References
Allen R., Tasumi M., Trezza R., Bastiaanssen W., & Waters R. (2002).
SEBAL, Surface Energy Balance Algorithms for Land. Idaho Implementation.
Advanced Training and Users Manual.
Allen R. G. (2016). REF-ET: Reference evapotranspiration calculator.
Allen R. G., Pereira L. S., Raes D., & Smith M. (1998). Crop
Evapotranspiration: guidelines for computing crop water requirements.
FAO Irrigation and drainage paper 56. Food and Agriculture Organization,
Rome.
de Araújo J. C., & Piedra J. I. G. (2009). Comparative hydrology:
analysis of a semiarid and a humid tropical watershed.Hydrological Processes , 23(8), 1169–1178. DOI: 10.1002/hyp.7232
Bastiaanssen W. G. M., Menenti M., Feddes R. A., & Holtslag A. A. M.
(1998). A remote sensing surface energy balance algorithm for land
(SEBAL): 1. Formulation. Journal of Hydrology , 212–213(1–4),
198–212. DOI: 10.1016/S0022-1694(98)00253-4
Bello J. A. L. (2004). El Pinar de Antequera (Valladolid, España): flora
vascular de interés. Botanica Complutensis , 28, 67–70.
Boretti A., & Rosa L. (2019). Reassessing the projections of the World
Water Development Report. npj Clean Water , 15, 1–6. DOI:
10.1038/s41545-019-0039-9
Calama R., Conde M., De-Dios-García J., Madrigal G., Vázquez-Piqué J.,
Gordo F. J., & Pardos M. (2019). Linking climate, annual growth and
competition in a Mediterranean forest: Pinus pinea in the Spanish
Northern Plateau. Agricultural and Forest Meteorology journal ,
264, 309–321. DOI: 10.1016/j.agrformet.2018.10.017
Castelli M., Anderson M. C., Yang Y., Wohlfahrt G., Bertoldi G.,
Niedrist G., Hammerle A., Zhao P., Zebisch M., & Notarnicola C. (2018).
Two-source energy balance modeling of evapotranspiration in Alpine
grasslands. Remote Sensing of Environment , 209, 327–342. DOI:
10.1016/j.rse.2018.02.062
Chen J. M., & Liu J. (2020). Evolution of evapotranspiration models
using thermal and shortwave remote sensing data. Remote Sensing of
Environment , 237, 1–20. DOI: 10.1016/j.rse.2019.111594
Cosgrove W. J., & Loucks D. P. (2015). Water management: Current and
future challenges and research directions. Water Resources
Research , 51(6), 4823–4839. DOI: 10.1002/2014WR016869
Costa C. A. G., Lopes J. W. B., Pinheiro E. A. R., Araújo J. C. de., &
Gomes Filho R. R. (2013). Spatial behaviour of soil moisture in the root
zone of the Caatinga Comportamento espacial da umidade do solo na zona
das raízes do Bioma Caatinga. Revista Ciência Agronômica , 44(4),
685–694. DOI: 10.1590/S1806-66902013000400004
Farias T. R. L., Medeiros P. H. A., Navarro-Hevia J., & de Araújo J. C.
(2019). Unpaved rural roads as source areas of sediment in a watershed
of the Brazilian semi-arid region. International Journal of
Sediment Research , 34(5), 475–485. DOI: 10.1016/j.ijsrc.2019.03.002
de Figueiredo J. V., de Araújo J. C., Medeiros P. H. A., & Costa A. C.
(2016). Runoff initiation in a preserved semiarid Caatinga small
watershed, Northeastern Brazil. Hydrological Processes , 30(13),
2390–2400. DOI: 10.1002/hyp.10801
Gobbo S., Lo Prest S., Martello M., Lorenza P., Antonio B., & Morari F.
(2019). Integrating SEBAL with in-Field Crop Water Status Measurement
for Precision Irrigation Applications—A Case Study. Remote
Sensing , 11, 1–18. DOI: 10.3390/rs11172069
Grosso C., Manoli G., Martello M., Chemin Y., Pons D., Teatini P.,
Piccoli I., & Morari F. (2018). Mapping Maize Evapotranspiration at
Field Scale Using SEBAL: A Comparison with the FAO Method and Soil-Plant
Model Simulations. Remote Sensing , 10, 1–17. DOI:
10.3390/rs10091452
Jaafar H. H., & Ahmad F. A. (2020). Time series trends of Landsat-based
ET using automated calibration in METRIC and SEBAL: The Bekaa Valley,
Lebanon. Remote Sensing of Environment , 238, 1–17. DOI:
10.1016/j.rse.2018.12.033
Kendall M. G. (1975). Rank Correlation Measures . Charles Griffin:
London.
Liaqat U. W., & Choi M. (2015). Surface energy fluxes in the Northeast
Asia ecosystem: SEBS and METRIC models using Landsat satellite images.Agricultural and Forest Meteorology , 214–215, 60–79. DOI:
10.1016/j.agrformet.2015.08.245
Liu C., Sun G., Mcnulty S. G., Noormets A., & Fang Y. (2017).
Environmental controls on seasonal ecosystem evapotranspiration/
potential evapotranspiration ratio as determined by the global eddy flux
measurements. Hydrology and Earth System Sciences , 21, 311–322.
DOI: 10.5194/hess-21-311-2017
Losgedaragh S. Z., & Rahimzadegan M. (2018). Evaluation of SEBS, SEBAL,
and METRIC models in estimation of the evaporation from the freshwater
lakes (Case study: Amirkabir dam, Iran). Journal of Hydrology ,
561, 523–531. DOI: 10.1016/J.JHYDROL.2018.04.025
Mann H. B. (1945). Nonparametric tests against trend.Econometrica , 13, 245–259.
Medeiros P. H. A., & de Araújo J. C. (2014). Temporal variability of
rainfall in a semiarid environment in Brazil and its effect on sediment
transport processes. Journal of Soils and Sediments , 14(7),
1216–1223. DOI: 10.1007/s11368-013-0809-9
Moreno-Fernández D., Montes F., Sánchez-González M., Gordo F. J., &
Cañellas I. (2018). Regeneration dynamics of mixed stands of Pinus
pinaster Ait. and Pinus pinea L. in Central Spain. Eur J Forest
Res , 137, 17–27. DOI: 10.1007/s10342-017-1086-8
Penna D., Brocca L., Borga M., & Dalla Fontana G. (2013). Soil moisture
temporal stability at different depths on two alpine hillslopes during
wet and dry periods. Journal of Hydrology , 477, 55–71. DOI:
10.1016/j.jhydrol.2012.10.052
Pinheiro E. A. R., Metselaar K., Lier Q. de J. van., & Araújo J. C. de.
(2016). Importance of soil-water to the Caatinga biome, Brazil.Ecohydrology , 9(7), 1313–1327. DOI: 10.1002/eco.1728
Rahimzadegan M., & Janani A. S. (2019). Estimating evapotranspiration
of pistachio crop based on SEBAL algorithm using Landsat 8 satellite
imagery. Agricultural Water Management , 217, 383–390. DOI:
10.1016/j.agwat.2019.03.018
del Río S., Fraile R., Herrero L., & Penas A. (2007). Analysis of
recent trends in mean maximum and minimum temperatures in a region of
the NW of Spain (Castilla y León). Theoretical and Applied
Climatology , 90(1–2), 1–12. DOI: 10.1007/s00704-006-0278-9
Safriel U., & Adeel Z. (2005). Dryland Systems. In Ecosystems and
Human Well‐being, Current State and Trends , Hassan R., Scholes R., Ash
N. (eds). Island Press: Washington; 625–658.
Senkondo W., Munishi S. E., Tumbo M., Nobert J., & Lyon S. W. (2019).
Comparing remotely-sensed surface energy balance evapotranspiration
estimates in heterogeneous and data-limited regions: A case study of
Tanzania’s Kilombero Valley. Remote Sensing , 11, 1–33. DOI:
10.3390/rs11111289
Sun H., Yang Y., Wu R., Gui D., Xue J., Liu Y., & Yan D. (2019).
Improving estimation of cropland evapotranspiration by the Bayesian
model averaging method with surface energy balance models.Atmosphere , 10, 1–19. DOI: 10.3390/atmos10040188
Tasumi M. (2019). Estimating evapotranspiration using METRIC model and
Landsat data for better understandings of regional hydrology in the
western Urmia Lake Basin. Agricultural Water Management , 226,
1–11. DOI: 10.1016/j.agwat.2019.105805
Teixeira A. H. de C., Bastiaanssen W. G. M., Ahmad M. D., & Bos M. G.
(2009). Reviewing SEBAL input parameters for assessing
evapotranspiration and water productivity for the Low-Middle Sã o
Francisco River basin, Brazil Part A: Calibration and validation.Agricultural and Forest Meteorology , 149, 462–476. DOI:
10.1016/j.agrformet.2008.09.016
Teixeira L. M. N. (2018). Evapotranspiração em vegetação natural do
bioma Caatinga obtida por balanço hídrico no solo e por sensoreamento
remoto.Federal University of Ceará, Fortaleza, CE.
Vicente-Serrano S. M., Azorin-Molina C., Sanchez-Lorenzo A., Revuelto
J., López-Moreno J. I., González-Hidalgo J. C., Moran-Tejeda E., &
Espejo F. (2014). Reference evapotranspiration variability and trends in
Spain, 1961-2011. Global and Planetary Change , 121, 26–40. DOI:
10.1016/j.gloplacha.2014.06.005
Yang Z., Zhang Q., Hao X., & Yue P. (2019). Changes in
evapotranspiration over global semiarid regions 1984–2013.Journal of Geophysical Research: Atmospheres , 124, 1–18. DOI:
10.1029/2018JD029533
Zhao Y., Peth S., Wang X. Y., Lin H., & Horn R. (2010). Controls of
surface soil moisture spatial patterns and their temporal stability in a
semi-arid steppe. Hydrological Processes , 24(18), 2507–2519.
DOI: 10.1002/hyp.7665
Table 1. Synthesis of meteorological data obtained for the Caatinga
forest and the Pinares forest.
Table 2. Ratio ETa/ET0 (which equals
Kc.Ks, Eq. 13) for the Caatinga
(Teixeira, 2018) and Pinares (Liu et al., 2017) semiarid forests.
Table 3. Trend analysis of weather variables and potential and actual
evapotranspiration (ET0 and ETa,
respectively). S indicates the trend (negative or positive), Sen’s Slope
represents the annual increase/decrease of the variable and p-value is
the trend significance. *There is a significant positive temporal trend
at the 5% level.
Figure 1. Geographical location of the study areas and meteorological
stations: Caatinga forest in north-eastern of Brazil and Tierra de
Pinares forest in Valladolid (Castile and Leon), Spain.
Figure 2. Satellite data of the period from 1995 to 2019, used for the
assessment of actual evapotranspiration in the Caatinga forest and the
Pinares forest.
Figure 3. Time series of daily rainfall and actual (ETa)
and potential evapotranspiration (ET0) for (a) the
Caatinga forest and (b) the Pinares forest. Daily values are
interpolated from the satellite overpass time.
Figure 4. Monthly fraction of evapotranspiration (ETfrac= Kc.Ks) for both forests (a) Caatinga
and (b) Pinares obtained by
ETa_SEBAL/ET0_PM for each scene of
Landsat used and (c) for each month by ETfrac average.
Figure 5. Box-plot of daily actual evapotranspiration
(ETa) for the two forests (a) Caatinga (N ≈ 146,799
pixels) and (b) Pinares (N ≈ 168,956 pixels), elaborated for each of 111
Landsat overpasses and computed by using the Surface Energy Balance
Algorithm for Land (SEBAL) model. The colours represent the different
seasons of the year.
Figure 6. Validation of daily actual evapotranspiration
(ETa) for the two forests: (a) Caatinga and (b) Pinares,
using ET0 calculated with the Penman-Monteith FAO-56
equation and Kc.Ks. The statistical
parameters are determination coefficient (R2),
Nash–Sutcliffe coefficient (NSE), and Pearson’s correlation coefficient
(r).
Figure 7. Pearson’s correlation (r) between Normalized Difference
Vegetation Index (NDVI) and actual evapotranspiration
(ETa) for each pixel of Caatiga forest (a) and Pinares
forest (b) images.
Figure 8. Temporal Stability Index (TSI) of ETa for the
(a) rainy season and (b) dry season of the Caatinga forest, and for the
four seasons (c) spring, (d) summer, (e) autumn and (f) winter of the
Pinares forest.
Figure 9. Yearly data of the variables used for trend analysis ((a, d)
rainfall; (b, e) maximum and minimum temperature; and (c, f) potential
and actual evapotranspiration, ET0 and
ETa, respectively) for (a, b, c) Caatinga forest and (d,
e, f) Pinares forest. Yearly ETa was calculated by
multiplying monthly ETfrac(Kc.Ks) and daily Penman-Monteith
ET0.