\(R^{2}=\frac{\left[\sum_{i=1}^{n}{(\text{ETa}_{Sebal,i}-{\overset{\overline{}}{\text{ETa}}}_{\text{Sebal}})(\text{ETa}_{i}-\overset{\overline{}}{\text{ETa}})}\right]^{2}}{\sum_{i=1}^{n}{{(\text{ETa}_{Sebal,i}-{\overset{\overline{}}{\text{ETa}}}_{\text{Sebal}})}^{2}\sum_{i=1}^{n}{(\text{ETa}_{i}-\overset{\overline{}}{\text{ETa}})}^{2}}}\) (14)
\(NSE=1-\frac{{\sum_{i=1}^{n}(\text{ETa}_{i}-\text{ETa}_{Sebal,i})}^{2}}{{\sum_{i=1}^{n}{(\text{ETa}_{i}}-\ {\overset{\overline{}}{\text{ET}}a}_{i})}^{2}}\) (15)
\(r=\frac{\sum_{i=1}^{n}{(\text{ETa}_{Sebal,i}-{\overset{\overline{}}{\text{ETa}}}_{\text{Sebal}})(\text{ETa}_{i}-\overset{\overline{}}{\text{ETa}})}}{\sqrt{\sum_{i=1}^{n}{{(\text{ETa}_{Sebal,i}-{\overset{\overline{}}{\text{ETa}}}_{\text{Sebal}})}^{2}\sum_{i=1}^{n}{(\text{ETa}_{i}-\overset{\overline{}}{\text{ETa}})}^{2}}}}\) (16)