REFERENCES

Ballmer-Hofer, K., Andersson, A.E., Ratcliffe, L.E., and Berger, P. (2011). Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood 118 : 816–26.
Banerjee, S., Sengupta, K., Dhar, K., Mehta, S., D’Amore, P., Dhar, G., et al. (2006). Breast Cancer Cells Secreted Platelet-Derived Growth Factor-Induced Motility of Vascular Smooth Muscle Cells Is Mediated Through Neuropilin-1. Mol. Carcinog. 45 : 871–80.
Basagiannis, D., and Christoforidis, S. (2016). Constitutive endocytosis of VEGFR2 protects the receptor against shedding. J. Biol. Chem. 291 : 16892–903.
Basagiannis, D., Zografou, S., Murphy, C., Fotsis, T., Morbidelli, L., Ziche, M., et al. (2016). VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation via macropinocytosis. J. Cell Sci. 129 : 4091–104.
Botta, J., Bibic, L., Killoran, P., McCormick, P., and Howell, L. (2019). Design and development of stapled transmembrane peptides that disrupt the activity of G-protein coupled receptor oligomers. J. Biol. Chem. 294 : 16587–603.
Brozzo, M.S., Bjelic, S., Kisko, K., Schleier, T., Leppánen, V.-M., Alitalo, K., et al. (2011). Thermodynamic and structural description of allosterically regulated VEGF receptor 2 dimerization. Blood119 : 1781–88.
Carmeliet, P. (2005). Angiogenesis in life, disease and medicine.Nature 438 : 932–36.
Cébe Suarez, S., Pieren, M., Cariolato, L., Arn, S., Hoffman, U., Bogucki, A., et al. (2006). A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cell. Mol. Life Sci. 63 : 2067–77.
Chung, A.S., and Ferrara, N. (2011). Developmental and pathological angiogenesis. Annu. Rev. Cell Dev. Biol. 27 : 563–84.
Delcombel, R., Janssen, L., Vassy, R., Gammons, M., Haddad, O., Richard, B., et al. (2013). New prospects in the roles of the C-terminal domains of VEGF-A and their cooperation for ligand binding, cellular signaling and vessels formation. Angiogenesis 16 : 353–71.
Dixon, A.S., Schwinn, M.K., Hall, M.P., Zimmerman, K., Otto, P., Lubben, T.H., et al. (2016). NanoLuc Complementation Reporter Optimized for Accurate Measurement of Protein Interactions in Cells. ACS Chem. Biol. 11 : 400–08.
Djordjevic, S., and Driscoll, P.C. (2013). Targeting VEGF signalling via the neuropilin co-receptor. Drug Discov. Today 18 : 447–45.
Eswarappa, S.M., Potdar, A.A., Koch, W.J., Fan, Y., Vasu, K., Lindner, D., et al. (2014). Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell 157 : 1605–18.
Ewan, L.C., Jopling, H.M., Jia, H., Mittar, S., Bagherzadeh, A., Howell, G.J., et al. (2006). Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic 7 : 1270–82.
Fantin, A., Herzog, B., Mahmoud, M., Yamaji, M., Plein, A., Denti, L., et al. (2014). Neuropilin 1 (NRP1) hypomorphism combined with defective VEGF-A binding reveals novel roles for NRP1 in developmental and pathological angiogenesis. Development 141 : 556–62.
Fantin, A., Lampropoulou, A., Gestri, G., Raimondi, C., Senatore, V., Zachary, I., et al. (2015). NRP1 Regulates CDC42 Activation to Promote Filopodia Formation in Endothelial Tip Cells. Cell Rep.11 : 1577–90.
Fantin, A., Schwarz, Q., Davidson, K., Normando, E.M., Denti, L., and Ruhrberg, C. (2011). The cytoplasmic domain of neuropilin 1 is dispensable for angiogenesis, but promotes the spatial separation of retinal arteries and veins. Development 138 : 4185–91.
Fantin, A., Vieira, J.M., Plein, A., Denti, L., Fruttiger, M., Pollard, J.W., et al. (2013). NRP1 acts cell autonomously in endothelium to promote tip cell function during sprouting angiogenesis. Blood121 : 2352–62.
Gelfand, M. V, Hagan, N., Tata, A., Oh, W.-J., Lacoste, B., Kang, K.-T., et al. (2014). Neuropilin-1 functions as a VEGFR2 co-receptor to guide developmental angiogenesis independent of ligand binding. eLife3 : e03720. doi: 10.7554/eLife.03720.
Goel, H.L., and Mercurio, A.M. (2013). VEGF targets the tumour cell.Nat. Rev. Cancer 13 : 871–82.
Hall, M.P., Unch, J., Binkowski, B.F., Valley, M.P., Butler, B.L., Wood, M.G., et al. (2012). Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 7 : 1848–57.
Herzog, B., Pellet-Many, C., Britton, G., Hartzoulakis, B., and Zachary, I.C. (2011). VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation. Mol. Biol. Cell22 : 2766–76.
Jubb, A.M., Strickland, L.A., Liu, S.D., Mak, J., Schmidt, M., and Koeppen, H. (2012). Neuropilin-1 expression in cancer and development.J. Pathol. 226 : 50–60.
Kawamura, H., Li, X., Harper, S.J., Bates, D., and Claesson-Welsh, L. (2008). Vascular Endothelial Growth Factor (VEGF)-A165b Is A Weak In vitro Agonist for VEGF Receptor-2 Due to Lack of Coreceptor Binding and Deficient Regulation of Kinase Activity. Cancer Res. 68 : 4683–92.
Kilpatrick, L.E., Friedman-Ohana, R., Alcobia, D.C., Riching, K., Peach, C.J., Wheal, A., et al. (2017). Real-time analysis of the binding of fluorescent VEGF165a to VEGFR2 in living cells: Effect of receptor tyrosine kinase inhibitors and fate of internalized agonist-receptor complexes. Biochem. Pharmacol. 136 : 62–75.
King, C., Wirth, D., Workman, S., and Hristova, K. (2018). Interactions between NRP1 and VEGFR2 molecules in the plasma membrane. Biochim. Biophys. Acta - Biomembr. 1860 : 2118–25.
Koch, S., Meeteren, L.A. Van, Morin, E., Testini, C., Weström, S., Björkelund, H., et al. (2014). NRP1 Presented in trans to the endothelium arrests VEGFR2 endocytosis, preventing angiogenic signaling and tumor initiation. Dev. Cell 28 : 633–46.
Koch, S., Tugues, S., Li, X., Gualandi, L., and Claesson-Welsh, L. (2011). Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 437 : 169–83.
Lee-Montiel, F.T., Li, P., and Imoukhuede, P.I. (2015). Quantum dot multiplexing for the profiling of cellular receptors. Nanoscale 18504–18514.
Lee, S.W., Lee, J.E., Yoo, C.Y., Ko, M.S., Park, C.S., and Yang, S.H. (2014). NRP-1 expression is strongly associated with the progression of pituitary adenomas. Oncol. Rep. 32 : 1537–1542.
Leppanen, V.M., Prota, A.E., Jeltsch, M., Anisimov, A., Kalkkinen, N., Strandin, T., et al. (2010). Structural determinants of growth factor binding and specificity by VEGF receptor 2. Proc. Natl. Acad. Sci. U.S.A. 107 : 2425–30.
Mamluk, R., Gechtman, Z., Kutcher, M.E., Gasiunas, N., Gallagher, J., and Klagsbrun, M. (2002). Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its b1b2 domain.J. Biol. Chem. 277 : 24818–25.
Muhl, L., Folestad, E.B., Gladh, H., Wang, Y., Moessinger, C., Jakobsson, L., et al. (2017). Neuropilin 1 binds platelet-derived growth factor (PDGF)-D and is a co-receptor in PDGF-D/PDGF receptor β signaling. J. Cell Sci. 130 : 1365–78.
Parker, M.W., Xu, P., Li, X., and Vander Kooi, C.W. (2012). Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. J. Biol. Chem. 287 : 11082–89.
Peach, C.J., Kilpatrick, L.E., Friedman-Ohana, R., Zimmerman, K., Robers, M.B., Wood, K. V., et al. (2018a). Real-Time Ligand Binding of Fluorescent VEGF-A Isoforms that Discriminate between VEGFR2 and NRP1 in Living Cells. Cell Chem. Biol. 25 : 1208–18.
Peach, C.J., Mignone, V.W., Arruda, M.A., Hill, S.J., Kilpatrick, L.E., and Woolard, J. (2018b). Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int. J. Mol. Sci. 19 : 1–27.
Peach, C.J., Kilpatrick, L.E., Woolard, J., and Hill, S.J. (2019). Comparison of the ligand binding properties of fluorescent VEGF‐A isoforms to VEGFR2 in living cells and membrane preparations using NanoBRET. Br. J. Pharmacol. 176 : 3220–35.
Prahst, C., Héroult, M., Lanahan, A.A., Uziel, N., Kessler, O., Shraga-Heled, N., et al. (2008). Neuropilin-1-VEGFR-2 complexing requires the PDZ-binding domain of neuropilin-1. J. Biol. Chem.283 : 25110–14.
Rizzolio, S., Rabinowicz, N., Rainero, E., Lanzetti, L., Serini, G., Norman, J., et al. (2012). Neuropilin-1-dependent regulation of EGF-receptor Signaling. Cancer Res. 72 : 5801–11.
Roy, S., Bag, A.K., Singh, R.K., Talmadge, J.E., Batra, S.K., and Datta, K. (2017). Multifaceted role of neuropilins in the immune system: Potential targets for immunotherapy. Front. Immunol. 8 : 1–27.
Ruch, C., Skiniotis, G., Steinmetz, M.O., Walz, T., and Ballmer-Hofer, K. (2007). Structure of a VEGF–VEGF receptor complex determined by electron microscopy. Nat. Struct. Mol. Biol. 14 : 249–50.
Shintani, Y., Takashima, S., Asano, Y., Kato, H., Liao, Y., Yamazaki, S., et al. (2006). Glycosaminoglycan modification of neuropilin-1 modulates VEGFR2 signaling. EMBO J. 25 : 3045–55.
Simons, M., Gordon, E., and Claesson-Welsh, L. (2016). Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol. Cell Biol. 17 : 611–25.
Soker, S., Miao, H.Q., Nomi, M., Takashima, S., and Klagsbrun, M. (2002). VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J. Cell. Biochem. 85 : 357–68.
Soker, S., Takashima, S., Hua, Miao, Q., Neufeld, G., and Klagsbrun, M. (1998). Neuropilin-1 Is Expressed by Endothelial and Tumor Cells as an Isoform-Specific Receptor for Vascular Endothelial Growth Factor.Cell 92 : 735–45.
Stoddart, L., Johnstone, E.K.M., Wheal, A.J., Goulding, J., Robers, M.B., Machleidt, T., et al. (2015). Application of BRET to monitor ligand binding to GPCRs. Nat. Methods 12 : 661–63.
Stoddart, L.A., Kilpatrick, L.E., and Hill, S.J. (2017). NanoBRET Approaches to Study Ligand Binding to GPCRs and RTKs. Trends Pharmacol. Sci. 39 : 136–47.
Vander Kooi, C.W., Jusino, M.A., Perman, B., Neau, D.B., Bellamy, H.D., and Leahy, D.J. (2007). Structural basis for ligand and heparin binding to neuropilin B domains. Proc. Natl. Acad. Sci. U.S.A.104 : 6152–57.
Vempati, P., Popel, A.S., and Mac Gabhann, F. (2014). Extracellular regulation of VEGF: Isoforms, proteolysis, and vascular patterning.Cytokine Growth Factor Rev . 25 : 1–19.
West, D.C., Rees, C.G., Duchesne, L., Patey, S.J., Terry, C.J., Turnbull, J.E., et al. (2005). Interactions of multiple heparin binding growth factors with neuropilin-1 and potentiation of the activity of fibroblast growth factor-2. J. Biol. Chem. 280 : 13457–64.
Whitaker, G.B., Limberg, B.J., and Rosenbaum, J.S. (2001). Vascular Endothelial Growth Factor Receptor-2 and Neuropilin-1 Form a Receptor Complex that is Responsible for the Differential Signaling Potency of VEGF165 and VEGF121. J. Biol. Chem. 276 : 25520–31.
White, C.W., Caspar, B., Vanyai, H.K., Pfleger, K.D.G., and Hill, S.J. (2020). CRISPR-Mediated Protein Tagging with Nanoluciferase to Investigate Native Chemokine Receptor Function and Conformational Changes. Cell Chem. Biol. 27: 499–510.
Windwarder, M., Yelland, T., Djordjevic, S., and Altmann, F. (2016). Detailed characterization of the O-linked glycosylation of the neuropilin-1 c/MAM-domain. Glycoconj. J. 33 : 387–97.
Witmer, A.N., Dai, J., Weich, H.A., Vrensen, G.F.J.M., and Schlingemann, R.O. (2002). Expression of vascular endothelial growth factor receptors 1, 2, and 3 in quiescent endothelia. J. Histochem. Cytochem.50 : 767–77.
Woolard, J., Bevan, H.S., Harper, S.J., and Bates, D. (2009). Molecular diversity of VEGF-A as a regulator of its biological activity.Microcirculation 16 : 572–92.
Woolard, J., Wang, W., Bevan, H.S., Qiu, Y., Morbidelli, L., Pritchard-jones, R.O., et al. (2004). VEGF 165b, an Inhibitory Vascular Endothelial Growth Factor Splice Variant: Mechanism of Action , In vivo Effect On Angiogenesis and Endogenous Protein Expression. Cancer Res. 64 : 7822–35.