References
A, O., D, A., Z, T., Q, S., Y, W., W, Z., . . . B, L. (2007). HSV-1
ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy
protein. Cell host & microbe, 1 (1), 23-35.
A, P., MJ, E., VA, G., M, P., H, Y., YP, d. J., & CM, R. (2009). Human
occludin is a hepatitis C virus entry factor required for infection of
mouse cells. Nature, 457 (7231), 882-886.
AB, S., & RC, H. (2004). Epidermal growth factor receptor activation
differentially regulates claudin expression and enhances transepithelial
resistance in Madin-Darby canine kidney cells. The Journal of
biological chemistry, 279 (5), 3543-3552. doi:10.1074/jbc.M308682200
Bo-qi, L., Guang-xing, L., & Xiao-feng, R. (2009). Initial
identification of the domain of TGEV specific receptor APN.heilongjiang animal science and veterinary medicine .
BX, L., JW, G., & YJ, L. (2007). Porcine aminopeptidase N is a
functional receptor for the PEDV coronavirus. Virology, 365 (1),
166-172.
C, K., Y, Y., S, R., & A, J. (2019). Porcine Epidemic Diarrhea Virus
(PEDV) ORF3 Interactome Reveals Inhibition of Virus Replication by
Cellular VPS36 Protein. Viruses, 11 (4), undefined.
C, L., J, T., Y, M., X, L., Y, Y., G, P., . . . F, L. (2015). Receptor
usage and cell entry of porcine epidemic diarrhea coronavirus.Journal of virology, 89 (11), 6121-6125.
C, L., Y, M., Y, Y., Y, Z., J, S., Y, Z., . . . F, L. (2016). Cell Entry
of Porcine Epidemic Diarrhea Coronavirus Is Activated by Lysosomal
Proteases. The Journal of biological chemistry, 291 (47),
24779-24786. doi:10.1074/jbc.M116.740746
CA, d. H., L, K., PS, M., H, V., & PJ, R. (1998). Coronavirus particle
assembly: primary structure requirements of the membrane protein.Journal of virology, 72 (8), 6838-6850.
CC, H., Y, W., B, N., R, W., L, H., XF, R., . . . X, M. (2015). Porcine
epidemic diarrhea virus uses cell-surface heparan sulfate as an
attachment factor. Archives of virology, 160 (7), 1621-1628.
CH, K., BJ, K., JG, L., GO, K., & YB, K. (1999). Derivation of
attenuated porcine epidemic diarrhea virus (PEDV) as vaccine candidate.Vaccine, 17 (null), 2546-2553.
CK, C., CJ, C., CC, W., SW, C., SR, S., & RL, K. (2017). Cellular hnRNP
A2/B1 interacts with the NP of influenza A virus and impacts viral
replication. PloS one, 12 (11), e0188214.
CY, C., JY, P., YH, C., YC, C., YT, W., PS, T., . . . HW, C. (2019).
Development and comparison of enzyme-linked immunosorbent assays based
on recombinant trimeric full-length and truncated spike proteins for
detecting antibodies against porcine epidemic diarrhea virus. BMC
veterinary research, 15 (1), 421. doi:10.1186/s12917-019-2171-7
D, S. (2014). Counteraction of the multifunctional restriction factor
tetherin. Frontiers in microbiology, 5 , 163.
doi:10.3389/fmicb.2014.00163
D, S., & B, P. (2012). Porcine epidemic diarrhoea virus: a
comprehensive review of molecular epidemiology, diagnosis, and vaccines.Virus genes, 44 (2), 167-175. doi:10.1007/s11262-012-0713-1
D, S., H, S., D, S., J, C., X, Z., X, W., . . . L, F. (2017).
Nucleocapsid Interacts with NPM1 and Protects it from Proteolytic
Cleavage, Enhancing Cell Survival, and is Involved in PEDV Growth.Scientific reports, 7 (undefined), 39700.
D, S., M, L., J, C., H, S., S, Z., X, Z., & L, F. (2014). Molecular
characterizations of subcellular localization signals in the
nucleocapsid protein of porcine epidemic diarrhea virus. Viruses,
6 (3), 1253-1273.
D, W., & JS, M. (2019). The 3.1-Angstrom Cryo-electron Microscopy
Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the
Prefusion Conformation. Journal of virology, 93 (23).
doi:10.1128/jvi.00923-19
D, W., L, F., & S, X. (2016). Porcine epidemic diarrhea in China.Virus research, 226 , 7-13. doi:10.1016/j.virusres.2016.05.026
D, W., L, F., Y, S., H, Z., L, G., G, P., . . . S, X. (2016). Porcine
Epidemic Diarrhea Virus 3C-Like Protease Regulates Its Interferon
Antagonism by Cleaving NEMO. Journal of virology, 90 (4),
2090-2101.
DH, L., YS, J., CK, P., S, K., DS, L., & C, L. (2015).
Immunoprophylactic effect of chicken egg yolk antibody (IgY) against a
recombinant S1 domain of the porcine epidemic diarrhea virus spike
protein in piglets. Archives of virology, 160 (9), 2197-2207.
DM, S., JK, S., & JR, B. (2013). Applications of nanotechnology for
immunology. Nature reviews. Immunology, 13 (8), 592-605.
doi:10.1038/nri3488
DS, S., JS, O., BK, K., JS, Y., HJ, M., HS, Y., . . . BK, P. (2007).
Oral efficacy of Vero cell attenuated porcine epidemic diarrhea virus
DR13 strain. Research in veterinary science, 82 (1), 134-140.
E, B.-F., C, F., F, S., S, S., M, E., J, U., . . . W, G. (2010).
Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2
and HAT differs in subcellular localization and susceptibility to
protease inhibitors. Journal of virology, 84 (11), 5605-5614.
E, N., & C, L. (2010). Contribution of the porcine aminopeptidase N
(CD13) receptor density to porcine epidemic diarrhea virus infection.Veterinary microbiology, 144 (null), 41-50.
EJ, S., PJ, B., JC, D., V, T., J, Z., LL, P., . . . AE, G. (2003).
Unique and conserved features of genome and proteome of
SARS-coronavirus, an early split-off from the coronavirus group 2
lineage. Journal of molecular biology, 331 (5), 991-1004.
F, C., Y, Z., M, W., X, K., S, Y., Z, L., . . . Q, H. (2015).
Comparative Genomic Analysis of Classical and Variant Virulent
Parental/Attenuated Strains of Porcine Epidemic Diarrhea Virus.Viruses, 7 (10), 5525-5538.
F, D., G, Y., Q, L., MT, N., X, Z., Y, L., . . . G, P. (2016).
Identification and Comparison of Receptor Binding Characteristics of the
Spike Protein of Two Porcine Epidemic Diarrhea Virus Strains.Viruses, 8 (3), 55.
F, F., L, L., L, S., B, Y., H, S., J, Z., . . . P, L. (2017). A
spike-specific whole-porcine antibody isolated from a porcine B cell
that neutralizes both genogroup 1 and 2 PEDV strains. Veterinary
microbiology, 205 (undefined), 99-105.
F, K., & G, H. (1993). Structural and functional analysis of the
surface protein of human coronavirus OC43. Virology, 195 (1),
195-202.
F, L. (2012). Evidence for a common evolutionary origin of coronavirus
spike protein receptor-binding subunits. Journal of virology,
86 (5), 2856-2858.
F, L. (2015). Receptor recognition mechanisms of coronaviruses: a decade
of structural studies. Journal of virology, 89 (4), 1954-1964.
F, M., S, S., DS, Z., Y, C., X, M., Q, Z., & X, R. (2014). A
phage-displayed peptide recognizing porcine aminopeptidase N is a potent
small molecule inhibitor of PEDV entry. Virology,
null (undefined), 20-27.
G, P., L, X., YL, L., L, C., JR, P., KV, H., & F, L. (2012). Crystal
structure of bovine coronavirus spike protein lectin domain. The
Journal of biological chemistry, 287 (50), 41931-41938.
G, S., E, F., L, C., S, S., T, W., J, N., . . . DI, S. (2004). The nsp9
replicase protein of SARS-coronavirus, structure and functional
insights. Structure (London, England : 1993), 12 (2), 341-353.
H, B., C, S., MI, A., F, Z., RJ, L., H, T., . . . TF, B. (2003).
Cellular binding of hepatitis C virus envelope glycoprotein E2 requires
cell surface heparan sulfate. The Journal of biological chemistry,
278 (42), 41003-41012.
H, L., H, Z., L, G., B, L., K, H., & H, F. (2018). Development and
application of an indirect ELISA for the detection of antibodies to
porcine epidemic diarrhea virus based on a recombinant spike protein.BMC veterinary research, 14 (1), 243.
doi:10.1186/s12917-018-1570-5
H, S., J, P., Y, W., Y, S., J, H., L, L., . . . J, L. (2016). Highly
Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for
Human Type Sialic Acid Receptor and In-Contact Transmission in Model
Ferrets. Journal of virology, 90 (14), 6235-6243.
doi:10.1128/jvi.00127-16
H, V., RJ, d. G., DA, H., MC, H., & WJ, S. (1991). Primary structure of
the membrane and nucleocapsid protein genes of feline infectious
peritonitis virus and immunogenicity of recombinant vaccinia viruses in
kittens. Virology, 181 (1), 327-335.
HJ, C., JH, K., CH, L., YJ, A., JH, S., SH, B., & DH, K. (2009).
Antiviral activity of quercetin 7-rhamnoside against porcine epidemic
diarrhea virus. Antiviral research, 81 (1), 77-81.
J, H., C, X., L, H., Y, W., & Y, C. (2014). Bioinformatics insight into
the spike glycoprotein gene of field porcine epidemic diarrhea strains
during 2011-2013 in Guangdong, China. Virus genes, 49 (1), 58-67.
JA, G., & BB, F. (2009). Tight junctions as targets of infectious
agents. Biochimica et biophysica acta, 1788 (4), 832-841.
JE, P., DJ, C., & HJ, S. (2011). Receptor-bound porcine epidemic
diarrhea virus spike protein cleaved by trypsin induces membrane fusion.Archives of virology, 156 (10), 1749-1756.
doi:10.1007/s00705-011-1044-6
JE, P., DJ, C., & HJ, S. (2014). Clathrin- and serine
proteases-dependent uptake of porcine epidemic diarrhea virus into Vero
cells. Virus research, 191 (undefined), 21-29.
Jeffers, S. A., Hemmila, E. M., & Holmes, K. V. (2006). Human
coronavirus 229E can use CD209L (L-SIGN) to enter cells. Adv Exp
Med Biol, 581 , 265-269. doi:10.1007/978-0-387-33012-9_44
JH, F., YZ, Z., XQ, S., WY, G., & JM, D. (2015). Development of an
enzyme-linked immunosorbent assay for the monitoring and surveillance of
antibodies to porcine epidemic diarrhea virus based on a recombinant
membrane protein. Journal of virological methods, 225 (undefined),
90-94.
JH, L., JS, P., SW, L., SY, H., BE, Y., & HJ, C. (2015). Porcine
epidemic diarrhea virus infection: inhibition by polysaccharide from
Ginkgo biloba exocarp and mode of its action. Virus research,
195 (undefined), 148-152.
JH, S., JK, S., & HJ, C. (2011). Quercetin 7-rhamnoside reduces porcine
epidemic diarrhea virus replication via independent pathway of viral
induced reactive oxygen species. Virol J, 8 (undefined), 460.
Jh, W. (2002). Protein recognition by cell surface receptors:
physiological receptors versus virus interactions. Trends in
biochemical sciences, 27 (3), 122-126. doi:10.1016/s0968-0004(01)02038-2
JM, T.-F., & CF, A. (2015). Tight Junctions Go Viral! Viruses,
7 (9), 5145-5154. doi:10.3390/v7092865
JS, O., DS, S., & BK, P. (2003). Identification of a putative cellular
receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in
porcine enterocytes. Journal of veterinary science, 4 (3),
269-275.
K, H., A, S., & MO, O. (2000). Mapping the functional domains of
nucleolar protein B23. The Journal of biological chemistry,
275 (32), 24451-24457.
K, N., SI, R., KG, L., & S, M. (2015). Coronavirus nonstructural
protein 1: Common and distinct functions in the regulation of host and
viral gene expression. Virus research, 202 (undefined), 89-100.
K, O., BL, H., R, H., VS, R., H, M., S, I., . . . C, M. (2013).
Inhibition of Middle East respiratory syndrome coronavirus infection by
anti-CD26 monoclonal antibody. Journal of virology, 87 (24),
13892-13899.
K, S., M, M., MT, I., A, M., M, K., S, M., & F, T. (2016). Porcine
aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea
virus, but promotes its infectivity via aminopeptidase activity.The Journal of general virology, 97 (10), 2528-2539.
doi:10.1099/jgv.0.000563
K, S., S, M., M, U., & F, T. (2011). Role of proteases in the release
of porcine epidemic diarrhea virus from infected cells. Journal of
virology, 85 (15), 7872-7880.
K, W., W, L., J, C., S, X., H, S., H, H., . . . B, S. (2012). PEDV ORF3
encodes an ion channel protein and regulates virus production.FEBS letters, 586 (4), 384-391.
L, G.-M., R, T., & D, C. (2008). Crosstalk of tight junction components
with signaling pathways. Biochimica et biophysica acta, 1778 (3),
729-756.
L, G., H, Y., W, G., X, L., R, L., J, Z., . . . Y, W. (2016). Autophagy
Negatively Regulates Transmissible Gastroenteritis Virus Replication.Scientific reports, 6 (undefined), 23864.
L, L., F, F., M, X., W, C., J, L., H, S., . . . P, L. (2017). IFN-lambda
preferably inhibits PEDV infection of porcine intestinal epithelial
cells compared with IFN-alpha. Antiviral research,
140 (undefined), 76-82.
L, Y., J, X., L, G., T, G., L, Z., L, F., . . . Y, W. (2018). Porcine
Epidemic Diarrhea Virus-Induced Epidermal Growth Factor Receptor
Activation Impairs the Antiviral Activity of Type I Interferon.Journal of virology, 92 (8), undefined.
M, A., & G, W. (2019). Current Status of Porcine Epidemic Diarrhoea
(PED) in European Pigs. Journal of veterinary research, 63 (4),
465-470. doi:10.2478/jvetres-2019-0064
M, D., P, G., SF, W., & FV, C. (2009). The autophagy machinery is
required to initiate hepatitis C virus replication. Proceedings of
the National Academy of Sciences of the United States of America,
106 (33), 14046-14051.
M, G., D, D., R, A., J, D., T, T., PC, R., . . . C, M. (2009). Matrix
protein 2 of influenza A virus blocks autophagosome fusion with
lysosomes. Cell host & microbe, 6 (4), 367-380.
M, M., A, G., PL, S., & R, C. (2015). Connections matter–how viruses
use cell–cell adhesion components. Journal of cell science,
128 (3), 431-439. doi:10.1242/jcs.159400
Masters, P. S. (2006). The molecular biology of coronaviruses.Advances in Virus Research, 66 (1), 193.
MJ, E., T, v. H., DM, T., AJ, S., M, P., B, W., . . . CM, R. (2007).
Claudin-1 is a hepatitis C virus co-receptor required for a late step in
entry. Nature, 446 (7137), 801-805.
MS, L. (2011). NPM1/B23: A Multifunctional Chaperone in Ribosome
Biogenesis and Chromatin Remodeling. Biochemistry research
international, 2011 (undefined), 195209.
MZ, H., H, W., SY, W., DA, C., X, T., & YM, L. (2016). Molecular
characterization and phylogenetic analysis of porcine epidemic diarrhea
virus samples obtained from farms in Gansu, China. Genetics and
molecular research : GMR, 15 (1), undefined.
N, K., T, S., H, W., Y, J., Y, Z., L, L., . . . G, T. (2019). BST2
suppresses porcine epidemic diarrhea virus replication by targeting and
degrading virus nucleocapsid protein with selective autophagy.Autophagy , 1-16. doi:10.1080/15548627.2019.1707487
N, V. D., D, G., C, K., RL, J., R, M., MC, J., . . . J, G. (2008). The
interferon-induced protein BST-2 restricts HIV-1 release and is
downregulated from the cell surface by the viral Vpu protein. Cell
host & microbe, 3 (4), 245-252. doi:10.1016/j.chom.2008.03.001
O, W., W, L., L, W., TJ, M., RW, W., FJ, v. K., . . . BJ, B. (2014).
Proteolytic activation of the porcine epidemic diarrhea coronavirus
spike fusion protein by trypsin in cell culture. Journal of
virology, 88 (14), 7952-7961. doi:10.1128/jvi.00297-14
OV, S. (2009). [Porcine epidemic diarrhea]. Voprosy
virusologii, 54 (2), 4-8.
P, I., CF, A., & S, L. (2006). Role of sialic acids in rotavirus
infection. Glycoconjugate journal, 23 , 27-37.
doi:10.1007/s10719-006-5435-y
Q, Z., K, S., & D, Y. (2016). Suppression of type I interferon
production by porcine epidemic diarrhea virus and degradation of
CREB-binding protein by nsp1. Virology, 489 (undefined), 252-268.
R, K., A, B., M, A., & K, T. (2001). Completion of the porcine epidemic
diarrhoea coronavirus (PEDV) genome sequence. Virus genes, 23 (2),
137-144.
R, S., & TH, B. (2008). Type II transmembrane serine proteases in
development and disease. The international journal of biochemistry
& cell biology, 40 (null), 1297-1316.
RQ, S., RJ, C., YQ, C., PS, L., DK, C., & CX, S. (2012). Outbreak of
porcine epidemic diarrhea in suckling piglets, China. Emerging
infectious diseases, 18 (1), 161-163. doi:10.3201/eid1801.111259
S, K., V, K., R, R., A, S., A, W., & G, B. (2003). Bst-2/HM1.24 is a
raft-associated apical membrane protein with an unusual topology.Traffic (Copenhagen, Denmark), 4 (10), 694-709.
doi:10.1034/j.1600-0854.2003.00129.x
S, S., WC, L., & JD, E. (2011). Heparan sulfate proteoglycans.Cold Spring Harbor perspectives in biology, 3 (7), undefined.
S, T., M, N., K, M., & MS, B. (2010). Rho signaling and tight junction
functions. Physiology (Bethesda, Md.), 25 (1), 16-26.
S, T., ML, J., SE, S. J., HL, O., PR, N., LN, P., . . . AD, M. (2015).
Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS)
Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND
THE DEVELOPMENT OF ANTIVIRALS. The Journal of biological
chemistry, 290 (32), 19403-19422.
S, Y., Z, L., F, C., W, L., X, G., H, H., & Q, H. (2015). Porcine
epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates
formation of vesicles and promotes the proliferation of attenuated PEDV.Virus genes, 51 (3), 385-392.
S, Z., H, Z., Z, D., R, L., K, A., L, L., . . . L, F. (2015). Proteome
analysis of porcine epidemic diarrhea virus (PEDV)-infected Vero cells.Proteomics, 15 (11), 1819-1828.
S, Z., J, G., L, Z., & Q, Y. (2014). Transmissible gastroenteritis
virus and porcine epidemic diarrhoea virus infection induces dramatic
changes in the tight junctions and microfilaments of polarized IPEC-J2
cells. Virus research, 192 (undefined), 34-45.
SJ, P., HK, K., DS, S., HJ, M., & BK, P. (2011). Molecular
characterization and phylogenetic analysis of porcine epidemic diarrhea
virus (PEDV) field isolates in Korea. Archives of virology,
156 (4), 577-585.
SR, W., & S, N.-M. (2005). Coronavirus pathogenesis and the emerging
pathogen severe acute respiratory syndrome coronavirus.Microbiology and molecular biology reviews : MMBR, 69 (4),
635-664.
T, T., H, H., J, Z., S, D., X, Z., W, T., . . . J, L. (2020).
Glycyrrhizic-Acid-Based Carbon Dots with High Antiviral Activity by
Multisite Inhibition Mechanisms. Small (Weinheim an der
Bergstrasse, Germany), 16 (13), e1906206. doi:10.1002/smll.201906206
TJ, K., SC, H., MS, Y., & YS, J. (2006). Expression of synthetic
neutralizing epitope of porcine epidemic diarrhea virus fused with
synthetic B subunit of Escherichia coli heat-labile enterotoxin in
tobacco plants. Protein expression and purification, 46 (1),
16-22. doi:10.1016/j.pep.2005.07.026
U, B., & H, S. (2013). Heterogeneous nuclear ribonucleoprotein A1 in
health and neurodegenerative disease: from structural insights to
post-transcriptional regulatory roles. Molecular and cellular
neurosciences, 56 (undefined), 436-446.
V, O. D., JM, P., M, L., T, B., W, J., LL, R., . . . B, B. (2011).
Foot-and-mouth disease virus utilizes an autophagic pathway during viral
replication. Virology, 410 (1), 142-150.
V, T., KA, I., A, P., T, H., B, S., S, B., . . . J, Z. (2003).
Mechanisms and enzymes involved in SARS coronavirus genome expression.The Journal of general virology, 84 (null), 2305-2315.
W, L., FJM, v. K., Q, H., PJM, R., & BJ, B. (2016). Cellular entry of
the porcine epidemic diarrhea virus. Virus research, 226 ,
117-127. doi:10.1016/j.virusres.2016.05.031
W, L., H, L., Y, L., Y, P., F, D., Y, S., . . . Q, H. (2012). New
variants of porcine epidemic diarrhea virus, China, 2011. Emerging
infectious diseases, 18 (8), 1350-1353.
W, L., O, W., FJ, v. K., Q, H., PJ, R., & BJ, B. (2015). A Single Point
Mutation Creating a Furin Cleavage Site in the Spike Protein Renders
Porcine Epidemic Diarrhea Coronavirus Trypsin Independent for Cell Entry
and Fusion. Journal of virology, 89 (15), 8077-8081.
doi:10.1128/jvi.00356-15
W, S., W, F., J, B., Y, T., L, W., Y, J., . . . Y, L. (2017). TMPRSS2
and MSPL Facilitate Trypsin-Independent Porcine Epidemic Diarrhea Virus
Replication in Vero Cells. Viruses, 9 (5), undefined.
X, G., M, Z., X, Z., X, T., H, G., W, Z., . . . Q, H. (2017). Porcine
Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication.Viruses, 9 (3), undefined.
X, L., L, G., J, Z., Y, X., W, G., L, F., & Y, W. (2017). Tight
Junction Protein Occludin Is a Porcine Epidemic Diarrhea Virus Entry
Factor. Journal of virology, 91 (10), undefined.
X, X., H, Z., Q, Z., Y, H., J, D., Y, L., . . . D, T. (2013). Porcine
epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces
endoplasmic reticulum stress, and up-regulates interleukin-8 expression.Veterinary microbiology, 164 (null), 212-221.
XL, H., LY, Y., & J, L. (2007). Development and evaluation of
enzyme-linked immunosorbent assay based on recombinant nucleocapsid
protein for detection of porcine epidemic diarrhea (PEDV) antibodies.Veterinary microbiology, 123 (null), 86-92.
Xu, X., Zhang, H., Zhang, Q., Dong, J., Liang, Y., Huang, Y., . . .
Tong, D. (2013). Porcine epidemic diarrhea virus E protein causes
endoplasmic reticulum stress and up-regulates interleukin-8 expression.Virol J, 10 , 26. doi:10.1186/1743-422x-10-26
Y, H., CM, L., M, Y., BL, Y., D, M., AL, D., . . . Q, W. (2017).
Deletion of a 197-Amino-Acid Region in the N-Terminal Domain of Spike
Protein Attenuates Porcine Epidemic Diarrhea Virus in Piglets.Journal of virology, 91 (14). doi:10.1128/jvi.00227-17
Y, K., & C, L. (2014). Porcine epidemic diarrhea virus induces
caspase-independent apoptosis through activation of mitochondrial
apoptosis-inducing factor. Virology, null (undefined), 180-193.
Y, K., & C, L. (2015). Extracellular signal-regulated kinase (ERK)
activation is required for porcine epidemic diarrhea virus replication.Virology, 484 (undefined), 181-193.
Y, K., C, O., V, S., RA, H., & KO, C. (2017). Trypsin-independent
porcine epidemic diarrhea virus US strain with altered virus entry
mechanism. BMC veterinary research, 13 (1), 356.
doi:10.1186/s12917-017-1283-1
Y, S., S, Y., N, D., C, M., S, M., S, Z., . . . C, D. (2014). Autophagy
benefits the replication of Newcastle disease virus in chicken cells and
tissues. Journal of virology, 88 (1), 525-537.
doi:10.1128/jvi.01849-13
Y, S., Y, C., X, H., Z, Y., Y, W., & G, Z. (2019). Porcine epidemic
diarrhea virus in Asia: An alarming threat to the global pig industry.Infection, genetics and evolution : journal of molecular
epidemiology and evolutionary genetics in infectious diseases, 70 ,
24-26. doi:10.1016/j.meegid.2019.02.013
Y, W., & X, Z. (1999). The nucleocapsid protein of coronavirus mouse
hepatitis virus interacts with the cellular heterogeneous nuclear
ribonucleoprotein A1 in vitro and in vivo. Virology, 265 (1),
96-109.
Y, Y., & BG, H. (2007). Role of the coronavirus E viroporin protein
transmembrane domain in virus assembly. Journal of virology,
81 (7), 3597-3607. doi:10.1128/jvi.01472-06
Y, Z., E, B., & GR, W. (2012). Expression of the C-type lectins DC-SIGN
or L-SIGN alters host cell susceptibility for the avian coronavirus,
infectious bronchitis virus. Veterinary microbiology, 157 (null),
285-293.
YW, T., S, F., H, F., J, L., & DX, L. (2006). Amino acid residues
critical for RNA-binding in the N-terminal domain of the nucleocapsid
protein are essential determinants for the infectivity of coronavirus in
cultured cells. Nucleic acids research, 34 (17), 4816-4825.
Z, L., W, Z., S, Y., J, L., A, N., B, Z., . . . Q, H. (2018). Cellular
hnRNP A1 Interacts with Nucleocapsid Protein of Porcine Epidemic
Diarrhea Virus and Impairs Viral Replication. Viruses, 10 (3),
undefined.
Z, Z., F, D., K, S., G, Y., G, W., L, F., . . . G, P. (2018).
Dimerization of Coronavirus nsp9 with Diverse Modes Enhances Its Nucleic
Acid Binding Affinity. Journal of virology, 92 (17), undefined.
Zhang, Y., Buckles, E., & Whittaker, G. R. Expression of the C-type
lectins DC-SIGN or L-SIGN alters host cell susceptibility for the avian
coronavirus, infectious bronchitis virus. 157 (3-4), 285-293.