REFERENCES
Anwar, S., Riazuddin, S., Ahmed, Z. M., Tasneem, S., Ateeq-ul-Jaleel,
Khan, S. Y., Griffith, A. J., Friedman, T. B., & Riazuddin, S. (2009).
SLC26A4 mutation spectrum associated with DFNB4 deafness and Pendred’s
syndrome in Pakistanis. Journal of human genetics, 54(5), 266–270.https://doi.org/10.1038/jhg.2009.21
Barreda-Bonis, A. C., Barraza-García, J., Parrón, M., Pastor, I., Heath,
K. E., & González-Casado, I. (2018). Multiple SLC26A2 mutations
occurring in a three-generational family. European journal of medical
genetics, 61(1), 24–28.https://doi.org/10.1016/j.ejmg.2017.10.007
Dawson, P. A., & Markovich, D. (2005). Pathogenetics of the human SLC26
transporters. Current medicinal chemistry, 12(4), 385–396.
https://doi.org/10.2174/0929867053363144
Dirami, T., Rode, B., Jollivet, M., Da Silva, N., Escalier, D., Gaitch,
N., Norez, C., Tuffery, P., Wolf, J. P., Becq, F., Ray, P. F., Dulioust,
E., Gacon, G., Bienvenu, T., & Touré, A. (2013). Missense mutations in
SLC26A8, encoding a sperm-specific activator of CFTR, are associated
with human asthenozoospermia. American journal of human genetics, 92(5),
760–766.https://doi.org/10.1016/j.ajhg.2013.03.016
El Khouri, E., & Touré, A. (2014). Functional interaction of the cystic
fibrosis transmembrane conductance regulator with members of the SLC26
family of anion transporters (SLC26A8 and SLC26A9): physiological and
pathophysiological relevance. The international journal of biochemistry
& cell biology, 52, 58–67.https://doi.org/10.1016/j.biocel.2014.02.001
Höglund, P., Sormaala, M., Haila, S., Socha, J., Rajaram, U., Scheurlen,
W., Sinaasappel, M., de Jonge, H., Holmberg, C., Yoshikawa, H., & Kere,
J. (2001). Identification of seven novel mutations including the first
two genomic rearrangements in SLC26A3 mutated in congenital chloride
diarrhea. Human mutation, 18(3), 233–242.https://doi.org/10.1002/humu.1179
Jiao, S. Y., Yang, Y. H., & Chen, S. R. (2021). Molecular genetics of
infertility: loss-of-function mutations in humans and corresponding
knockout/mutated mice. Human reproduction update, 27(1), 154–189.https://doi.org/10.1093/humupd/dmaa034
Kasak, L., & Laan, M. (2021). Monogenic causes of non-obstructive
azoospermia: challenges, established knowledge, limitations and
perspectives. Human genetics, 140(1), 135–154.https://doi.org/10.1007/s00439-020-02112-y
Mutai, H., Suzuki, N., Shimizu, A., Torii, C., Namba, K., Morimoto, N.,
Kudoh, J., Kaga, K., Kosaki, K., & Matsunaga, T. (2013). Diverse
spectrum of rare deafness genes underlies early-childhood hearing loss
in Japanese patients: a cross-sectional, multi-center next-generation
sequencing study. Orphanet journal of rare diseases, 8, 172.https://doi.org/10.1186/1750-1172-8-172
Napiontek, U., Borck, G., Müller-Forell, W., Pfarr, N., Bohnert, A.,
Keilmann, A., & Pohlenz, J. (2004). Intrafamilial variability of the
deafness and goiter phenotype in Pendred syndrome caused by a T416P
mutation in the SLC26A4 gene. The Journal of clinical endocrinology and
metabolism, 89(11), 5347–5351.https://doi.org/10.1210/jc.2004-1013
Noveski, P., Popovska-Jankovic, K., Kubelka-Sabit, K., Filipovski, V.,
Lazarevski, S., Plaseski, T., & Plaseska-Karanfilska, D. (2016).
MicroRNA expression profiles in testicular biopsies of patients with
impaired spermatogenesis. Andrology, 4(6), 1020–1027.https://doi.org/10.1111/andr.12246
Rode, B., Dirami, T., Bakouh, N., Rizk-Rabin, M., Norez, C., Lhuillier,
P., Lorès, P., Jollivet, M., Melin, P., Zvetkova, I., Bienvenu, T.,
Becq, F., Planelles, G., Edelman, A., Gacon, G., & Touré, A. (2012).
The testis anion transporter TAT1 (SLC26A8) physically and functionally
interacts with the cystic fibrosis transmembrane conductance regulator
channel: a potential role during sperm capacitation. Human molecular
genetics, 21(6), 1287–1298.https://doi.org/10.1093/hmg/ddr558
Touré, A., Lhuillier, P., Gossen, J. A., Kuil, C. W., Lhôte, D., Jégou,
B., Escalier, D., & Gacon, G. (2007). The testis anion transporter 1
(Slc26a8) is required for sperm terminal differentiation and male
fertility in the mouse. Human molecular genetics, 16(15), 1783–1793.
https://doi.org/10.1093/hmg/ddm117
Toure, A., Morin, L., Pineau, C., Becq, F., Dorseuil, O., & Gacon, G.
(2001). Tat1, a novel sulfate transporter specifically expressed in
human male germ cells and potentially linked to rhogtpase signaling. The
Journal of biological chemistry, 276(23), 20309–20315.
https://doi.org/10.1074/jbc.M011740200