner, B. L. (2001). Cavitation and water storage
capacity in bole xylem segments of mature and young Douglas-fir
trees. Trees , 15 (4), 204-214.
Donaldson, L. A., Singh, A., Raymond, L., Hill, S., & Schmitt, U.
(2019). Extractive distribution in Pseudotsuga menziesii : effects
on cell wall porosity in sapwood and heartwood. IAWA
Journal , 40 (4), 721-740.
Ellmore, G. S., Zanne, A. E., & Orians, C. M. (2006). Comparative
sectoriality in temperate hardwoods: hydraulics and xylem
anatomy. Botanical Journal of the Linnean Society , 150 (1),
61-71.
Espino, S., & Schenk, H. J. (2009). Hydraulically integrated or
modular? Comparing whole‐plant‐level hydraulic systems between two
desert shrub species with different growth forms. New
Phytologist , 183 (1), 142-152.
Greenidge, K. N. H. (1952). An approach to the study of vessel length in
hardwood species. American Journal of Botany , 39 , 570-574.
Hacke, U. G., Sperry, J. S., Wheeler, J. K., & Castro, L. (2006).
Scaling of angiosperm xylem structure with safety and
efficiency. Tree Physiology , 26 (6), 689-701.
Hammel, H. T. (1967). Freezing of xylem sap without
cavitation. Plant Physiology , 42 (1), 55-66.
Ho, L. N., Schuurman, Y.,
Farrusseng, D., & Coasne, B. (2015). Solubility of gases in water
confined in nanoporous materials: ZSM-5, MCM-41, and MIL-100. The
Journal of Physical Chemistry C , 119 (37), 21547-21554.
Hochberg, U., Albuquerque, C., Rachmilevitch, S., Cochard, H.,
David‐Schwartz, R., Brodersen, C. R., … & Windt, C. W. (2016).
Grapevine petioles are more sensitive to drought induced embolism than
stems: evidence from in vivo MRI and microcomputed tomography
observations of hydraulic vulnerability segmentation. Plant, Cell
& Environment , 39 (9), 1886-1894.
Hochberg, U., Windt, C. W., Ponomarenko, A., Zhang, Y. J., Gersony, J.,
Rockwell, F. E., & Holbrook, N. M. (2017). Stomatal closure, basal leaf
embolism, and shedding protect the hydraulic integrity of grape
stems. Plant Physiology , 174 (2), 764-775.
Hua, L., He, P., Goldstein, G., Liu, H., Yin, D., Zhu, S., & Ye, Q.
(2020). Linking vein properties to leaf biomechanics across 58 woody
species from a subtropical forest. Plant Biology , 22 (2),
212-220.
Jansen, S., & Schenk, H. J. (2015). On the ascent of sap in the
presence of bubbles. American Journal of Botany , 102 (10),
1561-1563.
Jansen, S., Klepsch, M., Li, S., Kotowska, M. M., Schiele, S., Zhang,
Y., & Schenk, H. J. (2018). Challenges in understanding air-seeding in
angiosperm xylem. Acta Horticulturae , 1222 , 13-20.
Jansen, S., Guan, X., Kaack, L., Trabi, C., Miranda, M. T., Ribeiro, R.
V., & Pereira, L. (In press) The Pneumatron estimates xylem embolism
resistance in angiosperms based on gas diffusion kinetics: a
mini-review. Acta Horticulturae .
Johnson, K. M., Brodersen, C.,
Carins-Murphy, M. R., Choat, B., & Brodribb, T. J. (2020). Xylem
embolism spreads by single-conduit events in three dry forest angiosperm
stems. Plant Physiology , 184 (1), 212-222.
Kaack, L., Altaner, C. M., Carmesin, C., Diaz, A., Holler, M., Kranz,
C., … Jansen, S. (2019). Function and three-dimensional structure
of intervessel pit membranes in angiosperms: a review. IAWA
Journal , 40 (4), 673-702.
Kaack, L., Weber, M., Isasa, E.,
Karimi, Z., Li, S., Pereira, L., … & Schmidt, V. (2020). Pore
constrictions in intervessel pit membranes reduce the risk of embolism
spreading in angiosperm xylem. bioRxiv .
Kitin, P. B., Fujii, T., Abe, H., & Funada, R. (2004). Anatomy of the
vessel network within and between tree rings of Fraxinus
lanuginosa (Oleaceae). American Journal of Botany , 91 (6),
779-788.
Klepsch, M., Zhang, Y., Kotowska, M. M., Lamarque, L. J., Nolf, M.,
Schuldt, B., … & Scoffoni, C. (2018). Is xylem of angiosperm leaves
less resistant to embolism than branches? Insights from microCT,
hydraulics, and anatomy. Journal of Experimental
Botany , 69 (22), 5611-5623.
Kotowska, M. M., Thom, R., Zhang, Y., Schenk, H. J., & Jansen, S.
(2020). Within-tree variability and sample storage effects of bordered
pit membranes in xylem of Acer
pseudoplatanus. Trees , 34 (1), 61-71.
Lamarque, L. J., Corso, D., Torres-Ruiz, J. M., Badel, E., Brodribb, T.
J., Burlett, R., … & Jansen, S. (2018). An inconvenient truth about
xylem resistance to embolism in the model species for refillingLaurus nobilis L. Annals of Forest Science , 75 (3),
article 88.
Lechthaler, S., Colangeli, P., Gazzabin, M., & Anfodillo, T. (2019).
Axial anatomy of the leaf midrib provides new insights into the
hydraulic architecture and cavitation patterns of Acer
pseudoplatanus leaves. Journal of Experimental
Botany , 70 (21), 6195-6201.
Levionnois, S., Ziegler, C., Jansen, S., Calvet, E., Coste, S., Stahl,
C., … & Heuret, P. (2020). Vulnerability and hydraulic segmentations
at the stem–leaf transition: coordination across Neotropical
trees. New Phytologist , 228 (2), 512-524.
Li, S., Lens, F., Espino, S., Karimi, Z., Klepsch, M., Schenk, H. J.,
… & Jansen, S. (2016). Intervessel pit membrane thickness as a key
determinant of embolism resistance in angiosperm xylem. IAWA
Journal , 37 (2), 152-171.
Lidon, P., Marker, S. C., Wilson, J. J., Williams, R. M., Zipfel, W. R.,
& Stroock, A. D. (2018). Enhanced oxygen solubility in metastable water
under tension. Langmuir , 34 (40), 12017-12024.
Loepfe, L., Martinez-Vilalta, J., Piñol, J., & Mencuccini, M. (2007).
The relevance of xylem network structure for plant hydraulic efficiency
and safety. Journal of Theoretical Biology , 247 (4),
788-803.
Losso, A., Bär, A., Dämon, B., Dullin, C., Ganthaler, A., Petruzzellis,
F., … & Beikircher, B. (2019). Insights from in vivo micro‐CT
analysis: testing the hydraulic vulnerability segmentation in Acer
pseudoplatanus and Fagus sylvatica seedlings. New
Phytologist , 221 (4), 1831-1842.
Martin‐StPaul, N., Delzon, S., & Cochard, H. (2017). Plant resistance
to drought depends on timely stomatal closure. Ecology
Letters , 20 (11), 1437-1447.
Morris, H., Brodersen, C., Schwarze, F. W., & Jansen, S. (2016).
The parenchyma of secondary xylem
and its critical role in tree defense against fungal decay in relation
to the CODIT model. Frontiers in Plant Science , 7 , article
1665.
Mercury, L., Azaroual, M., Zeyen, H., & Tardy, Y. (2003). Thermodynamic
properties of solutions in metastable systems under negative or positive
pressures. Geochimica et Cosmochimica Acta , 67 (10),
1769-1785.
Nardini, A., Savi, T., Losso, A., Petit, G., Pacilè, S., Tromba, G., …
& Salleo, S. (2017). X‐ray microtomography observations of xylem
embolism in stems of Laurus nobilis are consistent with hydraulic
measurements of percentage loss of conductance. New
Phytologist , 213 (3), 1068-1075.
Oliveira, R. S., Costa, F. R., van Baalen, E., de Jonge, A.,
Bittencourt, P. R., Almanza, Y., … & Guimaraes, Z. T. (2019).
Embolism resistance drives the distribution of Amazonian rainforest tree
species along hydro‐topographic gradients. New
Phytologist , 221 (3), 1457-1465.
Oskolski, A. A., & Jansen, S. (2009). Distribution of scalariform and
simple perforation plates within the vessel network in secondary xylem
of Araliaceae and its implications for wood evolution. Plant
Systematics and Evolution , 278 (1-2), 43-51.
Pammenter, N. V., & Van der Willigen, C. (1998). A mathematical and
statistical analysis of the curves illustrating vulnerability of xylem
to cavitation. Tree Physiology , 18 (8-9), 589-593.
Pan, R., Geng, J., Cai, J., & Tyree, M. T. (2015). A comparison of two
methods for measuring vessel length in woody plants. Plant, Cell
& Environment , 38 (12), 2519-2526.
Park, J., Go, T., Ryu, J., & Lee, S. J. (2019). Air spreading through
wetted cellulose membranes: Implications for the safety function of
hydraulic valves in plants. Physical Review E , 100 (3),
article 032409.
Pera‐Titus, M., El‐Chahal, R., Rakotovao, V., Daniel, C., Miachon, S.,
& Dalmon, J. A. (2009). Direct volumetric measurement of gas
oversolubility in Nanoliquids: beyond Henry’s
law. ChemPhysChem , 10 (12), 2082-2089.
Pereira, L., Bittencourt, P. R., Oliveira, R. S., Junior, M. B., Barros,
F. V., Ribeiro, R. V., & Mazzafera, P. (2016). Plant pneumatics: stem
air flow is related to embolism–new perspectives on methods in plant
hydraulics. New Phytologist , 211 (1), 357-370.
Pereira, L., Bittencourt, P. R., Pacheco, V. S., Miranda, M. T., Zhang,
Y., Oliveira, R. S., … & Rowland, L. (2020a). The Pneumatron: An
automated pneumatic apparatus for estimating xylem vulnerability to
embolism at high temporal resolution. Plant, Cell &
Environment , 43 (1), 131-142.
Pereira, L., Miranda, M. T., Pires, G. S., Pacheco, V. S., Guan, X.,
Kaack, L., … & Ribeiro, R. V. (2020b). A semi-automated method for
measuring xylem vessel length distribution. Theoretical and
Experimental Plant Physiology , 32 , 331-340.
Salleo, S., Gullo, M. L., & Siracusano, L. (1984). Distribution of
vessel ends in stems of some diffuse-and ring-porous trees: the nodal
regions as ‘safety zones’ of the water conducting system. Annals
of Botany , 54 (4), 543-552.
Sano, Y., Morris, H., Shimada, H., Ronse De Craene, L. P., & Jansen, S.
(2011). Anatomical features associated with water transport in
imperforate tracheary elements of vessel-bearing
angiosperms. Annals of Botany , 107 (6), 953-964.
Schenk, H. J., Steppe, K., & Jansen, S. (2015). Nanobubbles: a new
paradigm for air-seeding in xylem. Trends in Plant
Science , 20 (4), 199-205.
Schenk, H. J., Espino, S., Visser, A., & Esser, B. K. (2016). Dissolved
atmospheric gas in xylem sap measured with membrane inlet mass
spectrometry. Plant, Cell & Environment , 39 (4), 944-950.
Schenk, H. J., Espino, S., Romo, D. M., Nima, N., Do, A. Y., Michaud, J.
M., … & Jansen, S. (2017). Xylem surfactants introduce a new element
to the cohesion-tension theory. Plant Physiology , 173 (2),
1177-1196.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair,
M., Pietzsch, T., … & Tinevez, J. Y. (2012). Fiji: an open-source
platform for biological-image analysis. Nature
Methods , 9 (7), 676-682.
Scoffoni, C., Albuquerque, C., Brodersen, C. R., Townes, S. V., John, G.
P., Cochard, H., … & Sack, L. (2017). Leaf vein xylem conduit
diameter influences susceptibility to embolism and hydraulic
decline. New Phytologist , 213 (3), 1076-1092.
Skelton, R. P., Dawson, T. E., Thompson, S. E., Shen, Y., Weitz, A. P.,
& Ackerly, D. (2018). Low vulnerability to xylem embolism in leaves and
stems of North American oaks. Plant Physiology , 177 (3),
1066-1077.
Sorz, J., & Hietz, P. (2006). Gas diffusion through wood: implications
for oxygen supply. Trees , 20 (1), 34-41.
Sperry, J. S., & Tyree, M. T. (1988). Mechanism of water stress-induced
xylem embolism. Plant Physiology , 88 (3), 581-587.
Sperry, J. S., Hacke, U. G., & Wheeler, J. K. (2005). Comparative
analysis of end wall resistivity in xylem conduits. Plant, Cell &
Environment , 28 (4), 456-465.
Spicer, R., & Holbrook, N. M. (2005). Within‐stem oxygen concentration
and sap flow in four temperate tree species: does long‐lived xylem
parenchyma experience hypoxia? Plant, Cell &
Environment , 28 (2), 192-201.
Teskey, R. O., Saveyn, A., Steppe, K., & McGuire, M. A. (2008). Origin,
fate and significance of CO2 in tree stems. New
Phytologist , 177 (1), 17-32.
Tixier, A., Herbette, S., Jansen, S., Capron, M., Tordjeman, P.,
Cochard, H., & Badel, E. (2014). Modelling the mechanical behaviour of
pit membranes in bordered pits with respect to cavitation resistance in
angiosperms. Annals of Botany , 114 (2), 325-334.
Torres-Ruiz, J. M., Jansen, S., Choat, B., McElrone, A. J., Cochard, H.,
Brodribb, T. J., … & Li, S. (2015). Direct X-ray microtomography
observation confirms the induction of embolism upon xylem cutting under
tension. Plant Physiology , 167 (1), 40-43.
Tyree, M. T., & Ewers, F. W. (1991). The hydraulic architecture of
trees and other woody plants. New Phytologist , 119 (3),
345-360.
Tyree, M. T., Alexander, J., & Machado, J. L. (1992). Loss of hydraulic
conductivity due to water stress in intact juveniles of Quercus
rubra and Populus deltoides . Tree
Physiology , 10 (4), 411-415.
Wang, R., Zhang, L., Zhang, S., Cai, J., & Tyree, M. T. (2014). Water
relations of Robinia pseudoacacia L.: do vessels cavitate and
refill diurnally or are R‐shaped curves invalid in Robinia ?Plant, Cell & Environment , 37 (12), 2667-2678.
Wang, Y., Pan, R., & Tyree, M. T. (2015a). Studies on the tempo of
bubble formation in recently cavitated vessels: a model to predict the
pressure of air bubbles. Plant Physiology , 168 (2),
521-531.
Wang, Y., Liu, J., & Tyree, M. T. (2015b). Stem hydraulic conductivity
depends on the pressure at which it is measured and how this dependence
can be used to assess the tempo of bubble pressurization in recently
cavitated vessels. Plant physiology , 169 (4), 2597-2607.
Wason, J. W., Anstreicher, K. S., Stephansky, N., Huggett, B. A., &
Brodersen, C. R. (2018). Hydraulic safety margins and air‐seeding
thresholds in roots, trunks, branches and petioles of four northern
hardwood trees. New Phytologist , 219 (1), 77-88.
Wheeler, J. K., Huggett, B. A., Tofte, A. N., Rockwell, F. E., &
Holbrook, N. M. (2013). Cutting xylem under tension or supersaturated
with gas can generate PLC and the appearance of rapid recovery from
embolism. Plant, Cell & Environment , 36 (11), 1938-1949.
Wolfe, B. T., Sperry, J. S., & Kursar, T. A. (2016). Does leaf shedding
protect stems from cavitation during seasonal droughts? A test of the
hydraulic fuse hypothesis. New Phytologist , 212 (4),
1007-1018.
Wu M., Zhang Y., Oya T., Marcati C.R., Pereira L., Jansen S.(2020) Root xylem in three woody angiosperm species is not more
vulnerable to embolism than stem xylem. Plant and Soil, 450 ,
479-495.
Yang, S., & Tyree, M. T. (1992). A theoretical model of hydraulic
conductivity recovery from embolism with comparison to experimental data
on Acer saccharum . Plant, Cell & Environment ,15 (6), 633-643.
Yang, J., M Michaud, J., Jansen, S., Schenk, H. J., & Zuo, Y. Y.
(2020). Dynamic surface tension of xylem sap lipids. Tree
Physiology , 40 (4), 433-444.
Zhang, Y., Klepsch, M., & Jansen,
S. (2017). Bordered pits in xylem of vesselless angiosperms and their
possible misinterpretation as perforation plates. Plant, Cell &
Environment , 40 (10), 2133-2146.
Zhang, Y., Lamarque, L. J., Torres-Ruiz, J. M., Schuldt, B., Karimi, Z.,
Li, S., … & Delzon, S. (2018). Testing the plant pneumatic method to
estimate xylem embolism resistance in stems of temperate
trees. Tree Physiology , 38 (7), 1016-1025.
Zhang, Y., Carmesin, C., Kaack, L., Klepsch, M. M., Kotowska, M., Matei,
T., … & Jansen, S. (2020). High porosity with tiny pore constrictions
and unbending pathways characterize the 3D structure of intervessel pit
membranes in angiosperm xylem. Plant, Cell &
Environment , 43 (1), 116-130.
Zhu, S. D., Song, J. J., Li, R. H., & Ye, Q. (2013). Plant hydraulics
and photosynthesis of 34 woody species from different successional
stages of subtropical forests. Plant, Cell &
Environment , 36 (4), 879-891.
Zhu, S. D., Liu, H., Xu, Q. Y., Cao, K. F., & Ye, Q. (2016). Are leaves
more vulnerable to cavitation than branches? Functional
Ecology , 30 (11), 1740-1744.
Zimmermann, M. H. (1983). Xylem
structure and the ascent of sap. Springer Science & Business
Media.