References
André, J. P., Catesson, A. M., & Liberman, M. (1999). Characters and origin of vessels with heterogenous structure in leaf and flower abscission zones. Canadian Journal of Botany77 (2), 253-261.
André, J. P. (2005). Vascular organization of angiosperms: a new vision . Science Publishers.
Bouda, M., Windt, C. W., McElrone, A. J., & Brodersen, C. R. (2019). In vivo pressure gradient heterogeneity increases flow contribution of small diameter vessels in grapevine. Nature communications10 (1), 1-10.
Bréda, N., Cochard, H., Dreyer, E., & Granier, A. (1993). Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Quercus robur under water stress. Annales des Sciences Forestières , 50 , 571-582.
Brodersen, C. R., McElrone, A. J., Choat, B., Lee, E. F., Shackel, K. A., & Matthews, M. A. (2013). In vivo visualizations of drought-induced embolism spread in Vitis viniferaPlant Physiology161 (4), 1820-1829.
Brodribb, T. J., Feild, T. S., & Sack, L. (2010). Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology37 (6), 488-498.
Brodribb, T. J., Skelton, R. P., McAdam, S. A., Bienaimé, D., Lucani, C. J., & Marmottant, P. (2016a). Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytologist209 (4), 1403-1409.
Brodribb, T. J., Bienaimé, D., & Marmottant, P. (2016b). Revealing catastrophic failure of leaf networks under stress. Proceedings of the National Academy of Sciences113 (17), 4865-4869.
Brodribb, T. J., Carriqui, M., Delzon, S., & Lucani, C. (2017). Optical measurement of stem xylem vulnerability. Plant Physiology174 (4), 2054-2061.
Chatelet, D. S., Matthews, M. A., & Rost, T. L. (2006). Xylem structure and connectivity in grapevine (Vitis vinifera ) shoots provides a passive mechanism for the spread of bacteria in grape plants. Annals of Botany98 (3), 483-494.
Choat, B., Cobb, A. R., & Jansen, S. (2008). Structure and function of bordered pits: new discoveries and impacts on whole‐plant hydraulic function. New Phytologist177 (3), 608-626.
Choat, B., Drayton, W. M., Brodersen, C., Matthews, M. A., Shackel, K. A., Wada, H., & Mcelrone, A. J. (2010). Measurement of vulnerability to water stress‐induced cavitation in grapevine: a comparison of four techniques applied to a long‐vesseled species. Plant, Cell & Environment33 (9), 1502-1512.
Choat, B., Brodersen, C. R., & McElrone, A. J. (2015). Synchrotron X‐ray microtomography of xylem embolism in Sequoia sempervirenssaplings during cycles of drought and recovery. New Phytologist205 (3), 1095-1105.
Choat, B., Badel, E., Burlett, R., Delzon, S., Cochard, H., & Jansen, S. (2016). Noninvasive measurement of vulnerability to drought-induced embolism by X-ray microtomography. Plant Physiology170 (1), 273-282.
Coasne, B., & Farrusseng, D. (2019). Gas oversolubility in nanoconfined liquids: Review and perspectives for adsorbent design. Microporous and Mesoporous Materials288 , article 109561.
Cochard, H., Badel, E., Herbette, S., Delzon, S., Choat, B., & Jansen, S. (2013). Methods for measuring plant vulnerability to cavitation: a critical review. Journal of Experimental Botany64 (15), 4779-4791.
Cohen, S., Bennink, J., & Tyree, M. (2003). Air method measurements of apple vessel length distributions with improved apparatus and theory. Journal of Experimental Botany54 (389), 1889-1897.
Crombie, D. S., Hipkins, M. F., & Milburn, J. A. (1985). Gas penetration of pit membranes in the xylem of Rhododendron as the cause of acoustically detectable sap cavitation. Functional Plant Biology12 (5), 445-453.
Dixon, H. H., & Joly, J. (1895). On the ascent of sap.Philosophical Transactions of the Royal Society of London. (B) 186 , 563-576.
Domec, J. C., & Gartner, B. L. (2001). Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees15 (4), 204-214.
Donaldson, L. A., Singh, A., Raymond, L., Hill, S., & Schmitt, U. (2019). Extractive distribution in Pseudotsuga menziesii : effects on cell wall porosity in sapwood and heartwood. IAWA Journal40 (4), 721-740.
Ellmore, G. S., Zanne, A. E., & Orians, C. M. (2006). Comparative sectoriality in temperate hardwoods: hydraulics and xylem anatomy. Botanical Journal of the Linnean Society150 (1), 61-71.
Espino, S., & Schenk, H. J. (2009). Hydraulically integrated or modular? Comparing whole‐plant‐level hydraulic systems between two desert shrub species with different growth forms. New Phytologist183 (1), 142-152.
Greenidge, K. N. H. (1952). An approach to the study of vessel length in hardwood species. American Journal of Botany , 39 , 570-574.
Hacke, U. G., Sperry, J. S., Wheeler, J. K., & Castro, L. (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology26 (6), 689-701.
Hammel, H. T. (1967). Freezing of xylem sap without cavitation. Plant Physiology42 (1), 55-66.
Ho, L. N., Schuurman, Y., Farrusseng, D., & Coasne, B. (2015). Solubility of gases in water confined in nanoporous materials: ZSM-5, MCM-41, and MIL-100. The Journal of Physical Chemistry C119 (37), 21547-21554.
Hochberg, U., Albuquerque, C., Rachmilevitch, S., Cochard, H., David‐Schwartz, R., Brodersen, C. R., … & Windt, C. W. (2016). Grapevine petioles are more sensitive to drought induced embolism than stems: evidence from in vivo MRI and microcomputed tomography observations of hydraulic vulnerability segmentation. Plant, Cell & Environment39 (9), 1886-1894.
Hochberg, U., Windt, C. W., Ponomarenko, A., Zhang, Y. J., Gersony, J., Rockwell, F. E., & Holbrook, N. M. (2017). Stomatal closure, basal leaf embolism, and shedding protect the hydraulic integrity of grape stems. Plant Physiology174 (2), 764-775.
Hua, L., He, P., Goldstein, G., Liu, H., Yin, D., Zhu, S., & Ye, Q. (2020). Linking vein properties to leaf biomechanics across 58 woody species from a subtropical forest. Plant Biology22 (2), 212-220.
Jansen, S., & Schenk, H. J. (2015). On the ascent of sap in the presence of bubbles. American Journal of Botany102 (10), 1561-1563.
Jansen, S., Klepsch, M., Li, S., Kotowska, M. M., Schiele, S., Zhang, Y., & Schenk, H. J. (2018). Challenges in understanding air-seeding in angiosperm xylem. Acta Horticulturae1222 , 13-20.
Jansen, S., Guan, X., Kaack, L., Trabi, C., Miranda, M. T., Ribeiro, R. V., & Pereira, L. (In press) The Pneumatron estimates xylem embolism resistance in angiosperms based on gas diffusion kinetics: a mini-review. Acta Horticulturae .
Johnson, K. M., Brodersen, C., Carins-Murphy, M. R., Choat, B., & Brodribb, T. J. (2020). Xylem embolism spreads by single-conduit events in three dry forest angiosperm stems. Plant Physiology184 (1), 212-222.
Kaack, L., Altaner, C. M., Carmesin, C., Diaz, A., Holler, M., Kranz, C., … Jansen, S. (2019). Function and three-dimensional structure of intervessel pit membranes in angiosperms: a review. IAWA Journal , 40 (4), 673-702.
Kaack, L., Weber, M., Isasa, E., Karimi, Z., Li, S., Pereira, L., … & Schmidt, V. (2020). Pore constrictions in intervessel pit membranes reduce the risk of embolism spreading in angiosperm xylem. bioRxiv .
Kitin, P. B., Fujii, T., Abe, H., & Funada, R. (2004). Anatomy of the vessel network within and between tree rings of Fraxinus lanuginosa (Oleaceae). American Journal of Botany91 (6), 779-788.
Klepsch, M., Zhang, Y., Kotowska, M. M., Lamarque, L. J., Nolf, M., Schuldt, B., … & Scoffoni, C. (2018). Is xylem of angiosperm leaves less resistant to embolism than branches? Insights from microCT, hydraulics, and anatomy. Journal of Experimental Botany69 (22), 5611-5623.
Kotowska, M. M., Thom, R., Zhang, Y., Schenk, H. J., & Jansen, S. (2020). Within-tree variability and sample storage effects of bordered pit membranes in xylem of Acer pseudoplatanus. Trees34 (1), 61-71.
Lamarque, L. J., Corso, D., Torres-Ruiz, J. M., Badel, E., Brodribb, T. J., Burlett, R., … & Jansen, S. (2018). An inconvenient truth about xylem resistance to embolism in the model species for refillingLaurus nobilis L. Annals of Forest Science75 (3), article 88.
Lechthaler, S., Colangeli, P., Gazzabin, M., & Anfodillo, T. (2019). Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves. Journal of Experimental Botany70 (21), 6195-6201.
Levionnois, S., Ziegler, C., Jansen, S., Calvet, E., Coste, S., Stahl, C., … & Heuret, P. (2020). Vulnerability and hydraulic segmentations at the stem–leaf transition: coordination across Neotropical trees. New Phytologist228 (2), 512-524.
Li, S., Lens, F., Espino, S., Karimi, Z., Klepsch, M., Schenk, H. J., … & Jansen, S. (2016). Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem. IAWA Journal37 (2), 152-171.
Lidon, P., Marker, S. C., Wilson, J. J., Williams, R. M., Zipfel, W. R., & Stroock, A. D. (2018). Enhanced oxygen solubility in metastable water under tension. Langmuir34 (40), 12017-12024.
Loepfe, L., Martinez-Vilalta, J., Piñol, J., & Mencuccini, M. (2007). The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology247 (4), 788-803.
Losso, A., Bär, A., Dämon, B., Dullin, C., Ganthaler, A., Petruzzellis, F., … & Beikircher, B. (2019). Insights from in vivo micro‐CT analysis: testing the hydraulic vulnerability segmentation in Acer pseudoplatanus and Fagus sylvatica seedlings. New Phytologist221 (4), 1831-1842.
Martin‐StPaul, N., Delzon, S., & Cochard, H. (2017). Plant resistance to drought depends on timely stomatal closure. Ecology Letters20 (11), 1437-1447.
Morris, H., Brodersen, C., Schwarze, F. W., & Jansen, S. (2016). The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Frontiers in Plant Science7 , article 1665.
Mercury, L., Azaroual, M., Zeyen, H., & Tardy, Y. (2003). Thermodynamic properties of solutions in metastable systems under negative or positive pressures. Geochimica et Cosmochimica Acta67 (10), 1769-1785.
Nardini, A., Savi, T., Losso, A., Petit, G., Pacilè, S., Tromba, G., … & Salleo, S. (2017). X‐ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance. New Phytologist213 (3), 1068-1075.
Oliveira, R. S., Costa, F. R., van Baalen, E., de Jonge, A., Bittencourt, P. R., Almanza, Y., … & Guimaraes, Z. T. (2019). Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro‐topographic gradients. New Phytologist221 (3), 1457-1465.
Oskolski, A. A., & Jansen, S. (2009). Distribution of scalariform and simple perforation plates within the vessel network in secondary xylem of Araliaceae and its implications for wood evolution. Plant Systematics and Evolution278 (1-2), 43-51.
Pammenter, N. V., & Van der Willigen, C. (1998). A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiology18 (8-9), 589-593.
Pan, R., Geng, J., Cai, J., & Tyree, M. T. (2015). A comparison of two methods for measuring vessel length in woody plants. Plant, Cell & Environment38 (12), 2519-2526.
Park, J., Go, T., Ryu, J., & Lee, S. J. (2019). Air spreading through wetted cellulose membranes: Implications for the safety function of hydraulic valves in plants. Physical Review E100 (3), article 032409.
Pera‐Titus, M., El‐Chahal, R., Rakotovao, V., Daniel, C., Miachon, S., & Dalmon, J. A. (2009). Direct volumetric measurement of gas oversolubility in Nanoliquids: beyond Henry’s law. ChemPhysChem10 (12), 2082-2089.
Pereira, L., Bittencourt, P. R., Oliveira, R. S., Junior, M. B., Barros, F. V., Ribeiro, R. V., & Mazzafera, P. (2016). Plant pneumatics: stem air flow is related to embolism–new perspectives on methods in plant hydraulics. New Phytologist211 (1), 357-370.
Pereira, L., Bittencourt, P. R., Pacheco, V. S., Miranda, M. T., Zhang, Y., Oliveira, R. S., … & Rowland, L. (2020a). The Pneumatron: An automated pneumatic apparatus for estimating xylem vulnerability to embolism at high temporal resolution. Plant, Cell & Environment43 (1), 131-142.
Pereira, L., Miranda, M. T., Pires, G. S., Pacheco, V. S., Guan, X., Kaack, L., … & Ribeiro, R. V. (2020b). A semi-automated method for measuring xylem vessel length distribution. Theoretical and Experimental Plant Physiology , 32 , 331-340.
Salleo, S., Gullo, M. L., & Siracusano, L. (1984). Distribution of vessel ends in stems of some diffuse-and ring-porous trees: the nodal regions as ‘safety zones’ of the water conducting system. Annals of Botany54 (4), 543-552.
Sano, Y., Morris, H., Shimada, H., Ronse De Craene, L. P., & Jansen, S. (2011). Anatomical features associated with water transport in imperforate tracheary elements of vessel-bearing angiosperms. Annals of Botany107 (6), 953-964.
Schenk, H. J., Steppe, K., & Jansen, S. (2015). Nanobubbles: a new paradigm for air-seeding in xylem. Trends in Plant Science20 (4), 199-205.
Schenk, H. J., Espino, S., Visser, A., & Esser, B. K. (2016). Dissolved atmospheric gas in xylem sap measured with membrane inlet mass spectrometry. Plant, Cell & Environment39 (4), 944-950.
Schenk, H. J., Espino, S., Romo, D. M., Nima, N., Do, A. Y., Michaud, J. M., … & Jansen, S. (2017). Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiology173 (2), 1177-1196.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … & Tinevez, J. Y. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods9 (7), 676-682.
Scoffoni, C., Albuquerque, C., Brodersen, C. R., Townes, S. V., John, G. P., Cochard, H., … & Sack, L. (2017). Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytologist213 (3), 1076-1092.
Skelton, R. P., Dawson, T. E., Thompson, S. E., Shen, Y., Weitz, A. P., & Ackerly, D. (2018). Low vulnerability to xylem embolism in leaves and stems of North American oaks. Plant Physiology177 (3), 1066-1077.
Sorz, J., & Hietz, P. (2006). Gas diffusion through wood: implications for oxygen supply. Trees20 (1), 34-41.
Sperry, J. S., & Tyree, M. T. (1988). Mechanism of water stress-induced xylem embolism. Plant Physiology88 (3), 581-587.
Sperry, J. S., Hacke, U. G., & Wheeler, J. K. (2005). Comparative analysis of end wall resistivity in xylem conduits. Plant, Cell & Environment28 (4), 456-465.
Spicer, R., & Holbrook, N. M. (2005). Within‐stem oxygen concentration and sap flow in four temperate tree species: does long‐lived xylem parenchyma experience hypoxia? Plant, Cell & Environment28 (2), 192-201.
Teskey, R. O., Saveyn, A., Steppe, K., & McGuire, M. A. (2008). Origin, fate and significance of CO2 in tree stems. New Phytologist177 (1), 17-32.
Tixier, A., Herbette, S., Jansen, S., Capron, M., Tordjeman, P., Cochard, H., & Badel, E. (2014). Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms. Annals of Botany114 (2), 325-334.
Torres-Ruiz, J. M., Jansen, S., Choat, B., McElrone, A. J., Cochard, H., Brodribb, T. J., … & Li, S. (2015). Direct X-ray microtomography observation confirms the induction of embolism upon xylem cutting under tension. Plant Physiology167 (1), 40-43.
Tyree, M. T., & Ewers, F. W. (1991). The hydraulic architecture of trees and other woody plants. New Phytologist119 (3), 345-360.
Tyree, M. T., Alexander, J., & Machado, J. L. (1992). Loss of hydraulic conductivity due to water stress in intact juveniles of Quercus rubra and Populus deltoidesTree Physiology10 (4), 411-415.
Wang, R., Zhang, L., Zhang, S., Cai, J., & Tyree, M. T. (2014). Water relations of Robinia pseudoacacia L.: do vessels cavitate and refill diurnally or are R‐shaped curves invalid in Robinia ?Plant, Cell & Environment37 (12), 2667-2678.
Wang, Y., Pan, R., & Tyree, M. T. (2015a). Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles. Plant Physiology168 (2), 521-531.
Wang, Y., Liu, J., & Tyree, M. T. (2015b). Stem hydraulic conductivity depends on the pressure at which it is measured and how this dependence can be used to assess the tempo of bubble pressurization in recently cavitated vessels. Plant physiology169 (4), 2597-2607.
Wason, J. W., Anstreicher, K. S., Stephansky, N., Huggett, B. A., & Brodersen, C. R. (2018). Hydraulic safety margins and air‐seeding thresholds in roots, trunks, branches and petioles of four northern hardwood trees. New Phytologist219 (1), 77-88.
Wheeler, J. K., Huggett, B. A., Tofte, A. N., Rockwell, F. E., & Holbrook, N. M. (2013). Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell & Environment36 (11), 1938-1949.
Wolfe, B. T., Sperry, J. S., & Kursar, T. A. (2016). Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis. New Phytologist212 (4), 1007-1018.
Wu M., Zhang Y., Oya T., Marcati C.R., Pereira L., Jansen S.(2020) Root xylem in three woody angiosperm species is not more vulnerable to embolism than stem xylem. Plant and Soil, 450 , 479-495.
Yang, S., & Tyree, M. T. (1992). A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum . Plant, Cell & Environment ,15 (6), 633-643.
Yang, J., M Michaud, J., Jansen, S., Schenk, H. J., & Zuo, Y. Y. (2020). Dynamic surface tension of xylem sap lipids. Tree Physiology40 (4), 433-444.
Zhang, Y., Klepsch, M., & Jansen, S. (2017). Bordered pits in xylem of vesselless angiosperms and their possible misinterpretation as perforation plates. Plant, Cell & Environment40 (10), 2133-2146.
Zhang, Y., Lamarque, L. J., Torres-Ruiz, J. M., Schuldt, B., Karimi, Z., Li, S., … & Delzon, S. (2018). Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees. Tree Physiology38 (7), 1016-1025.
Zhang, Y., Carmesin, C., Kaack, L., Klepsch, M. M., Kotowska, M., Matei, T., … & Jansen, S. (2020). High porosity with tiny pore constrictions and unbending pathways characterize the 3D structure of intervessel pit membranes in angiosperm xylem. Plant, Cell & Environment43 (1), 116-130.
Zhu, S. D., Song, J. J., Li, R. H., & Ye, Q. (2013). Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant, Cell & Environment36 (4), 879-891.
Zhu, S. D., Liu, H., Xu, Q. Y., Cao, K. F., & Ye, Q. (2016). Are leaves more vulnerable to cavitation than branches? Functional Ecology30 (11), 1740-1744.
Zimmermann, M. H. (1983). Xylem structure and the ascent of sap. Springer Science & Business Media.