References
A, O., D, A., Z, T., Q, S., Y, W., W, Z., . . . B, L. (2007). HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell host & microbe, 1 (1), 23-35.
A, P., MJ, E., VA, G., M, P., H, Y., YP, d. J., & CM, R. (2009). Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature, 457 (7231), 882-886.
AB, S., & RC, H. (2004). Epidermal growth factor receptor activation differentially regulates claudin expression and enhances transepithelial resistance in Madin-Darby canine kidney cells. The Journal of biological chemistry, 279 (5), 3543-3552. doi:10.1074/jbc.M308682200
Bo-qi, L., Guang-xing, L., & Xiao-feng, R. (2009). Initial identification of the domain of TGEV specific receptor APN.heilongjiang animal science and veterinary medicine .
BX, L., JW, G., & YJ, L. (2007). Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology, 365 (1), 166-172.
C, K., Y, Y., S, R., & A, J. (2019). Porcine Epidemic Diarrhea Virus (PEDV) ORF3 Interactome Reveals Inhibition of Virus Replication by Cellular VPS36 Protein. Viruses, 11 (4), undefined.
C, L., J, T., Y, M., X, L., Y, Y., G, P., . . . F, L. (2015). Receptor usage and cell entry of porcine epidemic diarrhea coronavirus.Journal of virology, 89 (11), 6121-6125.
C, L., Y, M., Y, Y., Y, Z., J, S., Y, Z., . . . F, L. (2016). Cell Entry of Porcine Epidemic Diarrhea Coronavirus Is Activated by Lysosomal Proteases. The Journal of biological chemistry, 291 (47), 24779-24786. doi:10.1074/jbc.M116.740746
CA, d. H., L, K., PS, M., H, V., & PJ, R. (1998). Coronavirus particle assembly: primary structure requirements of the membrane protein.Journal of virology, 72 (8), 6838-6850.
CC, H., Y, W., B, N., R, W., L, H., XF, R., . . . X, M. (2015). Porcine epidemic diarrhea virus uses cell-surface heparan sulfate as an attachment factor. Archives of virology, 160 (7), 1621-1628.
CH, K., BJ, K., JG, L., GO, K., & YB, K. (1999). Derivation of attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate.Vaccine, 17 (null), 2546-2553.
CK, C., CJ, C., CC, W., SW, C., SR, S., & RL, K. (2017). Cellular hnRNP A2/B1 interacts with the NP of influenza A virus and impacts viral replication. PloS one, 12 (11), e0188214.
CY, C., JY, P., YH, C., YC, C., YT, W., PS, T., . . . HW, C. (2019). Development and comparison of enzyme-linked immunosorbent assays based on recombinant trimeric full-length and truncated spike proteins for detecting antibodies against porcine epidemic diarrhea virus. BMC veterinary research, 15 (1), 421. doi:10.1186/s12917-019-2171-7
D, S. (2014). Counteraction of the multifunctional restriction factor tetherin. Frontiers in microbiology, 5 , 163. doi:10.3389/fmicb.2014.00163
D, S., & B, P. (2012). Porcine epidemic diarrhoea virus: a comprehensive review of molecular epidemiology, diagnosis, and vaccines.Virus genes, 44 (2), 167-175. doi:10.1007/s11262-012-0713-1
D, S., H, S., D, S., J, C., X, Z., X, W., . . . L, F. (2017). Nucleocapsid Interacts with NPM1 and Protects it from Proteolytic Cleavage, Enhancing Cell Survival, and is Involved in PEDV Growth.Scientific reports, 7 (undefined), 39700.
D, S., M, L., J, C., H, S., S, Z., X, Z., & L, F. (2014). Molecular characterizations of subcellular localization signals in the nucleocapsid protein of porcine epidemic diarrhea virus. Viruses, 6 (3), 1253-1273.
D, W., & JS, M. (2019). The 3.1-Angstrom Cryo-electron Microscopy Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the Prefusion Conformation. Journal of virology, 93 (23). doi:10.1128/jvi.00923-19
D, W., L, F., & S, X. (2016). Porcine epidemic diarrhea in China.Virus research, 226 , 7-13. doi:10.1016/j.virusres.2016.05.026
D, W., L, F., Y, S., H, Z., L, G., G, P., . . . S, X. (2016). Porcine Epidemic Diarrhea Virus 3C-Like Protease Regulates Its Interferon Antagonism by Cleaving NEMO. Journal of virology, 90 (4), 2090-2101.
DH, L., YS, J., CK, P., S, K., DS, L., & C, L. (2015). Immunoprophylactic effect of chicken egg yolk antibody (IgY) against a recombinant S1 domain of the porcine epidemic diarrhea virus spike protein in piglets. Archives of virology, 160 (9), 2197-2207.
DM, S., JK, S., & JR, B. (2013). Applications of nanotechnology for immunology. Nature reviews. Immunology, 13 (8), 592-605. doi:10.1038/nri3488
DS, S., JS, O., BK, K., JS, Y., HJ, M., HS, Y., . . . BK, P. (2007). Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus DR13 strain. Research in veterinary science, 82 (1), 134-140.
E, B.-F., C, F., F, S., S, S., M, E., J, U., . . . W, G. (2010). Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors. Journal of virology, 84 (11), 5605-5614.
E, N., & C, L. (2010). Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection.Veterinary microbiology, 144 (null), 41-50.
EJ, S., PJ, B., JC, D., V, T., J, Z., LL, P., . . . AE, G. (2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. Journal of molecular biology, 331 (5), 991-1004.
F, C., Y, Z., M, W., X, K., S, Y., Z, L., . . . Q, H. (2015). Comparative Genomic Analysis of Classical and Variant Virulent Parental/Attenuated Strains of Porcine Epidemic Diarrhea Virus.Viruses, 7 (10), 5525-5538.
F, D., G, Y., Q, L., MT, N., X, Z., Y, L., . . . G, P. (2016). Identification and Comparison of Receptor Binding Characteristics of the Spike Protein of Two Porcine Epidemic Diarrhea Virus Strains.Viruses, 8 (3), 55.
F, F., L, L., L, S., B, Y., H, S., J, Z., . . . P, L. (2017). A spike-specific whole-porcine antibody isolated from a porcine B cell that neutralizes both genogroup 1 and 2 PEDV strains. Veterinary microbiology, 205 (undefined), 99-105.
F, K., & G, H. (1993). Structural and functional analysis of the surface protein of human coronavirus OC43. Virology, 195 (1), 195-202.
F, L. (2012). Evidence for a common evolutionary origin of coronavirus spike protein receptor-binding subunits. Journal of virology, 86 (5), 2856-2858.
F, L. (2015). Receptor recognition mechanisms of coronaviruses: a decade of structural studies. Journal of virology, 89 (4), 1954-1964.
F, M., S, S., DS, Z., Y, C., X, M., Q, Z., & X, R. (2014). A phage-displayed peptide recognizing porcine aminopeptidase N is a potent small molecule inhibitor of PEDV entry. Virology, null (undefined), 20-27.
G, P., L, X., YL, L., L, C., JR, P., KV, H., & F, L. (2012). Crystal structure of bovine coronavirus spike protein lectin domain. The Journal of biological chemistry, 287 (50), 41931-41938.
G, S., E, F., L, C., S, S., T, W., J, N., . . . DI, S. (2004). The nsp9 replicase protein of SARS-coronavirus, structure and functional insights. Structure (London, England : 1993), 12 (2), 341-353.
H, B., C, S., MI, A., F, Z., RJ, L., H, T., . . . TF, B. (2003). Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. The Journal of biological chemistry, 278 (42), 41003-41012.
H, L., H, Z., L, G., B, L., K, H., & H, F. (2018). Development and application of an indirect ELISA for the detection of antibodies to porcine epidemic diarrhea virus based on a recombinant spike protein.BMC veterinary research, 14 (1), 243. doi:10.1186/s12917-018-1570-5
H, S., J, P., Y, W., Y, S., J, H., L, L., . . . J, L. (2016). Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets. Journal of virology, 90 (14), 6235-6243. doi:10.1128/jvi.00127-16
H, V., RJ, d. G., DA, H., MC, H., & WJ, S. (1991). Primary structure of the membrane and nucleocapsid protein genes of feline infectious peritonitis virus and immunogenicity of recombinant vaccinia viruses in kittens. Virology, 181 (1), 327-335.
HJ, C., JH, K., CH, L., YJ, A., JH, S., SH, B., & DH, K. (2009). Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus. Antiviral research, 81 (1), 77-81.
J, H., C, X., L, H., Y, W., & Y, C. (2014). Bioinformatics insight into the spike glycoprotein gene of field porcine epidemic diarrhea strains during 2011-2013 in Guangdong, China. Virus genes, 49 (1), 58-67.
JA, G., & BB, F. (2009). Tight junctions as targets of infectious agents. Biochimica et biophysica acta, 1788 (4), 832-841.
JE, P., DJ, C., & HJ, S. (2011). Receptor-bound porcine epidemic diarrhea virus spike protein cleaved by trypsin induces membrane fusion.Archives of virology, 156 (10), 1749-1756. doi:10.1007/s00705-011-1044-6
JE, P., DJ, C., & HJ, S. (2014). Clathrin- and serine proteases-dependent uptake of porcine epidemic diarrhea virus into Vero cells. Virus research, 191 (undefined), 21-29.
Jeffers, S. A., Hemmila, E. M., & Holmes, K. V. (2006). Human coronavirus 229E can use CD209L (L-SIGN) to enter cells. Adv Exp Med Biol, 581 , 265-269. doi:10.1007/978-0-387-33012-9_44
JH, F., YZ, Z., XQ, S., WY, G., & JM, D. (2015). Development of an enzyme-linked immunosorbent assay for the monitoring and surveillance of antibodies to porcine epidemic diarrhea virus based on a recombinant membrane protein. Journal of virological methods, 225 (undefined), 90-94.
JH, L., JS, P., SW, L., SY, H., BE, Y., & HJ, C. (2015). Porcine epidemic diarrhea virus infection: inhibition by polysaccharide from Ginkgo biloba exocarp and mode of its action. Virus research, 195 (undefined), 148-152.
JH, S., JK, S., & HJ, C. (2011). Quercetin 7-rhamnoside reduces porcine epidemic diarrhea virus replication via independent pathway of viral induced reactive oxygen species. Virol J, 8 (undefined), 460.
Jh, W. (2002). Protein recognition by cell surface receptors: physiological receptors versus virus interactions. Trends in biochemical sciences, 27 (3), 122-126. doi:10.1016/s0968-0004(01)02038-2
JM, T.-F., & CF, A. (2015). Tight Junctions Go Viral! Viruses, 7 (9), 5145-5154. doi:10.3390/v7092865
JS, O., DS, S., & BK, P. (2003). Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes. Journal of veterinary science, 4 (3), 269-275.
K, H., A, S., & MO, O. (2000). Mapping the functional domains of nucleolar protein B23. The Journal of biological chemistry, 275 (32), 24451-24457.
K, N., SI, R., KG, L., & S, M. (2015). Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression. Virus research, 202 (undefined), 89-100.
K, O., BL, H., R, H., VS, R., H, M., S, I., . . . C, M. (2013). Inhibition of Middle East respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody. Journal of virology, 87 (24), 13892-13899.
K, S., M, M., MT, I., A, M., M, K., S, M., & F, T. (2016). Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity.The Journal of general virology, 97 (10), 2528-2539. doi:10.1099/jgv.0.000563
K, S., S, M., M, U., & F, T. (2011). Role of proteases in the release of porcine epidemic diarrhea virus from infected cells. Journal of virology, 85 (15), 7872-7880.
K, W., W, L., J, C., S, X., H, S., H, H., . . . B, S. (2012). PEDV ORF3 encodes an ion channel protein and regulates virus production.FEBS letters, 586 (4), 384-391.
L, G.-M., R, T., & D, C. (2008). Crosstalk of tight junction components with signaling pathways. Biochimica et biophysica acta, 1778 (3), 729-756.
L, G., H, Y., W, G., X, L., R, L., J, Z., . . . Y, W. (2016). Autophagy Negatively Regulates Transmissible Gastroenteritis Virus Replication.Scientific reports, 6 (undefined), 23864.
L, L., F, F., M, X., W, C., J, L., H, S., . . . P, L. (2017). IFN-lambda preferably inhibits PEDV infection of porcine intestinal epithelial cells compared with IFN-alpha. Antiviral research, 140 (undefined), 76-82.
L, Y., J, X., L, G., T, G., L, Z., L, F., . . . Y, W. (2018). Porcine Epidemic Diarrhea Virus-Induced Epidermal Growth Factor Receptor Activation Impairs the Antiviral Activity of Type I Interferon.Journal of virology, 92 (8), undefined.
M, A., & G, W. (2019). Current Status of Porcine Epidemic Diarrhoea (PED) in European Pigs. Journal of veterinary research, 63 (4), 465-470. doi:10.2478/jvetres-2019-0064
M, D., P, G., SF, W., & FV, C. (2009). The autophagy machinery is required to initiate hepatitis C virus replication. Proceedings of the National Academy of Sciences of the United States of America, 106 (33), 14046-14051.
M, G., D, D., R, A., J, D., T, T., PC, R., . . . C, M. (2009). Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell host & microbe, 6 (4), 367-380.
M, M., A, G., PL, S., & R, C. (2015). Connections matter–how viruses use cell–cell adhesion components. Journal of cell science, 128 (3), 431-439. doi:10.1242/jcs.159400
Masters, P. S. (2006). The molecular biology of coronaviruses.Advances in Virus Research, 66 (1), 193.
MJ, E., T, v. H., DM, T., AJ, S., M, P., B, W., . . . CM, R. (2007). Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature, 446 (7137), 801-805.
MS, L. (2011). NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochemistry research international, 2011 (undefined), 195209.
MZ, H., H, W., SY, W., DA, C., X, T., & YM, L. (2016). Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus samples obtained from farms in Gansu, China. Genetics and molecular research : GMR, 15 (1), undefined.
N, K., T, S., H, W., Y, J., Y, Z., L, L., . . . G, T. (2019). BST2 suppresses porcine epidemic diarrhea virus replication by targeting and degrading virus nucleocapsid protein with selective autophagy.Autophagy , 1-16. doi:10.1080/15548627.2019.1707487
N, V. D., D, G., C, K., RL, J., R, M., MC, J., . . . J, G. (2008). The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell host & microbe, 3 (4), 245-252. doi:10.1016/j.chom.2008.03.001
O, W., W, L., L, W., TJ, M., RW, W., FJ, v. K., . . . BJ, B. (2014). Proteolytic activation of the porcine epidemic diarrhea coronavirus spike fusion protein by trypsin in cell culture. Journal of virology, 88 (14), 7952-7961. doi:10.1128/jvi.00297-14
OV, S. (2009). [Porcine epidemic diarrhea]. Voprosy virusologii, 54 (2), 4-8.
P, I., CF, A., & S, L. (2006). Role of sialic acids in rotavirus infection. Glycoconjugate journal, 23 , 27-37. doi:10.1007/s10719-006-5435-y
Q, Z., K, S., & D, Y. (2016). Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1. Virology, 489 (undefined), 252-268.
R, K., A, B., M, A., & K, T. (2001). Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus genes, 23 (2), 137-144.
R, S., & TH, B. (2008). Type II transmembrane serine proteases in development and disease. The international journal of biochemistry & cell biology, 40 (null), 1297-1316.
RQ, S., RJ, C., YQ, C., PS, L., DK, C., & CX, S. (2012). Outbreak of porcine epidemic diarrhea in suckling piglets, China. Emerging infectious diseases, 18 (1), 161-163. doi:10.3201/eid1801.111259
S, K., V, K., R, R., A, S., A, W., & G, B. (2003). Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology.Traffic (Copenhagen, Denmark), 4 (10), 694-709. doi:10.1034/j.1600-0854.2003.00129.x
S, S., WC, L., & JD, E. (2011). Heparan sulfate proteoglycans.Cold Spring Harbor perspectives in biology, 3 (7), undefined.
S, T., M, N., K, M., & MS, B. (2010). Rho signaling and tight junction functions. Physiology (Bethesda, Md.), 25 (1), 16-26.
S, T., ML, J., SE, S. J., HL, O., PR, N., LN, P., . . . AD, M. (2015). Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND THE DEVELOPMENT OF ANTIVIRALS. The Journal of biological chemistry, 290 (32), 19403-19422.
S, Y., Z, L., F, C., W, L., X, G., H, H., & Q, H. (2015). Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates formation of vesicles and promotes the proliferation of attenuated PEDV.Virus genes, 51 (3), 385-392.
S, Z., H, Z., Z, D., R, L., K, A., L, L., . . . L, F. (2015). Proteome analysis of porcine epidemic diarrhea virus (PEDV)-infected Vero cells.Proteomics, 15 (11), 1819-1828.
S, Z., J, G., L, Z., & Q, Y. (2014). Transmissible gastroenteritis virus and porcine epidemic diarrhoea virus infection induces dramatic changes in the tight junctions and microfilaments of polarized IPEC-J2 cells. Virus research, 192 (undefined), 34-45.
SJ, P., HK, K., DS, S., HJ, M., & BK, P. (2011). Molecular characterization and phylogenetic analysis of porcine epidemic diarrhea virus (PEDV) field isolates in Korea. Archives of virology, 156 (4), 577-585.
SR, W., & S, N.-M. (2005). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus.Microbiology and molecular biology reviews : MMBR, 69 (4), 635-664.
T, T., H, H., J, Z., S, D., X, Z., W, T., . . . J, L. (2020). Glycyrrhizic-Acid-Based Carbon Dots with High Antiviral Activity by Multisite Inhibition Mechanisms. Small (Weinheim an der Bergstrasse, Germany), 16 (13), e1906206. doi:10.1002/smll.201906206
TJ, K., SC, H., MS, Y., & YS, J. (2006). Expression of synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat-labile enterotoxin in tobacco plants. Protein expression and purification, 46 (1), 16-22. doi:10.1016/j.pep.2005.07.026
U, B., & H, S. (2013). Heterogeneous nuclear ribonucleoprotein A1 in health and neurodegenerative disease: from structural insights to post-transcriptional regulatory roles. Molecular and cellular neurosciences, 56 (undefined), 436-446.
V, O. D., JM, P., M, L., T, B., W, J., LL, R., . . . B, B. (2011). Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. Virology, 410 (1), 142-150.
V, T., KA, I., A, P., T, H., B, S., S, B., . . . J, Z. (2003). Mechanisms and enzymes involved in SARS coronavirus genome expression.The Journal of general virology, 84 (null), 2305-2315.
W, L., FJM, v. K., Q, H., PJM, R., & BJ, B. (2016). Cellular entry of the porcine epidemic diarrhea virus. Virus research, 226 , 117-127. doi:10.1016/j.virusres.2016.05.031
W, L., H, L., Y, L., Y, P., F, D., Y, S., . . . Q, H. (2012). New variants of porcine epidemic diarrhea virus, China, 2011. Emerging infectious diseases, 18 (8), 1350-1353.
W, L., O, W., FJ, v. K., Q, H., PJ, R., & BJ, B. (2015). A Single Point Mutation Creating a Furin Cleavage Site in the Spike Protein Renders Porcine Epidemic Diarrhea Coronavirus Trypsin Independent for Cell Entry and Fusion. Journal of virology, 89 (15), 8077-8081. doi:10.1128/jvi.00356-15
W, S., W, F., J, B., Y, T., L, W., Y, J., . . . Y, L. (2017). TMPRSS2 and MSPL Facilitate Trypsin-Independent Porcine Epidemic Diarrhea Virus Replication in Vero Cells. Viruses, 9 (5), undefined.
X, G., M, Z., X, Z., X, T., H, G., W, Z., . . . Q, H. (2017). Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication.Viruses, 9 (3), undefined.
X, L., L, G., J, Z., Y, X., W, G., L, F., & Y, W. (2017). Tight Junction Protein Occludin Is a Porcine Epidemic Diarrhea Virus Entry Factor. Journal of virology, 91 (10), undefined.
X, X., H, Z., Q, Z., Y, H., J, D., Y, L., . . . D, T. (2013). Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression.Veterinary microbiology, 164 (null), 212-221.
XL, H., LY, Y., & J, L. (2007). Development and evaluation of enzyme-linked immunosorbent assay based on recombinant nucleocapsid protein for detection of porcine epidemic diarrhea (PEDV) antibodies.Veterinary microbiology, 123 (null), 86-92.
Xu, X., Zhang, H., Zhang, Q., Dong, J., Liang, Y., Huang, Y., . . . Tong, D. (2013). Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression.Virol J, 10 , 26. doi:10.1186/1743-422x-10-26
Y, H., CM, L., M, Y., BL, Y., D, M., AL, D., . . . Q, W. (2017). Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets.Journal of virology, 91 (14). doi:10.1128/jvi.00227-17
Y, K., & C, L. (2014). Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor. Virology, null (undefined), 180-193.
Y, K., & C, L. (2015). Extracellular signal-regulated kinase (ERK) activation is required for porcine epidemic diarrhea virus replication.Virology, 484 (undefined), 181-193.
Y, K., C, O., V, S., RA, H., & KO, C. (2017). Trypsin-independent porcine epidemic diarrhea virus US strain with altered virus entry mechanism. BMC veterinary research, 13 (1), 356. doi:10.1186/s12917-017-1283-1
Y, S., S, Y., N, D., C, M., S, M., S, Z., . . . C, D. (2014). Autophagy benefits the replication of Newcastle disease virus in chicken cells and tissues. Journal of virology, 88 (1), 525-537. doi:10.1128/jvi.01849-13
Y, S., Y, C., X, H., Z, Y., Y, W., & G, Z. (2019). Porcine epidemic diarrhea virus in Asia: An alarming threat to the global pig industry.Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases, 70 , 24-26. doi:10.1016/j.meegid.2019.02.013
Y, W., & X, Z. (1999). The nucleocapsid protein of coronavirus mouse hepatitis virus interacts with the cellular heterogeneous nuclear ribonucleoprotein A1 in vitro and in vivo. Virology, 265 (1), 96-109.
Y, Y., & BG, H. (2007). Role of the coronavirus E viroporin protein transmembrane domain in virus assembly. Journal of virology, 81 (7), 3597-3607. doi:10.1128/jvi.01472-06
Y, Z., E, B., & GR, W. (2012). Expression of the C-type lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian coronavirus, infectious bronchitis virus. Veterinary microbiology, 157 (null), 285-293.
YW, T., S, F., H, F., J, L., & DX, L. (2006). Amino acid residues critical for RNA-binding in the N-terminal domain of the nucleocapsid protein are essential determinants for the infectivity of coronavirus in cultured cells. Nucleic acids research, 34 (17), 4816-4825.
Z, L., W, Z., S, Y., J, L., A, N., B, Z., . . . Q, H. (2018). Cellular hnRNP A1 Interacts with Nucleocapsid Protein of Porcine Epidemic Diarrhea Virus and Impairs Viral Replication. Viruses, 10 (3), undefined.
Z, Z., F, D., K, S., G, Y., G, W., L, F., . . . G, P. (2018). Dimerization of Coronavirus nsp9 with Diverse Modes Enhances Its Nucleic Acid Binding Affinity. Journal of virology, 92 (17), undefined.
Zhang, Y., Buckles, E., & Whittaker, G. R. Expression of the C-type lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian coronavirus, infectious bronchitis virus. 157 (3-4), 285-293.