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Abstract

This article describes how a step-stress accelerated life test (SSALT) can be designed for testing the

fatigue  life  and  reliability  of  structural  components  with  a  single  failure  mode.  With  simple

numerical  simulations  of  the  crack’s  propagation  in  the notched area  of  the  structural  part  for

different loading levels, the slope of the S-N curve for a structural component is initially estimated.

Then, a very few fatigue-life experiments are carried out in the high-cycle domain to determine the

intercept of the structure’s S-N curve. By considering the scatter from the material’s P-S-N curve,

different  SSALT designs  for the structural  component  can be composed and checked for their

expected acceleration factor. The procedure is experimentally validated for the case of a notched

specimen and two different SSALT designs. From the results it can be concluded that the predicted

durations of the SSALT experiments correlate well with the real experiments.

Key words: Fatigue life reliability, Finite element simulation, Fatigue testing, Weibull distribution,

S–N curve, Step loading

Nomenclature

a0 … constant coefficient for calculating the Weibull’s scale parameter (Sa)

a1 … linear coefficient for calculating the Weibull’s scale parameter (Sa)

b … high-cycle domain exponent of the Coffin-Manson curve

c … low-cycle domain exponent of the Coffin-Manson curve

f … probability density function

fl … index of the loading level at which fatigue failure occurred for the l-th experiment

i, j … index of the loading level

l … index of the sample point
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lmin … SSALT starting loading level for the l-th experiment

lmax … SSALT ending loading level for the l-th experiment

n … number of data points in a sample set

n’ … parameter of the Ramberg-Osgood material model

p … probability of rupture, percentile of a time to failure

res … index of residuum

AF … acceleration factor of the SSALT design

E … Young’s modulus

F … cumulative distribution function

K … parameter of the Ramberg-Osgood material model

N … total number of load cycles to failure

Neq … equivalent number of load cycles to failure

Ntot … number of load cycles in one block of the SSALT

R … reliability

S … loading level

L … log-likelihood cost function

S … set of experimental data

 … shape and scale parameter of the Weibull’s probability distribution

 … strain

f … plastic-strain-related intercept of the Coffin-Manson curve

 … run-out indicator for a fatigue-life data point

 … stress

 f … elastic-stress-related intercept of the Coffin-Manson curve

1 Introduction

The fatigue life of a structural component depends on its geometry, the applied cyclic loads and the

material’s endurance (Haibach1, Tomazincic et al.2). To minimise the experimental effort and cost,

accelerated life and/or reliability tests (ALTs) are widely applied in various industries. One of the

first systematic overviews of ALT methods was made by Yurkowski in 19673. Since then, theory
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and practice in the field of ALTs have been the subject of thorough research. In previous years a

number of review articles on this topic were published, i.e., Escobar and Meeker4, Ma5 and Chen et

al.6, while a handbook with a comprehensive description of the ALT methods was published by

Nelson in 20047. The methods were developed to cope with a wide range of engineering ALT-

related  challenges,  from single-failure-mode cases (e.g.,  Cheon et  al.8),  competing-failure-mode

cases (e.g., Bunea and Mazzuchi9, Luo et al.10), optimal ALT designs for model discrimination

(Nassir and Pan11), progressive ALT designs (Sha12), etc. Applications of ALT testing on real-case

structures have been reported in the field of agriculture (Mattetti et al.13, Paraforos et al.14), the

automotive (Putra et al.15, Shafiullah and Wu16) and railway industries (Lu et al.17). It can be

concluded that authors have applied different approaches and statistical tools for the design and

implementation of accelerated reliability testing.

The  objective  of  our  research  was  to  develop  the  ALT technique  that  enables  time-  and  cost

effective  reliability  estimation  of  simple  components  that  are  loaded  with  dynamic  loads.  The

durability  of  such  structural  components  in  the  high-cycle  fatigue  domain  for  an  arbitrary

probability of failure/survival can be modelled with S-N curves and their scatter (i.e., the P-S-N

curves -  see the ASTM E 739-91 standard18 or Klemenc19).  When following the approach of

Klemenc19, a fatigue-life curve and its scatter for a structure in the high-cycle fatigue domain is

represented by a conditional Weibull’s20 probability density function (PDF):

  ;  N, ,  >0 (1).

where S is the loading level, N is the number of loading cycles to failure at the loading level S,  is

the scale parameter of the Weibull’s PDF and  is its scale parameter, which is dependent on the

loading level S according to the inverse power-law (or Basquin) equation:

 (2)

In  this  model  the  scale  parameter   is  constant  in  the  target  domain  of  the  loading levels  Sa.

Therefore, the scattered fatigue-life curve that is used to estimate the component’s fatigue reliability

is modelled with three parameters:  a0,  a1 and . The main issue related to the mechanical product

design and development is that the P-S-N curve of a product can differ significantly from the P-S-N

curve of the applied material  due to the component’s geometry and manufacturing process. The

proposed approach represents a background for a sound design of fatigue-life and reliability testing

procedures without any prior knowledge of the component’s P-S-N curve.

The step-stress accelerated life/reliability tests (SSALTs) are frequently used in practice for testing

structural components with a predominant (or single) failure mode. Since it was shown in the past
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that they can offer a significant reduction in the experimental time and cost, if they are properly

designed, they are the focus of our research. An overview of the SSALT designs can be found in

Li21, Liu22 or El-Din et al.23. SSALT designs are made for different statistical distributions of

failure data, many of them are based on Weibull’s PDF, but some exceptions also deal with Frechet

data  (Hakamiopur  and  Rezaei24)  or  the  Lomax  distribution  (Elfattah  et  al.25).  Basically,  the

SSALT designs can be divided into two main groups. The simple SSALT schemes are designed to

estimate the reliability of a component at a specified loading level by assuming that the durability

curve is (at least broadly) known in advance. Welded structural components are typical candidates

for such SSALT schemes, because a weld is usually the weakest part of the structure and the slope

of the weld fatigue-life curve is typically equal to 3.0 or 5.0 (see the EUROCODE 3-1.9 standard

for details). Lu et al.17 used such a simple SSALT scheme to estimate the reliability of a railway

bogie. The theoretical approaches to obtain such SSALT designs generally follow the principle of

minimising the asymptotic variance of the maximum likelihood estimates of the model’s parameters

via calculating Fisher information matrix (Yuan et al.26, Arefi and Razmkhah27, Tang et al.28, Xu

and Hunt29, Wang et al.30). If the pre-assigned stress levels for SSALT are applied, only the time

limits at certain loading levels Si are estimated by this minimisation process28. The corresponding

optimal SSALT plans are valid for a particular percentile  p of a time-to-failure at a pre-specified

loading level  S0.  They depend on the pre-estimated model parameters. However, these parameter

values can be uncertain and the researchers apply either a sensitivity analysis or Bayesian approach

to evaluate the uncertainty26. Consequently, this approach is inherently applicable for a reliability

demonstration purpose during the late phases of product design or during a serial production. In

contrast to the above, it is much more difficult to design the SSALT schemes that are applied to

estimate the complete P-S-N curve of the structural component, if no assumptions or pre-estimation

experiment are made about the parameters of the durability-curve model. This is the case of initial

prototype testing in early phases of the product design. We will show in this article that with a

proper  combination  of  experiments,  numerical  simulations  and  data  analyses,  it  is  possible  to

compose appropriate SSALT designs of this type, even in the case where the durability-curve trend

is not known.

A theoretical foundation for estimating the parameters of the durability-curve and its scatter on the

basis of the existing SSALT results was set up by Nelson31. In his research, the inverse power-law

equation, the Weibull’s PDF and the SSALT scheme were combined to determine the reliability of

some electronic components. Later on, the presumptions of Nelson31 that are based on the linear

damage-accumulation  rule  (LDR) were tested against  the more complex damage-curve analysis

(DCA) and double linear damage rule (DLDR) by Lee and Mu32. The DCA and DLDR approaches

performed  slightly  better  than  the  original  approach  proposed  by  Nelson31.  However,  the
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conclusion was that the simplicity of the LDR makes it especially useful for the SSALT, because

the reliability estimations were not significantly worse for much less effort that was needed for the

test  design32.  Unfortunately,  both  publications  lack  the  information  on  designing  the  optimal

SSALT experiment for the purpose of estimating the complete component’s P-S-N curve.

In this article we will show, how SSALT scheme for estimating the structure’s P-S-N curve are set-

up, if no prior data or information about the structural durability exist. The presented methodology

is based on the Nelson’s theoretical foundations31. The SSALT scheme is composed with a help of

a synthetic P-S-N curve of the structure – see Fig. 1.

Fig. 1: Estimating the component’s P-S-N curve via SSALT experiments

To obtain the synthetic P-S-N curve of the structure its slope a1 is first estimated using the finite

element simulations for predicting the crack growth. This is followed by a few fatigue experiments

for the notched part at a high loading level to assess an approximate intercept a0 of the fatigue-life

curve from equation  (2).  These experiments  are  rather  necessary,  because  most of  the existing

numerical methods for calculating the fatigue life are too conservative. The scatter of the synthetic

P-S-N curve follows the model in equation (1) with the shape parameter  being equal to the shape

parameter of the material’s P-S-N curve. Since the complete P-S-N curve needs to be estimated, the

before-mentioned asymptotic-variance optimisation schemes cannot be applied. Instead, the SSALT

scheme  is  composed  manually.  However,  the  synthetic  P-S-N  curve  enables  simulating  the

outcomes of different SSALT schemes and determination of the corresponding acceleration factors.

The article is structured as follows. First, the theoretical background is explained, which is related

to: i.) the experimental-numerical estimation of the synthetic fatigue-life curve with the up-front

evaluation  of  different  SSALT  block  designs;  ii.)  estimating  the  P-S-N  durability  curve  from

SSALT data with Nelson’s method; and iii.) estimating the confidence interval for the P-S-N curve.

In the third section the experimental  and numerical  data are presented. This is followed by the

results and discussion section. The article finishes with a concluding section, acknowledgments,

conflict-of-interest statement and a list of references.

2 Theoretical background

2.1 FE-based design of step-stress accelerated life test

To design an appropriate SSALT for the structural component, its P-S-N curve should be at least

approximately known. However, during the design process the real P-S-N curve can be estimated

only after the first prototypes are built and tested. Since the prototype components are expensive

and their number is usually small, they cannot be wasted just for designing the appropriate SSALT.
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The  fatigue  of  structural  components  is  mainly  governed  by their  fatigue-notch  factor  Kf.  The

practical  rule  for  its  determination  is  that  the  static  strength  of  the  component  (or  the  fatigue

strength at approx. 103 load cycles) is linked with a linear function in the log–log diagram with the

fatigue strength at 106–108 load cycles (see Stephenson et al.33). This means that the fatigue-notch

factor Kf strongly depends on the loading level in the high-cycle domain. It is close to one during

the  static  loading  and  can  be  much  larger  than  one  near  the  fatigue  limit.  Such  an  approach

represents a significant waste of time and resources, because the experiments need to be done in the

low-cycle  fatigue  domain  and  near  the  fatigue-endurance  domain.  Only  after  the  factor  Kf is

estimated can the parameters a0 and a1 that describe the S-N curve of the structural component be

determined. A lot of time and resources are saved if the approximate values of the parameters a0, a1

and  from equation (1) are estimated with a combination of the numerical approach and very few

fatigue-life experiments near the low-cycle fatigue domain as follows. 

Estimating the slope of the component’s P-S-N curve

The slope parameter a0 of the P-S-N curve for the structural component with a single failure mode

is estimated using a series of finite-element (FE) simulations as follows:

1. The data for the structure’s material that need to be determined up-front are the following:

static or cyclic - diagram and Coffin-Manson curve with scatter34.

2. Using FE simulations the fatigue life of the structural component is predicted at its hot-spot

for at least two different loading levels in the high-cycle fatigue domain. It is important that

the fatigue life is estimated for the phase of crack initiation and the phase of crack growth.

In our case the crack-growth was simulated by deleting the finite elements with an average

fatigue damage larger than 0.3 for the given number of the load cycles (see Franko et al. for

the details of this criterion35).

3. By knowing the simulated fatigue life at different loading levels, the slope  a1 of the S-N

curve can be calculated as presented in section 3.2.

Estimating the intercept of the component’s P-S-N curve

Knowing the slope a1 of the component’s P-S-N curve, its intercept a0 can be estimated by one or

two fatigue-life experiment(s) at one high loading level. If N1 is the (average) measured number of

the load cycles to failure at the loading level S1, the parameter a0 equals – see also equation (2):

 (3)

Estimating the scatter of the component’s P-S-N curve

6



To predict  in advance the scatter  of the component’s fatigue-life curve,  a simple assumption is

made, i.e., the shape parameter   of the component’s S-N curve is approximately the same as the

shape parameter of the component’s basic material. At this point the following remark need to be

made: if the component has more than one significant failure mode such presumption has a very

limited validity.

Simulating the SSALT experiments and estimating SSALT acceleration factor

The estimated parameters a0, a1 and  of the component’s synthetic P-S-N curve are then used for

the purposes of designing the SSALT schemes. The conventional SSALT design is structured in

such a way that the current loading level  Si is increased to the next loading level  Si+1 if the tested

sample survives a predefined number of load cycles Ntot,i at the current loading level i (see Fig. 2).

Fig. 2: SSALT test plan and the calculation of the equivalent number of load cycles

The first loading level  S1 may be chosen as a normal working load, while the final (the highest)

loading level Si max may represent the load, which still results in the same damage mechanism, but at

very short fatigue life. After the loading levels  Si and the corresponding block sizes  Ntot,i of the

SSALT are selected by the expert,  the corresponding fatigue-life  experiments  can be simulated

using a Weibull’s random generator that is based on equations (1) and (2) as follows:

1. The total number of experiments n is chosen for the SSALT design being considered.

2. The SSALT experiments should start at different starting loading levels Slmin; l =1,…,n. This

means that only a fraction of the n experiments start at a particular loading level lmin.

3. For each experiment l, its fatigue life Nl is generated according to its starting loading level

Slmin with the Weibull’s random-number generator, the shape factor of which is equal to  

and the scale factor  equal to:

(4)

4. This  randomly generated  fatigue  life  Nl is  distributed  over  the initial  and the following

loading levels until the load-specific equivalent of Nl is consumed. For example:

a. Suppose that  Nl >  Ntot,lmin. This means that at the starting loading level  Ntot,lmin load

cycles are reached without fatigue failure.

b. The residual  load  cycles   are  consumed on the  following

loading levels. The equivalent number of the residual load cycles Nlmin,res at the next

loading level Slmin+1 is calculated following the Basquin’s relation in equation (6):
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 (5)

c. If  Nlmin+1,eq <  Ntot,lmin+1 the  fatigue  failure  should  occur  at  the  loading  level  Slmin+1.

Otherwise,  all  the load  cycles  at  this  loading level  are  consumed and the test  is

continued at the next loading level  Slmin+2 with the residual loading cycles from the

current loading level equal to .

d. The steps b. and c. are continued until  the loading level  where either the fatigue

failure or the limiting condition occurs. 

5. Steps 3. and 4. are repeated for every simulated data point.

Finally, the SSALT acceleration factor is determined, which is the ratio between the cumulative

number of randomly generated load cycles without the SSALT arrangement (i.e.,  ) and

the corresponding step-stress-dependent loading cycles according to the considered SSALT design. 

2.2 Statistical concept of SSALT for structural components

The  concept  of  estimating  the  parameters  of  the  P-S-N  curve  from  a  series  of  the  SSALT

experiments for single-failure-mode products was presented by Nelson7,31, who applied the inverse

power  law,  as  presented  in  equation  (2),  to  link  the  product’s  load  to  its  service  life.  When

combining the inverse power-law equation with the Weibull’s PDF, as in equation (1), it is possible

to estimate the product’s reliability.  To shorten the testing time the fatigue-life experiments are

often terminated after a predefined number of loading cycles at the highest loading level  Si  max.

Consequently, the sample set comprises complete and incomplete (i.e., censored) data.

To estimate the P-S-N curve for the structural parts, the equivalent number of load cycles to failure

at the highest achieved loading level  Sl  max must first be calculated for each experiment  l  =1,…,n.

The highest loading level Sl  max is the one at which the fatigue failure occurred or the SSALT limit

condition was reached. For the particular SSALT design, the load cycles  Ni-1 from the previous

loading level  Si-1 are translated to the equivalent load cycles  Ni-1,eq at the current loading level  Si

according to the slope a1 of the S-N curve from equation (2) – see also Fig. 2 and equation (5):

 (6)

This procedure is repeated up to the highest loading level. Depending on the loading level of the

fatigue failure (or the run-out) the corresponding cumulative density function (CDF) is determined

on the basis of equations (1) and (2) – see Nelson31 and Fig. 3:
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 (7)

Fig. 3: Determination of the cumulative density function during the SSALT data processing

If the tested sample fails at the 1st loading level, the corresponding terms in equation (7) are:

 (8)

 

(9)

If the tested sample fails at the 2nd loading level, the corresponding terms in equation (7) are:

 (10)

 

(11)

The quantity  N1,eq in equation  (10) is calculated with equation  (6). Equations  (10) to  (11) can be

written in a general form for an arbitrary loading level of fatigue failure i >1:

 (12)

 (13)

 (14)

Therefore, at every loading level i >1 the following relation holds:

 (15)

For each CDF  Fi(N), the corresponding PDF fi(N) can be written as follows, with the number of

load cycles to failure N and the scale factor  defined in equations (12) and (14), respectively:

  (16)

The result of the series of SSALT experiments is a sample set S with n data points:

  (17)
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l  min and lmax are the SSALT starting and ending loading levels for the l-th experiment,  fl is the

index of the loading level at which fatigue failure (or run-out) occurred,  Nfl is the number of load

cycles to failure at the loading level lf and l is an indicator of the fatigue failure:

 (18)

To estimate the parameters of the Weibull’s PDF on the basis of the set with complete and censored

data, a modified Maximum Likelihood Function L is used - see Nelson and Meeker [36] or Pascual

and Meeker [37] for details:

(19)

This approach was successfully applied before by Klemenc19 to estimate the P-S-N curve model in

equations (1) and (2) on the basis of the constant stress-amplitude experiments. The same objective

is followed here, i.e., the optimum parameters a0, a1 and  of the component’s P-S-N curve should

maximise the cost function L in equation (19) with the SSALT data set S representing the input. To

begin the optimisation process the equivalent number of cycles to failure N are calculated for each

experimental result  l in the sample set  S using equations  (12) and  (13) and initial values of the

parameters a0, a1 and . Then, the two functions ffl(N) and Ffl(N) are determined with equations (16)

and  (7) and the scale parameter  (Sfl) calculated using equation  (14). The optimum values of the

parameters  a0,  a1 and   are  estimated  using evolutionary  algorithms in the same manner  as in

Klemenc19,38 or Klemenc and Fajdiga34. Two optimisation algorithms were applied, i.e., a real-

valued genetic algorithm and a differential ant-stigmergy algorithm. The details can be found in

Klemenc19, and so will not be given here.

2.3 Estimating the confidence interval for the SSALT experimental data

As opposed to testing of the electronic components (e.g. see Nelson and Meeker36), testing the

prototypes of the mechanical components is limited in time and number, especially in the early

phases of product development. Consequently, the estimated parameters of the applied statistical

models are uncertain. This uncertainty is assessed via the confidence intervals that are determined

for the selected probability of failure at the specified risk level. For the Weibull’s PDF different

approaches for calculating the confidence intervals have been reported (see Harter and Moore39,

Thoman et al.40, McCool41 or Phan and McCool42, Meeker and Escobar43).  To calculate  the

confidence intervals for the Weibull’s PDF with the non-constant scale parameter   also Monte-

Carlo simulations can be applied (Nelson and Meeker36). Since this approach was applied in our

case it is briefly described in the continuation.
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After the component’s P-S-N curve is determined by estimating its parameters  a0,  a1 and  ,  as

described in Section 2.1 from the SSALT sample set  , a

confidence interval can be determined for the arbitrary probability of a failure p. When following

the Monte-Carlo approach, a specified number of data sets with n samples are first simulated using

the procedure from Section 2.2. However, in this case the real parameters  a0,  a1 and   are used

instead of the synthetic values. In our case 1000 different sample sets of size n were generated for

the  purpose  of  the  confidence-interval  estimation.  For  each  randomly  generated  data  set  the

parameters a0, a1 and  are estimated using the procedure from Section 2.1. Then the fatigue lives

Np,i for the probability of rupture p at loading levels i are calculated by rearranging equation (7):

 (20)

The 1000 calculated Np,i values at every loading level i are finally approximated with a Weibull’s

probability distribution from which the one- or two-sided confidence interval is determined for a

predefined risk probability.

3 Description of the experimental and numerical data

3.1 Experimental cyclic and Coffin Manson curves of the base material

In our research an advanced, high-strength steel of CP800W-equivalent grade was used for all the

experiments.  To  enable  simulations  for  assessing  the  synthetic  parameters  a0,  a1 and   of  the

notched component, the material’s cyclic and Coffin-Manson curves were first determined.

The  cyclic  curve  was  estimated  based  on  fully  reversal,  strain-controlled,  low-cycle  fatigue

experiments. In 19 cases of the low-cycle fatigue experiments the specimens were loaded with a

constant strain amplitude and in seven cases the strain amplitude  a was increased by a constant

value after every 20 load cycles. In each case the low-cycle fatigue experiments were terminated

when the fatigue failure occurred. The low-cycle fatigue experiments were performed for different

strain amplitudes a in the range of 0.04% to 2%.  The specimens were cut with a water-jet machine

from 2.6-mm-thick sheet-metal plate at angles of 0⁰, 45⁰ and 90⁰ relative to the rolling direction.

The low-cycle fatigue specimens were dog-bone shaped with dimensions according to the ASTM

E606 standard44 (see the middle part of Fig. 4). The specimens were not additionally treated to

reduce their roughness.
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Fig. 4: Smooth specimen geometries for high-cycle fatigue testing (top), static and low-cycle 

fatigue testing (middle) and notched specimen geometry for high-cycle fatigue testing (bottom)

All the low-cycle fatigue experiments were carried out on an MTS Landmark 100-kN hydraulic

testing  machine.  The  force  was  measured  with  a  100-kN MTS load  cell  and  the  strains  were

measured with a mechanical extensometer MTS 834.11F-24 with a gauge length of 20 mm that was

attached to the middle part of the specimen. During the low-cycle fatigue experiments a special

guiding device was applied to prevent any buckling of the specimens. The details of the design of

the guiding device can be found in Seruga et al.45, and so will not be given here.

From the low-cycle fatigue experiments the average Ramberg-Osgood cyclic curve was modelled; it

is  presented  in  Fig.  5  together  with  all  the  experimental  data  points.  The  parameters  of  the

Ramberg-Osgood material model in the form of , which were estimated with a

least-squares method, are the following: E= 210 GPa, K= 1.46·1026 and n’= 11.59. This cyclic curve

was then transformed into a true-stress–true-strain form for the FE simulations.

Fig. 5: Cyclic curve (left) and Coffin-Manson curve (right) for the CP800W-equivalent steel

For the Coffin-Manson curve the 19 fully  reversal,  constant-strain-amplitude,  low-cycle  fatigue

experiments  were considered.  In addition,  31 force-controlled,  fully  reversal,  high-cycle fatigue

experiments were carried out on the same MTS Landmark 100-kN hydraulic testing machine. All

the high-cycle fatigue experiments were of constant stress amplitude a in the range 320–450 MPa.

The high-cycle fatigue specimens were cut with a water-jet machine from the same 2.6-mm-thick

sheet-metal plate at angles of 0⁰, 45⁰ and 90⁰ relative to the rolling direction. They were dog-bone

shaped, as presented at the top of Fig. 4, and were not additionally treated to reduce their roughness.

For the purposes of estimating the Coffin-Manson curve, the stress amplitude was transformed into

the corresponding strain amplitude using Hooke’s law: . From these 50 low- and high-

cycle fatigue experiments, the average Coffin-Manson curve was modelled. It is presented in Fig. 5,

together with the experimental data points. The Coffin-Manson curve:

(21)

is described by four parameters b, c, f and f if the Young’s modulus E of the material is known. a

is  the  strain  amplitude  that  corresponds  to  the  number  of  load  cycles  to  failure  N.  The  four

parameters  were estimated with the least-squares method using a real-valued genetic  algorithm.

Their values are as follows: b = -0.084, c = -0.834, f = 1143.2 MPa and f = 0.8.

For the component’s synthetic P-S-N curve, the scatter of the material’s S-N curve also needs to be

determined for the high-cycle fatigue domain. To apply the model from equations (1) and (2) to the
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material’s high-cycle fatigue data, only the two parameters a0 and  need to be determined, because

it follows from equation (21) that the slope of the material’s S-N curve in the log–log diagram is

equal to . The two parameters a0 and  were then estimated on the basis of the

above-mentioned 31 high-cycle fatigue data using the procedure of Klemenc19. The intercept of the

scale parameter   for the S-N curve of the CP800W-equivalent steel in the log–log space is  a0  =

36.264, and the shape parameter of the conditional Weibull’s PDF is  = 2.440.

3.2 SSALT design using synthetic P-S-N curve from FE simulations

To validate the SSALT design methodology, which was proposed in Section 2, a simple notched

specimen was designed (see the bottom part of Fig. 4). The hole with a diameter of 3 mm in the

middle of the specimen ensures that the crack initiation and propagation spot is well controlled. The

real  specimens  were  cut  from  the  2.6-mm-thick  sheet-metal  plate  made  from  the  CP800W-

equivalent steel. A 3D model of the specimen was built in Catia V5. The Abaqus CAE 2017 FE

code was used to perform the implicit finite-element simulations and the Simulia FE-Safe code was

used to calculate  the fatigue damage for the notched and cracked specimens.  To determine the

appropriate mesh size and topology, two convergence analyses were performed. In one convergence

analysis the linear brick finite elements C3D8 and the mapped-meshing technique were applied,

whereas  the  parabolic  tetrahedron  finite  elements  C3D10 and the  free-meshing  technique  were

applied in another analysis. The mesh density was increased around the central hole of the specimen

with  the element-edge sizes  decreasing  from 1.0 to  0.075 mm.  The best  trade-off  between the

complexity of the FE model, the processing time and the post-processing time for obtaining the

fatigue-related  results  was  achieved  with  a  free-mesh using  the  C3D10 parabolic  tetrahedrons,

where the local size around the central hole was 0.15 mm. The corresponding mesh for the un-

cracked specimen is presented in Fig. 6. It is composed of approximately 107,000 C3D10 finite

elements and 157,000 nodes.

Fig. 6: FE model of a notched specimen for simulating a fatigue-crack growth

In all the finite-element simulations the elastic-plastic material model was used, with a Young’s

modulus  E =210 GPa and a Poisson’s ratio of 0.3. The true-stress–true-strain   piece-wise

linear plasticity curve was defined in Abaqus on the basis of the modelled cyclic curve from Fig. 5

using the well-known transformation between the engineering and the true stresses and strains:

(22)

(23)
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The plastic curve in Abaqus was extended to 100% true plastic strain according to the Ramberg-

Osgood model from Section 3.1.

The FE model of the specimen was clamped on one side and a pressure was applied to the other

side. By varying the pressure’s magnitude and sign, different axial forces acting on the specimen

were modelled. The FE simulations were composed of two load steps. In the first load step the peak

tensile  force was applied  to  the specimen,  which was followed by the application  of  the peak

compressive force in the next step. In this manner a fully reversal loading cycle was simulated.

The  output  of  the  Abaqus  simulation  was  imported  into  the  Simulia  FE-Safe  software  for

calculating the fatigue damage. The Coffin-Manson curve from Section 3.1 was defined in Simulia

FE-safe and was combined with a critical-plane approach for the fatigue-damage predictions. To

account  for  the  surface  roughness  of  the  specimen,  a  surface-finish  notch  factor  of  1.05  was

considered.

The fatigue-crack propagation process was modelled iteratively by deleting the critically damaged

finite elements. To delete the finite elements, the average damage within a finite element should be

0.3 for the given number of loading cycles. The finite elements were deleted manually, which was

followed by re-meshing of the crack’s geometry. It turned out from the preliminary convergence

analysis and the considered criterion for the finite-element annihilation that the crack’s propagation

could also be reasonably well modelled, if a 0.15-mm-thick layer of the finite elements is deleted in

each iteration. This means that the crack was perpendicular to the longitudinal axis of the specimen

and grew symmetrically from the middle hole towards the edges of the specimen. The propagating

crack width was 0.15 mm and its tip radius was 0.075 mm (see Fig. 6 below).

The specimen was considered broken after the cracks on both sides of the hole reached half the

distance to the specimen edge. At each iteration, the number of load cycles that produce 0.15 mm of

crack propagation was recorded. The calculated number of load cycles for the un-cracked specimen

represented the crack-initiation phase. The cumulative number of load cycles, which resulted from

simulating the crack growth, represented the crack-propagation phase.

The crack-growth simulations were performed for three loading levels with the amplitude forces of

Fa  = 5187 N, 3783 N and 2379 N. The corresponding nominal amplitude stresses in the critical

cross-section  of  the notched specimen were  a  = 332.5 MPa,  242.5 MPa and 152.5 MPa.  The

magnitude  of  the  maximum  force  amplitude  was  selected  in  such  a  manner  that  the  stress

concentration  near  the  notch  was 5% smaller  than  the  yield  stress  from the  cyclic  curve.  The

magnitude  of the minimum force amplitude  should result  in  a  notched stress that  is  above the

fatigue-endurance limit for the base material. For example, a strain field in the un-cracked specimen

with the calculated fatigue damage during one load cycle is presented for the peak tensile force of
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3783 N in Fig. 7. In Fig. 8, the strain field in the cracked specimen with the calculated fatigue

damage during one load cycle is presented for the same peak tensile force. In this case the crack

length was 0.6 mm on both sides of the central hole. 

Fig. 7: Strain distribution and fatigue damage of one load cycle for the amplitude force Fa = 

3783 N for the un-cracked specimen

Fig. 8: Strain distribution and fatigue damage of one load cycle for the amplitude force Fa = 

3783 N for the cracked specimen with a single crack length of 0.6 mm

The total  simulated fatigue lives together with the load cycles of the crack-initiation and crack-

propagation phases are presented in Table 1 for the three loading levels. By calculating the linear

regression of log10(N) against log10(a) in Table 1, the slope of the regression line is equal to a1 = -

6.184, which is actually the slope of the specimen’s synthetic P-S-N curve. It can also be concluded

from the numerical results in Table 1 that the crack grows in an elastic-plastic domain at the loading

levels 1 and 2. This means that the crack-propagation phase is significant relative to the crack-

initiation phase at these loading levels. This is not the case at the third loading level, where the

crack-propagation phase represents only 1.5% of the total fatigue life.

Table 1: Simulated fatigue lives for the three loading levels

To determine the intercept a0 of the specimen’s synthetic S-N curve, two notched specimens from

Fig.  3  were  cut  with  the  water-jet  machine  from the  2.6-mm-thick  sheet-metal  plate  from the

CP800W-equivalent steel in two different directions. They were exposed to the fully reversal, force-

controlled fatigue-life experiments at a constant amplitude loading level of Fa = 5200 N. Therefore,

the  nominal  amplitude  stress  in  the  critical  cross-section  was  a  = 333.3 MPa.  The specimens

survived 34,115 and 28,058 load cycles until fatigue failure. For the average fatigue life of 31086.5

load cycles to failure at the nominal amplitude stress of  a  = 333.3 and the slope  a1  = -6.184, it

follows from equation  (3) that the intercept  a0 of the synthetic specimen’s S-N curve is equal to

20.093. By also considering the shape parameter  from the material’s S-N curve in Section 3.1, the

three parameters a0 =20.093, a1 = -6.184 and  = 2.440 could be applied for a preliminary check of

the proposed SSALT designs for the notched specimen under consideration.

3.3 Experimental validation of the proposed SSALT designs

The proposed procedure for the SSALT design was tested on two cases of step-stress experiments.

In each SSALT design, four equidistant loading levels were defined. To remain within the high-

cycle fatigue domain of the notched specimen, the amplitude forces were selected according to the

nominal amplitude stresses of a = 174 MPa, 216 MPa, 258 MPa and 300 MPa. Therefore, the stress

increment between the loading levels was 42 MPa. Each loading level also represented a starting

15



point for a fraction of the specimens. Since the parameters a0, a1 and  of the specimen’s synthetic

P-S-N  curve  were  determined  with  fully  reversal  fatigue  experiments  (see  Section  3.2),  the

proposed SSALTs were also fully reversal and load controlled. To determine the load-cycle block

size at each loading level, a trade-off should be made between the high acceleration factor and the

possibility of having too many censored data. Namely, if the load-cycle block sizes are small, a lot

of specimens can reach the limit condition at the highest loading level Si max. This results in a lot of

type-I censored data, which reduces the confidence of the experimentally estimated parameters a0,

a1 and . For this reason, it was decided that the load-cycle block size will be 100,000 load cycles

for the highly accelerated SSALT design (SSALT_1) and 400,000 load cycles for the moderately

accelerated SSALT design (SSALT_2). In each SSALT design, the starting loading levels of the

notched  specimens  are  distributed  between  the  smallest  and  the  highest  loading  levels.  If  a

specimen reaches the load-cycle block size at the highest loading level the fatigue experiment is

terminated. The two SSALT designs are presented in Fig. 9 and Fig. 10. To test the appropriateness

of the two proposed SSALT designs, simulations were made for the synthetic parameters a0, a1 and

. For each SSALT design, 16 experiments (4 at every starting level) were simulated according to

the procedure from Section 2.1. The results for the simulated data are presented in Table 2. For the

simulated data,  the acceleration factor of the SSALT_1 design was 3.61 and for the SSALT_2

design it was 1.81.

Fig. 9: SSALT_1 design with the 26 experimentally determined data for the notched specimen

Fig. 10: SSALT_2 design with the 18 experimentally determined data for the notched specimen

Table 2: Simulated results for the two SSALT designs

The notched specimens presented at the bottom of Fig. 3 were cut from the CP800W-equivalent

steel sheet-metal plate in three different orientations relative to the axis of rolling. As before, the

specimens were not additionally treated to reduce their roughness. All the fatigue-life experiments

were carried out on the MTS Landmark 100-kN hydraulic machine. The experiments were fully

reversal and load controlled.

The experimental data for the SSALT_1 design consisted of 26 experiments: 10 experiments started

at the first loading level (a = 174 MPa), 4 experiments started at the second loading level (a = 216

MPa), 6 experiments started at the third loading level (a = 258 MPa) and 6 experiments started at

the fourth loading level (a = 300 MPa). The experimental results are presented with markers in Fig.

9. The SSALT_1 design was tested very thoroughly to find out whether this test design would really

result in fatigue failures only at the two highest loading levels, but still with few (or possibly no)

censored data. The SSALT_2 design consisted of 18 experiments, with 4 experiments starting at the
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first, second and third loading levels and 6 experiments starting at the fourth loading level. The

experimental results from SSALT_2 are presented with markers in Fig. 10.

To draw conclusions about the appropriateness of the two proposed SSALT designs, an additional

22 fatigue-life experiments with a constant amplitude loading were conducted for these notched

specimens. The nominal amplitude stresses a were in the range 179–333.3 MPa. The results of the

constant-amplitude tests for the notched specimens together with the S-N curves for 2.5%, 50% and

97.5% failure  probabilities  are  presented  in  Fig.  11.  The parameters  of  this  P-S-N curve  were

determined according to Klemenc [19, 38].

Fig. 11: P-S-N curves for the notched specimens with the 22 fatigue-life data

4 Results and discussion

From the results in Table 2, Fig. 9 and Fig. 10 it can be concluded that it was possible to predict the

outcomes  of  the  SSALT experiments  on  the  basis  of  the  synthetic  P-S-N curve.  For  both  the

SSALT_1 and SSALT_2 designs the experimental fatigue failures occurred at the same loading

levels as predicted by the simulated data. Also, the distributions of the fatigue-life failures at the

individual loading levels  Si are similar for the experimental and the simulated data. Last, but not

least, the simulations predicted that no SSALT experiment should result in censored data, which

was confirmed by the experiments, despite the fact that more SSALT experimental than simulated

data points were obtained. This means that the FE-based synthetic P-S-N curve of the structural part

with a single failure mode represents a good starting point for the SSALT design.

The parameters  a0,  a1 and   of the experimental P-S-N curves for the two SSALT designs were

determined based on the measured data  in  Fig.  9 and Fig.  10 with the procedure described in

Section 2.2. They are presented in Table 3 together with the experimentally determined parameters

a0,  a1 and   from the constant-amplitude loading for the notched specimen. A comparison of the

corresponding median S-N curves (i.e., the S-N curves with a 50% failure probability) is presented

in Fig. 12 together with the simulated fatigue-life data. The general observation linked to the data in

Table 3 is that the experimentally determined parameters a0, a1 and  agree well with the parameters

of  the  specimen’s  synthetic  P-S-N curve,  which  further  confirms  the  validity  of  the  proposed

approach.

Fig. 12: Agreement between the experimental S-N curves for the notched specimen that were

determined with different experimental designs

Table 3: Parameters of the experimentally determined P-S-N curves for the notched specimen
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From  these  data  it  can  be  concluded  that  the  agreement  between  the  S-N  curves  that  were

determined with the SSALT_2 design and the constant-amplitude tests is good. Through the whole

high-cycle fatigue domain the median S-N curve for the SSALT_2 data lies within the 95% scatter

band  of  the  S-N  for  the  constant-amplitude  data.  This  is  a  consequence  of  the  fact  that  the

parameters a0, a1 for the two P-S-N curves are similar. However, the smaller value of the Weibull’s

shape coefficient  indicates that the scatter of the experimental data was greater for the SSALT_2

experiments than for the constant-amplitude experiments, which is often the case when a limited

number of fatigue-life experiments are performed.

The median S-N curve that was determined with the SSALT_1 experiments has a smaller slope than

the median S-N curve from the constant-amplitude experiments. The consequence of this is that the

median S-N curve from the SSALT_1 data falls outside the 95% scatter band of the S-N for the

constant-amplitude data near the fatigue-endurance domain. Nevertheless, it lies within this scatter

band in most of the high-cycle fatigue domain and it intersects the other two experimental S-N

curves in the middle of the high-cycle fatigue domain. This means that the estimated fatigue lives

and/or reliabilities of the specimen would be acceptable even in the case of the highly accelerated

SSALT_1 design. The reason for such a result is that all the fatigue failures were only at the third

and fourth loading levels for the SSALT_1 design. Consequently, the SSALT_1 results pushed the

S-N parameter  a1 towards more negative values during the optimisation process, despite the fact

that the scatter of the fatigue lives was comparable to the constant-amplitude experiments (i.e., the

two Weibull’s shape parameters  were very similar). This fact suggests that a lower limit for the

load-cycle block size Ntot need to be carefully chosen. From the presented results it follows that the

SSALT scheme should be composed in such a manner that the fatigue failures should occur at more

than 50% of the selected loading levels Si for a reliable estimation of the component’s S-N curve. A

fulfilment of this criterion can be checked by simulating the SSALT experiments on the basis of the

component’s synthetic P-S-N curve as presented in section 2.1.

For each of the three sets of experimental data the confidence intervals were determined for the

median S-N curves according to the procedure in Section 2.3. The confidence intervals were two-

sided for a risk level of 5%. To enable a comparison of the three confidence intervals they were

determined for n = 20 data points in each case - see Fig. 13.

Fig. 13: Comparison of the 5% confidence limits for the notched specimen’s median S-N curves

It can be concluded from Fig. 13 that the narrowest confidence interval is for the constant-amplitude

data. This is a consequence of the fact that: i.) the fatigue failures were uniformly distributed along

the range of the high-cycle fatigue domain and ii.) the scatter of the results was relatively small,

which resulted in the Weibull’s  shape parameter of   =2.893. Despite the greater scatter  of the
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fatigue-life data in the SSALT_2 design, when compared to the SSALT_1 design, the confidence

interval for the SSALT_2 design is smaller than that for the SSALT_1 design in the lower part of

the high-cycle fatigue domain. This is because the fatigue failures occurred at three loading levels

for  the  SSALT_2 design and at  only two loading levels  for  the SSALT_1 design.  Despite  the

confidence interval for the SSALT_1 design being very narrow in the middle part of the high-cycle

fatigue domain,  it  is  still  better  to design the SSALT procedure in such a way that  the fatigue

failures  occur  at  more  loading  levels.  Then  the  parameters  a0,  a1 and   of  the  specimen  or

component’s P-S-N curves are more accurately estimated.

5 Conclusion

The objective of this study was to show how a SSALT can be designed for testing the fatigue life

and reliability of structural components with a single failure mode if no prior knowledge on its

durability  exists.  For  this  purpose,  an  effective  procedure  was  presented  that  combines  FE

simulations with very few fatigue-life experiments to determine the parameters of the component’s

synthetic P-S-N curve. The P-S-N curve is based on the Weibull’s probability distribution with a

constant shape factor   and a scale factor   that is linked to the loading level using the inverse

power law. With a synthetic P-S-N curve, different SSALT designs can be simulated before the

most appropriate one is selected. In this way the possibility of misjudging the loading levels and the

load-cycle  block  sizes  can  be  significantly  reduced.  The  main  findings  of  the  study  can  be

summarised as follows:

1. With FE simulations a good estimate of the slope parameter a1 for the component’s P-S-N

curve is obtained if the fatigue life considers the crack-initiation and propagation phases.

2. Only a very small number of the fatigue-life experiments are needed to provide a good

estimate  of  the  intercept  parameter  a0 for  the  component’s  S-N  curve.  Moreover,  the

material’s shape factor  is also a reasonable estimate for the component’s shape factor .

3. When designing the SSALT a trade-off  should be made between the high acceleration

factor  of  the  test  and  the  accuracy  of  the  estimated  component’s  P-S-N curve.  Lower

acceleration factors generally yield more accurate P-S-N curves.

4. Last,  but not least,  the article  presents the parameters of the experimentally determined

cyclic, Coffin-Manson and P-S-N curves for an advanced, high-strength steel of CP800W-

equivalent grade, which are very difficult to find in the literature.

From the  presented  results  it  can  be  concluded  that  the  proposed procedure  for  designing the

SSALT schemes was successfully validated for the case of a single-failure-mode part.
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Fig. 1: Estimating the component’s P-S-N curve via SSALT experiments

Fig. 2: SSALT test plan and the calculation of the equivalent number of load cycles

Fig. 3: Determination of the cumulative density function during the SSALT data processing
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Fig. 4: Smooth specimen geometries for high-cycle fatigue testing (top), static and low-cycle fatigue

testing (middle) and notched specimen geometry for high-cycle fatigue testing (bottom)

Fig. 5: Cyclic curve (left) and Coffin-Manson curve (right) for the CP800W-equivalent steel
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Fig. 6: FE model of a notched specimen for simulating a fatigue-crack growth

Fig. 7: Strain distribution and fatigue damage of one load cycle for the amplitude force Fa = 3783 N

for the un-cracked specimen

Fig. 8: Strain distribution and fatigue damage of one load cycle for the amplitude force Fa = 3783 N

for the cracked specimen with a single crack length of 0.6 mm
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Fig. 9: SSALT_1 design with the 26 experimentally determined data for the notched specimen

Fig. 10: SSALT_2 design with the 18 experimentally determined points for the notched specimen
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Fig. 11: P-S-N curves for the notched specimens with the 22 fatigue-life data

Fig. 12: Agreement between the experimentally determined S-N curves for the notched specimens

that were determined with different experimental designs
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Fig. 13: Comparison of the 5% confidence limits for the notched specimen’s median S-N curves 
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 Table 1: Simulated fatigue lives for the three loading levels

Loading level Force
amplitude

Nominal
stress

amplitude

Calculated number of loading cycles

Fa [N] a [MPa] Ntot [-] Ninit [-] Nprop [-]

1 5187 332.5 7783 1998 5785

2 3783 242.5 16411 8230 8181

3 2379 152.5 835610 823045 12565

Table 2: Simulated results for the two SSALT designs

SSALT design Starting loading
level

Load-cycle block
size

Loading levels at
fatigue failure

Acceleration
factor

a,lmin [MPa] Ntot.i [-] l [-] AF [-]

SSALT_1

174 (4)* 100000 4, 3, 4, 3

3.61
216 (4)* 100000 4, 3, 3, 3

258 (4)* 100000 4, 4, 4, 4

300 (4)* 100000 4, 4, 4, 4

SSALT_2

174 (4)* 400000 3, 2, 3, 2

1.81
216 (4)* 400000 3, 2, 2, 2

258 (4)* 400000 3, 3, 3, 3

300 (4)* 400000 4, 4, 4, 4

* Number of specimens, for which the SSALT experiment started at this loading level.

Table 3: Parameters of the experimentally determined P-S-N curves for the notched specimen

Experimental arrangement Intercept Slope Weibull’s shape
factor

a0 [-] a1 [-]  [-]

Constant-amplitude test 15.892 -4.467 2.893

SSALT_1 21.309 -6.681 3.156

SSALT_2 17.558 -5.157 1.875
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