REFERENCES
Anwar, S., Riazuddin, S., Ahmed, Z. M., Tasneem, S., Ateeq-ul-Jaleel, Khan, S. Y., Griffith, A. J., Friedman, T. B., & Riazuddin, S. (2009). SLC26A4 mutation spectrum associated with DFNB4 deafness and Pendred’s syndrome in Pakistanis. Journal of human genetics, 54(5), 266–270.https://doi.org/10.1038/jhg.2009.21
Barreda-Bonis, A. C., Barraza-García, J., Parrón, M., Pastor, I., Heath, K. E., & González-Casado, I. (2018). Multiple SLC26A2 mutations occurring in a three-generational family. European journal of medical genetics, 61(1), 24–28.https://doi.org/10.1016/j.ejmg.2017.10.007
Dawson, P. A., & Markovich, D. (2005). Pathogenetics of the human SLC26 transporters. Current medicinal chemistry, 12(4), 385–396. https://doi.org/10.2174/0929867053363144
Dirami, T., Rode, B., Jollivet, M., Da Silva, N., Escalier, D., Gaitch, N., Norez, C., Tuffery, P., Wolf, J. P., Becq, F., Ray, P. F., Dulioust, E., Gacon, G., Bienvenu, T., & Touré, A. (2013). Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia. American journal of human genetics, 92(5), 760–766.https://doi.org/10.1016/j.ajhg.2013.03.016
El Khouri, E., & Touré, A. (2014). Functional interaction of the cystic fibrosis transmembrane conductance regulator with members of the SLC26 family of anion transporters (SLC26A8 and SLC26A9): physiological and pathophysiological relevance. The international journal of biochemistry & cell biology, 52, 58–67.https://doi.org/10.1016/j.biocel.2014.02.001
Höglund, P., Sormaala, M., Haila, S., Socha, J., Rajaram, U., Scheurlen, W., Sinaasappel, M., de Jonge, H., Holmberg, C., Yoshikawa, H., & Kere, J. (2001). Identification of seven novel mutations including the first two genomic rearrangements in SLC26A3 mutated in congenital chloride diarrhea. Human mutation, 18(3), 233–242.https://doi.org/10.1002/humu.1179
Jiao, S. Y., Yang, Y. H., & Chen, S. R. (2021). Molecular genetics of infertility: loss-of-function mutations in humans and corresponding knockout/mutated mice. Human reproduction update, 27(1), 154–189.https://doi.org/10.1093/humupd/dmaa034
Kasak, L., & Laan, M. (2021). Monogenic causes of non-obstructive azoospermia: challenges, established knowledge, limitations and perspectives. Human genetics, 140(1), 135–154.https://doi.org/10.1007/s00439-020-02112-y
Mutai, H., Suzuki, N., Shimizu, A., Torii, C., Namba, K., Morimoto, N., Kudoh, J., Kaga, K., Kosaki, K., & Matsunaga, T. (2013). Diverse spectrum of rare deafness genes underlies early-childhood hearing loss in Japanese patients: a cross-sectional, multi-center next-generation sequencing study. Orphanet journal of rare diseases, 8, 172.https://doi.org/10.1186/1750-1172-8-172
Napiontek, U., Borck, G., Müller-Forell, W., Pfarr, N., Bohnert, A., Keilmann, A., & Pohlenz, J. (2004). Intrafamilial variability of the deafness and goiter phenotype in Pendred syndrome caused by a T416P mutation in the SLC26A4 gene. The Journal of clinical endocrinology and metabolism, 89(11), 5347–5351.https://doi.org/10.1210/jc.2004-1013
Noveski, P., Popovska-Jankovic, K., Kubelka-Sabit, K., Filipovski, V., Lazarevski, S., Plaseski, T., & Plaseska-Karanfilska, D. (2016). MicroRNA expression profiles in testicular biopsies of patients with impaired spermatogenesis. Andrology, 4(6), 1020–1027.https://doi.org/10.1111/andr.12246
Rode, B., Dirami, T., Bakouh, N., Rizk-Rabin, M., Norez, C., Lhuillier, P., Lorès, P., Jollivet, M., Melin, P., Zvetkova, I., Bienvenu, T., Becq, F., Planelles, G., Edelman, A., Gacon, G., & Touré, A. (2012). The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation. Human molecular genetics, 21(6), 1287–1298.https://doi.org/10.1093/hmg/ddr558
Touré, A., Lhuillier, P., Gossen, J. A., Kuil, C. W., Lhôte, D., Jégou, B., Escalier, D., & Gacon, G. (2007). The testis anion transporter 1 (Slc26a8) is required for sperm terminal differentiation and male fertility in the mouse. Human molecular genetics, 16(15), 1783–1793. https://doi.org/10.1093/hmg/ddm117
Toure, A., Morin, L., Pineau, C., Becq, F., Dorseuil, O., & Gacon, G. (2001). Tat1, a novel sulfate transporter specifically expressed in human male germ cells and potentially linked to rhogtpase signaling. The Journal of biological chemistry, 276(23), 20309–20315. https://doi.org/10.1074/jbc.M011740200