REFERENCES
Ballmer-Hofer, K., Andersson, A.E., Ratcliffe, L.E., and Berger, P.
(2011). Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles
thereby specifying signal output. Blood 118 : 816–26.
Banerjee, S., Sengupta, K., Dhar, K., Mehta, S., D’Amore, P., Dhar, G.,
et al. (2006). Breast Cancer Cells Secreted Platelet-Derived Growth
Factor-Induced Motility of Vascular Smooth Muscle Cells Is Mediated
Through Neuropilin-1. Mol. Carcinog. 45 : 871–80.
Basagiannis, D., and Christoforidis, S. (2016). Constitutive endocytosis
of VEGFR2 protects the receptor against shedding. J. Biol. Chem.
291 : 16892–903.
Basagiannis, D., Zografou, S., Murphy, C., Fotsis, T., Morbidelli, L.,
Ziche, M., et al. (2016). VEGF induces signalling and angiogenesis by
directing VEGFR2 internalisation via macropinocytosis. J. Cell
Sci. 129 : 4091–104.
Botta, J., Bibic, L., Killoran, P., McCormick, P., and Howell, L.
(2019). Design and development of stapled transmembrane peptides that
disrupt the activity of G-protein coupled receptor oligomers. J.
Biol. Chem. 294 : 16587–603.
Brozzo, M.S., Bjelic, S., Kisko, K., Schleier, T., Leppánen, V.-M.,
Alitalo, K., et al. (2011). Thermodynamic and structural description of
allosterically regulated VEGF receptor 2 dimerization. Blood119 : 1781–88.
Carmeliet, P. (2005). Angiogenesis in life, disease and medicine.Nature 438 : 932–36.
Cébe Suarez, S., Pieren, M., Cariolato, L., Arn, S., Hoffman, U.,
Bogucki, A., et al. (2006). A VEGF-A splice variant defective for
heparan sulfate and neuropilin-1 binding shows attenuated signaling
through VEGFR-2. Cell. Mol. Life Sci. 63 : 2067–77.
Chung, A.S., and Ferrara, N. (2011). Developmental and pathological
angiogenesis. Annu. Rev. Cell Dev. Biol. 27 : 563–84.
Delcombel, R., Janssen, L., Vassy, R., Gammons, M., Haddad, O., Richard,
B., et al. (2013). New prospects in the roles of the C-terminal domains
of VEGF-A and their cooperation for ligand binding, cellular signaling
and vessels formation. Angiogenesis 16 : 353–71.
Dixon, A.S., Schwinn, M.K., Hall, M.P., Zimmerman, K., Otto, P., Lubben,
T.H., et al. (2016). NanoLuc Complementation Reporter Optimized for
Accurate Measurement of Protein Interactions in Cells. ACS Chem.
Biol. 11 : 400–08.
Djordjevic, S., and Driscoll, P.C. (2013). Targeting VEGF signalling via
the neuropilin co-receptor. Drug Discov. Today 18 :
447–45.
Eswarappa, S.M., Potdar, A.A., Koch, W.J., Fan, Y., Vasu, K., Lindner,
D., et al. (2014). Programmed translational readthrough generates
antiangiogenic VEGF-Ax. Cell 157 : 1605–18.
Ewan, L.C., Jopling, H.M., Jia, H., Mittar, S., Bagherzadeh, A., Howell,
G.J., et al. (2006). Intrinsic tyrosine kinase activity is required for
vascular endothelial growth factor receptor 2 ubiquitination, sorting
and degradation in endothelial cells. Traffic 7 : 1270–82.
Fantin, A., Herzog, B., Mahmoud, M., Yamaji, M., Plein, A., Denti, L.,
et al. (2014). Neuropilin 1 (NRP1) hypomorphism combined with defective
VEGF-A binding reveals novel roles for NRP1 in developmental and
pathological angiogenesis. Development 141 : 556–62.
Fantin, A., Lampropoulou, A., Gestri, G., Raimondi, C., Senatore, V.,
Zachary, I., et al. (2015). NRP1 Regulates CDC42 Activation to Promote
Filopodia Formation in Endothelial Tip Cells. Cell Rep.11 : 1577–90.
Fantin, A., Schwarz, Q., Davidson, K., Normando, E.M., Denti, L., and
Ruhrberg, C. (2011). The cytoplasmic domain of neuropilin 1 is
dispensable for angiogenesis, but promotes the spatial separation of
retinal arteries and veins. Development 138 : 4185–91.
Fantin, A., Vieira, J.M., Plein, A., Denti, L., Fruttiger, M., Pollard,
J.W., et al. (2013). NRP1 acts cell autonomously in endothelium to
promote tip cell function during sprouting angiogenesis. Blood121 : 2352–62.
Gelfand, M. V, Hagan, N., Tata, A., Oh, W.-J., Lacoste, B., Kang, K.-T.,
et al. (2014). Neuropilin-1 functions as a VEGFR2 co-receptor to guide
developmental angiogenesis independent of ligand binding. eLife3 : e03720. doi: 10.7554/eLife.03720.
Goel, H.L., and Mercurio, A.M. (2013). VEGF targets the tumour cell.Nat. Rev. Cancer 13 : 871–82.
Hall, M.P., Unch, J., Binkowski, B.F., Valley, M.P., Butler, B.L., Wood,
M.G., et al. (2012). Engineered luciferase reporter from a deep sea
shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem.
Biol. 7 : 1848–57.
Herzog, B., Pellet-Many, C., Britton, G., Hartzoulakis, B., and Zachary,
I.C. (2011). VEGF binding to NRP1 is essential for VEGF stimulation of
endothelial cell migration, complex formation between NRP1 and VEGFR2,
and signaling via FAK Tyr407 phosphorylation. Mol. Biol. Cell22 : 2766–76.
Jubb, A.M., Strickland, L.A., Liu, S.D., Mak, J., Schmidt, M., and
Koeppen, H. (2012). Neuropilin-1 expression in cancer and development.J. Pathol. 226 : 50–60.
Kawamura, H., Li, X., Harper, S.J., Bates, D., and Claesson-Welsh, L.
(2008). Vascular Endothelial Growth Factor (VEGF)-A165b Is A Weak In
vitro Agonist for VEGF Receptor-2 Due to Lack of Coreceptor Binding and
Deficient Regulation of Kinase Activity. Cancer Res. 68 :
4683–92.
Kilpatrick, L.E., Friedman-Ohana, R., Alcobia, D.C., Riching, K., Peach,
C.J., Wheal, A., et al. (2017). Real-time analysis of the binding of
fluorescent VEGF165a to VEGFR2 in living cells: Effect
of receptor tyrosine kinase inhibitors and fate of internalized
agonist-receptor complexes. Biochem. Pharmacol. 136 : 62–75.
King, C., Wirth, D., Workman, S., and Hristova, K. (2018). Interactions
between NRP1 and VEGFR2 molecules in the plasma membrane. Biochim.
Biophys. Acta - Biomembr. 1860 : 2118–25.
Koch, S., Meeteren, L.A. Van, Morin, E., Testini, C., Weström, S.,
Björkelund, H., et al. (2014). NRP1 Presented in trans to the
endothelium arrests VEGFR2 endocytosis, preventing angiogenic signaling
and tumor initiation. Dev. Cell 28 : 633–46.
Koch, S., Tugues, S., Li, X., Gualandi, L., and Claesson-Welsh, L.
(2011). Signal transduction by vascular endothelial growth factor
receptors. Biochem. J. 437 : 169–83.
Lee-Montiel, F.T., Li, P., and Imoukhuede, P.I. (2015). Quantum dot
multiplexing for the profiling of cellular receptors. Nanoscale
18504–18514.
Lee, S.W., Lee, J.E., Yoo, C.Y., Ko, M.S., Park, C.S., and Yang, S.H.
(2014). NRP-1 expression is strongly associated with the progression of
pituitary adenomas. Oncol. Rep. 32 : 1537–1542.
Leppanen, V.M., Prota, A.E., Jeltsch, M., Anisimov, A., Kalkkinen, N.,
Strandin, T., et al. (2010). Structural determinants of growth factor
binding and specificity by VEGF receptor 2. Proc. Natl. Acad. Sci.
U.S.A. 107 : 2425–30.
Mamluk, R., Gechtman, Z., Kutcher, M.E., Gasiunas, N., Gallagher, J.,
and Klagsbrun, M. (2002). Neuropilin-1 binds vascular endothelial growth
factor 165, placenta growth factor-2, and heparin via its b1b2 domain.J. Biol. Chem. 277 : 24818–25.
Muhl, L., Folestad, E.B., Gladh, H., Wang, Y., Moessinger, C.,
Jakobsson, L., et al. (2017). Neuropilin 1 binds platelet-derived growth
factor (PDGF)-D and is a co-receptor in PDGF-D/PDGF receptor β
signaling. J. Cell Sci. 130 : 1365–78.
Parker, M.W., Xu, P., Li, X., and Vander Kooi, C.W. (2012). Structural
basis for selective vascular endothelial growth factor-A (VEGF-A)
binding to neuropilin-1. J. Biol. Chem. 287 : 11082–89.
Peach, C.J., Kilpatrick, L.E., Friedman-Ohana, R., Zimmerman, K.,
Robers, M.B., Wood, K. V., et al. (2018a). Real-Time Ligand Binding of
Fluorescent VEGF-A Isoforms that Discriminate between VEGFR2 and NRP1 in
Living Cells. Cell Chem. Biol. 25 : 1208–18.
Peach, C.J., Mignone, V.W., Arruda, M.A., Hill, S.J., Kilpatrick, L.E.,
and Woolard, J. (2018b). Molecular Pharmacology of VEGF-A Isoforms:
Binding and Signalling at VEGFR2. Int. J. Mol. Sci. 19 :
1–27.
Peach, C.J., Kilpatrick, L.E., Woolard, J., and Hill, S.J. (2019).
Comparison of the ligand binding properties of fluorescent VEGF‐A
isoforms to VEGFR2 in living cells and membrane preparations using
NanoBRET. Br. J. Pharmacol. 176 : 3220–35.
Prahst, C., Héroult, M., Lanahan, A.A., Uziel, N., Kessler, O.,
Shraga-Heled, N., et al. (2008). Neuropilin-1-VEGFR-2 complexing
requires the PDZ-binding domain of neuropilin-1. J. Biol. Chem.283 : 25110–14.
Rizzolio, S., Rabinowicz, N., Rainero, E., Lanzetti, L., Serini, G.,
Norman, J., et al. (2012). Neuropilin-1-dependent regulation of
EGF-receptor Signaling. Cancer Res. 72 : 5801–11.
Roy, S., Bag, A.K., Singh, R.K., Talmadge, J.E., Batra, S.K., and Datta,
K. (2017). Multifaceted role of neuropilins in the immune system:
Potential targets for immunotherapy. Front. Immunol. 8 :
1–27.
Ruch, C., Skiniotis, G., Steinmetz, M.O., Walz, T., and Ballmer-Hofer,
K. (2007). Structure of a VEGF–VEGF receptor complex determined by
electron microscopy. Nat. Struct. Mol. Biol. 14 : 249–50.
Shintani, Y., Takashima, S., Asano, Y., Kato, H., Liao, Y., Yamazaki,
S., et al. (2006). Glycosaminoglycan modification of neuropilin-1
modulates VEGFR2 signaling. EMBO J. 25 : 3045–55.
Simons, M., Gordon, E., and Claesson-Welsh, L. (2016). Mechanisms and
regulation of endothelial VEGF receptor signalling. Nat. Rev. Mol.
Cell Biol. 17 : 611–25.
Soker, S., Miao, H.Q., Nomi, M., Takashima, S., and Klagsbrun, M.
(2002). VEGF165 mediates formation of complexes containing VEGFR-2 and
neuropilin-1 that enhance VEGF165-receptor binding. J. Cell.
Biochem. 85 : 357–68.
Soker, S., Takashima, S., Hua, Miao, Q., Neufeld, G., and Klagsbrun, M.
(1998). Neuropilin-1 Is Expressed by Endothelial and Tumor Cells as an
Isoform-Specific Receptor for Vascular Endothelial Growth Factor.Cell 92 : 735–45.
Stoddart, L., Johnstone, E.K.M., Wheal, A.J., Goulding, J., Robers,
M.B., Machleidt, T., et al. (2015). Application of BRET to monitor
ligand binding to GPCRs. Nat. Methods 12 : 661–63.
Stoddart, L.A., Kilpatrick, L.E., and Hill, S.J. (2017). NanoBRET
Approaches to Study Ligand Binding to GPCRs and RTKs. Trends Pharmacol.
Sci. 39 : 136–47.
Vander Kooi, C.W., Jusino, M.A., Perman, B., Neau, D.B., Bellamy, H.D.,
and Leahy, D.J. (2007). Structural basis for ligand and heparin binding
to neuropilin B domains. Proc. Natl. Acad. Sci. U.S.A.104 : 6152–57.
Vempati, P., Popel, A.S., and Mac Gabhann, F. (2014). Extracellular
regulation of VEGF: Isoforms, proteolysis, and vascular patterning.Cytokine Growth Factor Rev . 25 : 1–19.
West, D.C., Rees, C.G., Duchesne, L., Patey, S.J., Terry, C.J.,
Turnbull, J.E., et al. (2005). Interactions of multiple heparin binding
growth factors with neuropilin-1 and potentiation of the activity of
fibroblast growth factor-2. J. Biol. Chem. 280 : 13457–64.
Whitaker, G.B., Limberg, B.J., and Rosenbaum, J.S. (2001). Vascular
Endothelial Growth Factor Receptor-2 and Neuropilin-1 Form a Receptor
Complex that is Responsible for the Differential Signaling Potency of
VEGF165 and VEGF121. J. Biol. Chem. 276 : 25520–31.
White, C.W., Caspar, B., Vanyai, H.K., Pfleger, K.D.G., and Hill, S.J.
(2020). CRISPR-Mediated Protein Tagging with Nanoluciferase to
Investigate Native Chemokine Receptor Function and Conformational
Changes. Cell Chem. Biol. 27: 499–510.
Windwarder, M., Yelland, T., Djordjevic, S., and Altmann, F. (2016).
Detailed characterization of the O-linked glycosylation of the
neuropilin-1 c/MAM-domain. Glycoconj. J. 33 : 387–97.
Witmer, A.N., Dai, J., Weich, H.A., Vrensen, G.F.J.M., and Schlingemann,
R.O. (2002). Expression of vascular endothelial growth factor receptors
1, 2, and 3 in quiescent endothelia. J. Histochem. Cytochem.50 : 767–77.
Woolard, J., Bevan, H.S., Harper, S.J., and Bates, D. (2009). Molecular
diversity of VEGF-A as a regulator of its biological activity.Microcirculation 16 : 572–92.
Woolard, J., Wang, W., Bevan, H.S., Qiu, Y., Morbidelli, L.,
Pritchard-jones, R.O., et al. (2004). VEGF 165b, an Inhibitory Vascular
Endothelial Growth Factor Splice Variant: Mechanism of Action , In vivo
Effect On Angiogenesis and Endogenous Protein Expression. Cancer
Res. 64 : 7822–35.