References
Aljishi, M.F., Ruo, A.C., Park, J.H., Nasser, B., Kim, W.S. and Joo, Y.L., 2013. Effect of flow structure at the onset of instability on barium sulfate precipitation in Taylor–Couette crystallizers. Journal of crystal growth373 , pp.20-31.
Baldyga, J. and Bourne, J.R., 1984. A fluid mechanical approach to turbulent mixing and chemical reaction part II micromixing in the light of turbulence theory. Chemical Engineering Communications28 (4-6), pp.243-258.
Baldyga, J. and Bourne, J.R., 1989. Simplification of micromixing calculations. I. Derivation and application of new model. The Chemical Engineering Journal42 (2), pp.83-92.
Bałdyga, J. and Bourne, J.R., 1999. Turbulent mixing and chemical reactions . Wiley.
Bertrand, M., Lamarque, N., Lebaigue, O., Plasari, E. and Ducros, F., 2016. Micromixing characterisation in rapid mixing devices by chemical methods and LES modelling. Chemical Engineering Journal283 , pp.462-475.
Bourne, J.R., 1977. MIXING EFFECTS DURING THE BROMINATION OF 1, 3, 5-TRIMETHOXYBENZENE. Chemical Engineering Science32 (12), pp. 1538-1539.
Bourne, J.R., Kozicki, F. and Rys, P., 1981. Mixing and fast chemical reaction—I: Test reactions to determine segregation. Chemical Engineering Science36 (10), pp.1643-1648.
Bourne, J.R. and Rohani, S., 1983. Micro-mixing and the selective iodination of l-tyrosine. Chemical engineering research and design61 (5), pp.297-302.
Costa, P. and Trevissoi, C., 1972. Reactions with non-linear kinetics in partially segregated fluids. Chemical Engineering Science27 (11), pp.2041-2054.
DiPrima, R.C., Eagles, P.M. and Ng, B.S., 1984. The effect of radius ratio on the stability of Couette flow and Taylor vortex flow. The Physics of fluids27 (10), pp.2403-2411.
Drozdov, S.M., 2002. A numerical investigation of a modified Couette-Taylor apparatus with application to industrial mixing. Theoretical and computational fluid dynamics16 (1), pp.17-28.
Fournier, M.C., Falk, L. and Villermaux, J., 1996. A new parallel competing reaction system for assessing micromixing efficiency—experimental approach. Chemical Engineering Science51 (22), pp.5053-5064.
Fournier, M.C., Falk, L. and Villermaux, J., 1996. A new parallel competing reaction system for assessing micromixing efficiency—determination of micromixing time by a simple mixing model. Chemical Engineering Science51 (23), pp.5187-5192.
Gao, Z., Han, J., Bao, Y. and Li, Z., 2015. Micromixing efficiency in a T-shaped confined impinging jet reactor. Chinese Journal of Chemical Engineering23 (2), pp.350-355.
Grossmann, S., Lohse, D. and Sun, C., 2016. High–reynolds number taylor-couette turbulence. Annual review of fluid mechanics48 , pp.53-80.
Guichardon, P. and Falk, L., 2000. Characterisation of micromixing efficiency by the iodide–iodate reaction system. Part I: experimental procedure. Chemical Engineering Science55 (19), pp.4233-4243.
Haut, B., Amor, H.B., Coulon, L., Jacquet, A. and Halloin, V., 2003. Hydrodynamics and mass transfer in a Couette–Taylor bioreactor for the culture of animal cells. Chemical engineering science58 (3-6), pp.777-784.
Jacobsen, N.C. and Hinrichsen, O., 2012. Micromixing efficiency of a spinning disk reactor. Industrial & engineering chemistry research51 (36), pp.11643-11652.
Jung, W.M., Kang, S.H., Kim, W.S. and Choi, C.K., 2000. Particle morphology of calcium carbonate precipitated by gas–liquid reaction in a Couette–Taylor reactor. Chemical engineering science55 (4), pp.733-747.
Kim, J.E. and Kim, W.S., 2017. Synthesis of Core–Shell Particles of Nickel–Manganese–Cobalt Hydroxides in a Continuous Couette-Taylor Crystallizer. Crystal Growth & Design17 (7), pp.3677-3686.
Lemenand, T., Della Valle, D., Habchi, C. and Peerhossaini, H., 2017. Micro-mixing measurement by chemical probe in homogeneous and isotropic turbulence. Chemical Engineering Journal314 , pp.453-465.
Li, G., Yang, X. and Ye, H., 2015. CFD simulation of shear flow and mixing in a Taylor–Couette reactor with variable cross-section inner cylinders. Powder Technology280 , pp.53-66.
Liu, Z., Guo, L., Huang, T., Wen, L. and Chen, J., 2014. Experimental and CFD studies on the intensified micromixing performance of micro-impinging stream reactors built from commercial T-junctions. Chemical Engineering Science119 , pp.124-133.
Liu, L., Yang, X., Li, G., Huang, X. and Xue, C., 2020. Shear controllable synthesis of barium sulfate particles using lobed inner cylinder Taylor-Couette flow reactor. Advanced Powder Technology , 31(3), pp.1088-1099.
Mayra, Q.P. and Kim, W.S., 2015. Agglomeration of Ni-Rich hydroxide in reaction crystallization: Effect of Taylor vortex dimension and intensity. Crystal Growth & Design15 (4), pp.1726-1734.
Nguyen, A.T., Kim, J.M., Chang, S.M. and Kim, W.S., 2011. Phase Transformation of Guanosine 5-Monophosphate in Continuous Couette− Taylor Crystallizer: Experiments and Numerical Modeling for Kinetics. Industrial & engineering chemistry research50 (6), pp.3483-3493.
Palmer, D.A., Ramette, R.W. and Mesmer, R.E., 1984. Triiodide ion formation equilibrium and activity coefficients in aqueous solution. Journal of solution chemistry13 (9), pp.673-683.
Park, S. and Kim, W.S., 2018. Influence of fluid motions on polymorphic crystallization of L-histidine: Taylor vortex flow and turbulent Eddy flow. Crystal Growth & Design18 (2), pp.710-722.
Racina, A. and Kind, M., 2006. Specific power input and local micromixing times in turbulent Taylor–Couette flow. Experiments in fluids41 (3), pp.513-522.
Richter, O., Hoffmann, H. and Kraushaar-Czarnetzki, B., 2008. Effect of the rotor shape on the mixing characteristics of a continuous flow Taylor-vortex reactor. Chemical Engineering Science63 (13), pp.3504-3513.
Qin, H., Zhang, C., Xu, Q., Dang, X., Li, W., Lei, K., Zhou, L. and Zhang, J., 2017. Geometrical improvement of inline high shear mixers to intensify micromixing performance. Chemical Engineering Journal319 , pp.307-320.
Shi, X., Xiang, Y., Wen, L.X. and Chen, J.F., 2012. CFD analysis of flow patterns and micromixing efficiency in a Y-type microchannel reactor. Industrial & engineering chemistry research51 (43), pp.13944-13952.
Soos, M., Wu, H. and Morbidelli, M., 2007. Taylor‐Couette unit with a lobed inner cylinder cross section. AIChE journal53 (5), pp.1109-1120.
Tang, Z., Kim, W.S. and Yu, T., 2019. Studies on morphology changes of copper sulfide nanoparticles in a continuous Couette-Taylor reactor. Chemical Engineering Journal359 , pp.1436-1441.
Thai, D.K., Mayra, Q.P. and Kim, W.S., 2015. Agglomeration of ni-rich hydroxide crystals in taylor vortex flow. Powder Technology274 , pp.5-13.
Unadkat, H., Nagy, Z.K. and Rielly, C.D., 2013. Investigation of turbulence modulation in solid–liquid suspensions using parallel competing reactions as probes for micro-mixing efficiency. Chemical Engineering Research and Design91 (11), pp.2179-2189.
Villermaux, J., Falk, L. and Fournier, M.C., 1994. Potential use of a new parallel reaction system to characterize micromixing in stirred reactors. In AIChE Symposium Series 90 (299), pp. 50-54.
Villermaux, J. and Falk, L., 1994. A generalized mixing model for initial contacting of reactive fluids. Chemical Engineering Science49 (24), pp.5127-5140.
Xiao, Q., Lim, T.T. and Chew, Y.T., 2002. Second Taylor vortex flow: Effects of radius ratio and aspect ratio. Physics of Fluids14 (4), pp.1537-1539.
Zhu, Q., Xiao, H., Zhang, R., Geng, S. and Huang, Q., 2019. Effect of impeller type on preparing spherical and dense Ni1− x− yCoxMny (OH) 2 precursor via continuous co-precipitation in pilot scale: A case of Ni0· 6Co0· 2Mn0· 2 (OH) 2. Electrochimica Acta318 , pp.1-13.