References
Antunes W.C., Daloso D.M., Pinheiro D.P., Williams T.C.R. & Loureiro M.E. (2017) Guard cell-specific down-regulation of the sucrose transporter SUT1 leads to improved water use efficiency and reveals the interplay between carbohydrate metabolism and K+ accumulation in the regulation of stomatal opening. Environmental and Experimental Botany 135 , 73–85.
Antunes W.C., Provart N.J., Williams T.C.R. & Loureiro M.E. (2012) Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity. Plant, Cell and Environment35 , 747–759.
Austen N., Walker H.J., Lake J.A., Phoenix G.K. & Cameron D.D. (2019) The Regulation of Plant Secondary Metabolism in Response to Abiotic Stress: Interactions Between Heat Shock and Elevated CO2.Frontiers in Plant Science 10 , 1–12.
Brodribb T.J. & McAdam S.A.M. (2011) Passive origins of stomatal control in vascular plants. Science (New York, N.Y.)331 , 582–5.
Brodribb T.J., Sussmilch F. & McAdam S.A.M. (2019) From reproduction to production, stomata are the master regulators. Plant Journal , 1–12.
C.H K., Krishnan M. & K M. (2017) Resilience of ferns: with reference to desiccation and rehydration stress offer new insights.Kongunadu Research Journal 4 , 89–94.
Cai S., Chen G., Wang Y., Huang Y., Marchant D.B., Wang Y., … Chen Z.-H. (2017) Evolutionary Conservation of ABA Signaling for Stomatal Closure. Plant Physiology 174 , 732–747.
Cardoso A.A. & McAdam S.A.M. (2019) Misleading conclusions from exogenous ABA application: a cautionary tale about the evolution of stomatal responses to changes in leaf water status. Plant Signaling & Behavior 14 , 1610307.
Cardoso A.A., Randall J.M. & McAdam S.A.M. (2019) Hydraulics Regulate Stomatal Responses to Changes in Leaf Water Status in the Fern Athyrium filix-femina. Plant Physiology 179 , 533–543.
Ceciliato P.H.O., Zhang J., Liu Q., Shen X., Hu H., Liu C., … Schroeder J.I. (2019) Intact leaf gas exchange provides a robust method for measuring the kinetics of stomatal conductance responses to abscisic acid and other small molecules in Arabidopsis and grasses. Plant Methods , 1–10.
Daloso D.M., dos Anjos L. & Fernie A.R. (2016a) Roles of sucrose in guard cell regulation. New Phytologist 211 , 809–818.
Daloso D.M., Williams T.C.R., Antunes W.C., Pinheiro D.P., Müller C., Loureiro M.E. & Fernie A.R. (2016b) Guard cell-specific upregulation of sucrose synthase 3 reveals that the role of sucrose in stomatal function is primarily energetic. New Phytologist 209 , 1470–1483.
Deans R.M., Brodribb T.J., Busch F.A. & Farquhar G.D. (2019) Plant water-use strategy mediates stomatal effects on the light induction of photosynthesis. New Phytologist 222 , 382:395.
Delfin J.C., Watanabe M. & Tohge T. (2019) Understanding the function and regulation of plant secondary metabolism through metabolomics approaches. Theoretical and Experimental Plant Physiology31 , 127–138.
Flütsch S., Nigro A., Conci F., Fajkus J., Thalmann M., Trtílek M., … Santelia D. (2020a) Glucose uptake to guard cells via STP transporters provides carbon sources for stomatal opening and plant growth. EMBO reports 21 , 1–13.
Flütsch S. & Santelia D. (2021) Mesophyll-derived sugars are positive regulators of light-driven stomatal opening. New Phytologist230 , 1754–1760.
Flütsch S., Wang Y., Takemiya A., Vialet-Chabrand S.R.M., Klejchová M., Nigro A., … Santelia D. (2020b) Guard Cell Starch Degradation Yields Glucose for Rapid Stomatal Opening in Arabidopsis. The Plant Cell 32 , 2325–2344.
Franks P.J. & Britton-Harper Z.J. (2016) No evidence of general CO2 insensitivity in ferns: one stomatal control mechanism for all land plants? The New phytologist 211 , 819–827.
Freire F.B.S., Bastos R.L.G., Bret R.S.C., Cândido-Sobrinho S.A., Medeiros D.B., Antunes W.C., … Daloso D.M. (2021) Mild reductions in guard cell sucrose synthase 2 expression leads to slower stomatal opening and decreased whole plant transpiration in Nicotiana tabacum L.Environmental and Experimental Botany 184 , 104370.
Fujita T., Noguchi K., Ozaki H. & Terashima I. (2019) Confirmation of mesophyll signals controlling stomatal responses by a newly devised transplanting method. Functional Plant Biology 46 , 467–481.
Gago J., Carriquí M., Nadal M., Clemente-Moreno M.J., Coopman R.E., Fernie A.R. & Flexas J. (2019) Photosynthesis Optimized across Land Plant Phylogeny. Trends in Plant Science 73 , 1–12.
Gago J., Daloso D. de M., Figueroa C.M., Flexas J., Fernie A.R. & Nikoloski Z. (2016) Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: A multispecies meta-analysis approach. Plant Physiology171 , 265–279.
Gago J., Daloso D.M., Carriquí M., Nadal M., Morales M., Araújo W.L., … Flexas J. (2020) The photosynthesis game is in the “inter-play”: Mechanisms underlying CO2 diffusion in leaves.Environmental and Experimental Botany 178 , 104174.
Gardner M.J., Hubbard K.E., Hotta C.T., Dodd A.N. & Webb A.A.R. (2006) How plants tell the time. Biochemical Journal 397 , 15–24.
Gong L., Liu X.-D., Zeng Y.-Y., Tian X.-Q., Li Y.-L., Turner N.C. & Fang X.-W. (2021) Stomatal morphology and physiology explain varied sensitivity to abscisic acid across vascular plant lineages. Plant Physiology , 1–16.
Graf A., Schlereth A., Stitt M. & Smith A.M. (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night.Proceedings of the National Academy of Sciences of the United States of America 107 , 9458–9463.
Granot D. & Kelly G. (2019) Evolution of Guard-Cell Theories: The Story of Sugars. Trends in Plant Science 24 , 507–518.
Harris B.J., Harrison C.J., Hetherington A.M. & Williams T.A. (2020) Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive Evolution of Stomata. Current Biology , 1–12.
Hoagland D.R. & Arnon D.I. (1950) The Water-Culture Method for Growing Plants without Soil. THE COLLEGE OF AGRICULTURE , 2nd ed. The College of Agriculture, California, USA.
Hõrak H., Kollist H. & Merilo E. (2017) Fern stomatal responses to ABA and CO2 depend on species and growth conditions. Plant Physiology174 , 672–679.
Hotta C.T. (2021) From crops to shops: how agriculture can use circadian clocks. Journal of Experimental Botany .
Kang Y., Outlaw W.H., Andersen P.C. & Fiore G.B. (2007a) Guard-cell apoplastic sucrose concentration - A link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L.Plant, Cell and Environment 30 , 551–558.
Kang Y., Outlaw W.H., Fiore G.B. & Riddle K.A. (2007b) Guard cell apoplastic photosynthate accumulation corresponds to a phloem-loading mechanism. Journal of Experimental Botany 58 , 4061–4070.
Kelly G., Egbaria A., Khamaisi B., Lugassi N., Attia Z., Moshelion M. & Granot D. (2019) Guard-Cell Hexokinase Increases Water-Use Efficiency Under Normal and Drought Conditions. Frontiers in Plant Science10 .
Kelly G., Moshelion M., David-Schwartz R., Halperin O., Wallach R., Attia Z., … Granot D. (2013) Hexokinase mediates stomatal closure. Plant Journal 75 , 977–988.
Kosmides A.K., Kamisoglu K., Calvano S.E., Corbett S.A. & Androulakis I.P. (2013) Metabolomic fingerprinting: Challenges and opportunities.Critical Reviews in Biomedical Engineering 41 , 205–221.
Kottapalli J., David-Schwartz R., Khamaisi B., Brandsma D., Lugassi N., Egbaria A., … Granot D. (2018) Sucrose-induced stomatal closure is conserved across evolution. PLoS ONE 13 , 1–17.
Kruger N.J., Troncoso-Ponce M.A. & Ratcliffe R.G. (2008) 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nature Protocols 3 , 1001–1012.
Lawson T. & Vialet-Chabrand S. (2018) Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist .
Lê S., Josse J. & Husson F. (2008) FactoMineR : An R Package for Multivariate Analysis. Journal of Statistical Software25 , 253–258.
Li B., Fan R., Sun G., Sun T., Fan Y., Bai S., … Song C. peng (2021) Flavonoids improve drought tolerance of maize seedlings by regulating the homeostasis of reactive oxygen species. Plant and Soil 461 , 389–405.
Li Y., Xu S., Gao J., Pan S. & Wang G. (2016) Glucose- and mannose-induced stomatal closure is mediated by ROS production , Ca2+ and water channel in Vicia faba. 252–261.
Lima V.F., Anjos L. dos, Medeiros D.B., Cândido-Sobrinho S.A., Souza L.P., Gago J., … Daloso D.M. (2019) The sucrose-to-malate ratio correlates with the faster CO2 and light stomatal responses of angiosperms compared to ferns. New Phytologist , 1873–1887.
Lima V.F., Medeiros D.B., Dos Anjos L., Gago J., Fernie A.R. & Daloso D.M. (2018) Toward multifaceted roles of sucrose in the regulation of stomatal movement. Plant Signaling & Behavior 00 , 1–8.
Lisec J., Schauer N., Kopka J., Willmitzer L. & Fernie A.R. (2006) Gas chromatography mass spectrometry–based metabolite profiling in plants.Nature Protocols 1 , 387–396.
Lu P., Outlaw Jr W.H., Smith B.G. & Freed G.A. (1997) A new mechanism for the regulation of stomatal aperture size in intact leaves (accumulation of mesophyll-derived sucrose in the guard-cell wall of Vicia faba). Plant physiology 114 , 109–118.
Lu P., Zhang S.Q., Outlaw W.H. & Riddle K.A. (1995) Sucrose: a solute that accumulates in the guard-cell apoplast and guard-cell symplast of open stomata. FEBS Letters 362 , 180–184.
Luedemann A., Strassburg K., Erban A. & Kopka J. (2008) TagFinder for the quantitative analysis of gas metabolite profiling experiments.Bioinformatics 24 , 732–737.
Lugassi N., Kelly G., Fidel L., Yaniv Y., Attia Z., Levi A., … Granot D. (2015) Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.Frontiers in Plant Science 6 , 1–11.
Martins S.C.V., Araújo W.L., Tohge T., Fernie A.R. & DaMatta F.M. (2014) In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield. PLoS ONE 9 , 1–11.
McAdam S.A.M. & Brodribb T.J. (2012) Fern and Lycophyte Guard Cells Do Not Respond to Endogenous Abscisic Acid. The Plant Cell24 , 1510–1521.
McAdam S.A.M., Duckett J.G., Sussmilch F.C., Pressel S., Renzaglia K.S., Hedrich R., … Merced A. (2021) Stomata: the holey grail of plant evolution. American Journal of Botany 108 , 366–371.
McAdam S.A.M. & Sussmilch F.C. (2021) The evolving role of abscisic acid in cell function and plant development over geological time.Seminars in Cell and Developmental Biology 109 , 39–45.
McAusland L., Vialet-Chabrand S., Davey P., Baker N.R., Brendel O. & Lawson T. (2016) Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. The New phytologist211 , 1209–1220.
Medeiros D.B., da Luz L.M., de Oliveira H.O., Araújo W.L., Daloso D.M. & Fernie A.R. (2019) Metabolomics for understanding stomatal movements.Theoretical and Experimental Plant Physiology 9 , 91–102.
Medeiros D.B., Perez Souza L., Antunes W.C., Araújo W.L., Daloso D.M. & Fernie A.R. (2018) Sucrose breakdown within guard cells provides substrates for glycolysis and glutamine biosynthesis during light-induced stomatal opening. Plant Journal 94 , 583–594.
Mott K.A. (2009) Opinion: Stomatal responses to light and CO2 depend on the mesophyll. Plant, Cell and Environment 32 , 1479–1486.
Outlaw W.H.J. (1995) Sucrose and stomata: a full circle. In Carbon Partitioning and Source–Sink Interactions in Plants . (eds M.A. Madore & W.J. Lucus), pp. 56–67. American Society of Plant Physiologists, Rockville, MD, USA.
Pang Z., Chong J., Li S. & Xia J. (2020) Metaboanalystr 3.0: Toward an optimized workflow for global metabolomics. Metabolites10 .
Papanatsiou M., Petersen J., Henderson L., Wang Y., Christie J.M. & Blatt M.R. (2019) Optogenetic manipulation of stomatal kinetics improves carbon assimilation,water use, and growth. Science 363 , 1456–1459.
Perez de Souza L., Alseekh S., Naake T. & Fernie A. (2019) Mass Spectrometry-Based Untargeted Plant Metabolomics. Current protocols in plant biology 4 , e20100.
Perez de Souza L., Alseekh S., Scossa F. & Fernie A.R. (2021) Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nature Methods .
Plackett A.R.G., Emms D.M., Kelly S., Hetherington A.M. & Langdale J.A. (2021) Conditional stomatal closure in a fern shares molecular features with flowering plant active stomatal responses. Current Biology , 1–31.
Proctor M.C.F. & Tuba Z. (2002) Poikilohydry and homoihydry: antithesis or spectrum of possibilities? New Phytologist 156 , 327–349.
Qu M., Essemine J., Xu J., Ablat G., Perveen S., Wang H., … Zhu X. (2020) Alterations in stomatal response to fluctuating light increase biomass and yield of rice under drought conditions. Plant Journal104 , 1334–1347.
Qu X., Peterson K.M. & Torii K.U. (2017) Stomatal development in time: the past and the future. Current Opinion in Genetics & Development 45 , 1–9.
R Core Team (2020) R: A Language and Environment for Statistical Computing.
Raven J.A. (2014) Speedy small stomata’. Journal of Experimental Botany 65 , 1415–1424.
Ruszala E.M., Beerling D.J., Franks P.J., Chater C., Casson S.A., Gray J.E. & Hetherington A.M. (2011) Land plants acquired active stomatal control early in their evolutionary history. Current Biology21 , 1030–1035.
Salachna P. & Piechocki R. (2020) Salinity Tolerance of Four Hardy Ferns from the Genus Dryopteris Adans. Grown under Different Light Conditions. Agronomy 11 , 49.
Sardá-Espinosa A. (2019) Time-series clustering in R Using the dtwclust package. R Journal 11 , 1–22.
Scholz M., Gatzek S., Sterling A., Fiehn O. & Selbig J. (2004) Metabolite fingerprinting: Detecting biological features by independent component analysis. Bioinformatics 20 , 2447–2454.
Shalit-Kaneh A., Kumimoto R.W., Filkov V. & Harmer S.L. (2018) Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions. Proceedings of the National Academy of Sciences 115 , 7147–7152.
Silveira-Sotelo M., Chauvin A.L., Marsch-Martínez N., Winkler R. & de Folter S. (2015) Metabolic fingerprinting of Arabidopsis thaliana accessions. Frontiers in Plant Science 6 , 1–13.
Smith C.A., Want E.J., O’Maille G., Abagyan R. & Siuzdak G. (2006) XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Analytical Chemistry 78 , 779–787.
Sussmilch F.C., Brodribb T.J. & McAdam S.A.M. (2017) What are the evolutionary origins of stomatal responses to abscisic acid in land plants? Journal of Integrative Plant Biology 59 , 240–260.
Sussmilch F.C., Schultz J., Hedrich R. & Roelfsema M.R.G. (2019) Acquiring Control: The Evolution of Stomatal Signalling Pathways.Trends in Plant Science 24 , 342–351.
Talbott L. & Zeiger E. (1998) The role of sucrose in guard cell osmoregulation. Journal of Experimental Botany 49 , 329–337.
Tohge T. & Fernie A.R. (2010) Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function.Nature Protocols 5 , 1210–1227.
Tohge T., Wendenburg R., Ishihara H., Nakabayashi R., Watanabe M., Sulpice R., … Fernie A.R. (2016) Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae. Nature Communications7 .
Tosens T., Nishida K., Gago J., Coopman R.E., Cabrera H.M., Carriquí M., … Flexas J. (2016) The photosynthetic capacity in 35 ferns and fern allies: Mesophyll CO2diffusion as a key trait. New Phytologist 209 , 1576–1590.
Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., … Arita M. (2015) MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nature Methods 12 , 523–526.
Watkins J., Chapman J.M. & Muday G.K. (2017) Abscisic acid-induced reactive oxygen species are modulated by flavonols to control stomata aperture .
Watkins J.M., Hechler P.J. & Muday G.K. (2014) Ethylene-induced flavonol accumulation in guard cells suppresses reactive oxygen species and moderates stomatal aperture. Plant Physiology 164 , 1707–1717.