References
Antunes W.C., Daloso D.M., Pinheiro D.P., Williams T.C.R. & Loureiro
M.E. (2017) Guard cell-specific down-regulation of the sucrose
transporter SUT1 leads to improved water use efficiency and reveals the
interplay between carbohydrate metabolism and K+ accumulation in the
regulation of stomatal opening. Environmental and Experimental
Botany 135 , 73–85.
Antunes W.C., Provart N.J., Williams T.C.R. & Loureiro M.E. (2012)
Changes in stomatal function and water use efficiency in potato plants
with altered sucrolytic activity. Plant, Cell and Environment35 , 747–759.
Austen N., Walker H.J., Lake J.A., Phoenix G.K. & Cameron D.D. (2019)
The Regulation of Plant Secondary Metabolism in Response to Abiotic
Stress: Interactions Between Heat Shock and Elevated CO2.Frontiers in Plant Science 10 , 1–12.
Brodribb T.J. & McAdam S.A.M. (2011) Passive origins of stomatal
control in vascular plants. Science (New York, N.Y.)331 , 582–5.
Brodribb T.J., Sussmilch F. & McAdam S.A.M. (2019) From reproduction to
production, stomata are the master regulators. Plant Journal ,
1–12.
C.H K., Krishnan M. & K M. (2017) Resilience of ferns: with reference
to desiccation and rehydration stress offer new insights.Kongunadu Research Journal 4 , 89–94.
Cai S., Chen G., Wang Y., Huang Y., Marchant D.B., Wang Y., …
Chen Z.-H. (2017) Evolutionary Conservation of ABA Signaling for
Stomatal Closure. Plant Physiology 174 , 732–747.
Cardoso A.A. & McAdam S.A.M. (2019) Misleading conclusions from
exogenous ABA application: a cautionary tale about the evolution of
stomatal responses to changes in leaf water status. Plant
Signaling & Behavior 14 , 1610307.
Cardoso A.A., Randall J.M. & McAdam S.A.M. (2019) Hydraulics Regulate
Stomatal Responses to Changes in Leaf Water Status in the Fern Athyrium
filix-femina. Plant Physiology 179 , 533–543.
Ceciliato P.H.O., Zhang J., Liu Q., Shen X., Hu H., Liu C., …
Schroeder J.I. (2019) Intact leaf gas exchange provides a robust method
for measuring the kinetics of stomatal conductance responses to abscisic
acid and other small molecules in Arabidopsis and grasses. Plant
Methods , 1–10.
Daloso D.M., dos Anjos L. & Fernie A.R. (2016a) Roles of sucrose in
guard cell regulation. New Phytologist 211 , 809–818.
Daloso D.M., Williams T.C.R., Antunes W.C., Pinheiro D.P., Müller C.,
Loureiro M.E. & Fernie A.R. (2016b) Guard cell-specific upregulation of
sucrose synthase 3 reveals that the role of sucrose in stomatal function
is primarily energetic. New Phytologist 209 , 1470–1483.
Deans R.M., Brodribb T.J., Busch F.A. & Farquhar G.D. (2019) Plant
water-use strategy mediates stomatal effects on the light induction of
photosynthesis. New Phytologist 222 , 382:395.
Delfin J.C., Watanabe M. & Tohge T. (2019) Understanding the function
and regulation of plant secondary metabolism through metabolomics
approaches. Theoretical and Experimental Plant Physiology31 , 127–138.
Flütsch S., Nigro A., Conci F., Fajkus J., Thalmann M., Trtílek M.,
… Santelia D. (2020a) Glucose uptake to guard cells via STP
transporters provides carbon sources for stomatal opening and plant
growth. EMBO reports 21 , 1–13.
Flütsch S. & Santelia D. (2021) Mesophyll-derived sugars are positive
regulators of light-driven stomatal opening. New Phytologist230 , 1754–1760.
Flütsch S., Wang Y., Takemiya A., Vialet-Chabrand S.R.M., Klejchová M.,
Nigro A., … Santelia D. (2020b) Guard Cell Starch Degradation
Yields Glucose for Rapid Stomatal Opening in Arabidopsis. The
Plant Cell 32 , 2325–2344.
Franks P.J. & Britton-Harper Z.J. (2016) No evidence of general CO2
insensitivity in ferns: one stomatal control mechanism for all land
plants? The New phytologist 211 , 819–827.
Freire F.B.S., Bastos R.L.G., Bret R.S.C., Cândido-Sobrinho S.A.,
Medeiros D.B., Antunes W.C., … Daloso D.M. (2021) Mild reductions
in guard cell sucrose synthase 2 expression leads to slower stomatal
opening and decreased whole plant transpiration in Nicotiana tabacum L.Environmental and Experimental Botany 184 , 104370.
Fujita T., Noguchi K., Ozaki H. & Terashima I. (2019) Confirmation of
mesophyll signals controlling stomatal responses by a newly devised
transplanting method. Functional Plant Biology 46 ,
467–481.
Gago J., Carriquí M., Nadal M., Clemente-Moreno M.J., Coopman R.E.,
Fernie A.R. & Flexas J. (2019) Photosynthesis Optimized across Land
Plant Phylogeny. Trends in Plant Science 73 , 1–12.
Gago J., Daloso D. de M., Figueroa C.M., Flexas J., Fernie A.R. &
Nikoloski Z. (2016) Relationships of leaf net photosynthesis, stomatal
conductance, and mesophyll conductance to primary metabolism: A
multispecies meta-analysis approach. Plant Physiology171 , 265–279.
Gago J., Daloso D.M., Carriquí M., Nadal M., Morales M., Araújo W.L.,
… Flexas J. (2020) The photosynthesis game is in the
“inter-play”: Mechanisms underlying CO2 diffusion in leaves.Environmental and Experimental Botany 178 , 104174.
Gardner M.J., Hubbard K.E., Hotta C.T., Dodd A.N. & Webb A.A.R. (2006)
How plants tell the time. Biochemical Journal 397 ,
15–24.
Gong L., Liu X.-D., Zeng Y.-Y., Tian X.-Q., Li Y.-L., Turner N.C. &
Fang X.-W. (2021) Stomatal morphology and physiology explain varied
sensitivity to abscisic acid across vascular plant lineages. Plant
Physiology , 1–16.
Graf A., Schlereth A., Stitt M. & Smith A.M. (2010) Circadian control
of carbohydrate availability for growth in Arabidopsis plants at night.Proceedings of the National Academy of Sciences of the United
States of America 107 , 9458–9463.
Granot D. & Kelly G. (2019) Evolution of Guard-Cell Theories: The Story
of Sugars. Trends in Plant Science 24 , 507–518.
Harris B.J., Harrison C.J., Hetherington A.M. & Williams T.A. (2020)
Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive
Evolution of Stomata. Current Biology , 1–12.
Hoagland D.R. & Arnon D.I. (1950) The Water-Culture Method for
Growing Plants without Soil. THE COLLEGE OF AGRICULTURE , 2nd ed. The
College of Agriculture, California, USA.
Hõrak H., Kollist H. & Merilo E. (2017) Fern stomatal responses to ABA
and CO2 depend on species and growth conditions. Plant Physiology174 , 672–679.
Hotta C.T. (2021) From crops to shops: how agriculture can use circadian
clocks. Journal of Experimental Botany .
Kang Y., Outlaw W.H., Andersen P.C. & Fiore G.B. (2007a) Guard-cell
apoplastic sucrose concentration - A link between leaf photosynthesis
and stomatal aperture size in the apoplastic phloem loader Vicia faba L.Plant, Cell and Environment 30 , 551–558.
Kang Y., Outlaw W.H., Fiore G.B. & Riddle K.A. (2007b) Guard cell
apoplastic photosynthate accumulation corresponds to a phloem-loading
mechanism. Journal of Experimental Botany 58 ,
4061–4070.
Kelly G., Egbaria A., Khamaisi B., Lugassi N., Attia Z., Moshelion M. &
Granot D. (2019) Guard-Cell Hexokinase Increases Water-Use Efficiency
Under Normal and Drought Conditions. Frontiers in Plant Science10 .
Kelly G., Moshelion M., David-Schwartz R., Halperin O., Wallach R.,
Attia Z., … Granot D. (2013) Hexokinase mediates stomatal
closure. Plant Journal 75 , 977–988.
Kosmides A.K., Kamisoglu K., Calvano S.E., Corbett S.A. & Androulakis
I.P. (2013) Metabolomic fingerprinting: Challenges and opportunities.Critical Reviews in Biomedical Engineering 41 , 205–221.
Kottapalli J., David-Schwartz R., Khamaisi B., Brandsma D., Lugassi N.,
Egbaria A., … Granot D. (2018) Sucrose-induced stomatal closure
is conserved across evolution. PLoS ONE 13 , 1–17.
Kruger N.J., Troncoso-Ponce M.A. & Ratcliffe R.G. (2008) 1H NMR
metabolite fingerprinting and metabolomic analysis of perchloric acid
extracts from plant tissues. Nature Protocols 3 ,
1001–1012.
Lawson T. & Vialet-Chabrand S. (2018) Speedy stomata, photosynthesis
and plant water use efficiency. New Phytologist .
Lê S., Josse J. & Husson F. (2008) FactoMineR : An R Package for
Multivariate Analysis. Journal of Statistical Software25 , 253–258.
Li B., Fan R., Sun G., Sun T., Fan Y., Bai S., … Song C. peng
(2021) Flavonoids improve drought tolerance of maize seedlings by
regulating the homeostasis of reactive oxygen species. Plant and
Soil 461 , 389–405.
Li Y., Xu S., Gao J., Pan S. & Wang G. (2016) Glucose- and
mannose-induced stomatal closure is mediated by ROS production ,
Ca2+ and water channel in Vicia faba. 252–261.
Lima V.F., Anjos L. dos, Medeiros D.B., Cândido-Sobrinho S.A., Souza
L.P., Gago J., … Daloso D.M. (2019) The sucrose-to-malate ratio
correlates with the faster CO2 and light stomatal
responses of angiosperms compared to ferns. New Phytologist ,
1873–1887.
Lima V.F., Medeiros D.B., Dos Anjos L., Gago J., Fernie A.R. & Daloso
D.M. (2018) Toward multifaceted roles of sucrose in the regulation of
stomatal movement. Plant Signaling & Behavior 00 , 1–8.
Lisec J., Schauer N., Kopka J., Willmitzer L. & Fernie A.R. (2006) Gas
chromatography mass spectrometry–based metabolite profiling in plants.Nature Protocols 1 , 387–396.
Lu P., Outlaw Jr W.H., Smith B.G. & Freed G.A. (1997) A new mechanism
for the regulation of stomatal aperture size in intact leaves
(accumulation of mesophyll-derived sucrose in the guard-cell wall of
Vicia faba). Plant physiology 114 , 109–118.
Lu P., Zhang S.Q., Outlaw W.H. & Riddle K.A. (1995) Sucrose: a solute
that accumulates in the guard-cell apoplast and guard-cell symplast of
open stomata. FEBS Letters 362 , 180–184.
Luedemann A., Strassburg K., Erban A. & Kopka J. (2008) TagFinder for
the quantitative analysis of gas metabolite profiling experiments.Bioinformatics 24 , 732–737.
Lugassi N., Kelly G., Fidel L., Yaniv Y., Attia Z., Levi A., …
Granot D. (2015) Expression of Arabidopsis Hexokinase in Citrus Guard
Cells Controls Stomatal Aperture and Reduces Transpiration.Frontiers in Plant Science 6 , 1–11.
Martins S.C.V., Araújo W.L., Tohge T., Fernie A.R. & DaMatta F.M.
(2014) In high-light-acclimated coffee plants the metabolic machinery is
adjusted to avoid oxidative stress rather than to benefit from extra
light enhancement in photosynthetic yield. PLoS ONE 9 ,
1–11.
McAdam S.A.M. & Brodribb T.J. (2012) Fern and Lycophyte Guard Cells Do
Not Respond to Endogenous Abscisic Acid. The Plant Cell24 , 1510–1521.
McAdam S.A.M., Duckett J.G., Sussmilch F.C., Pressel S., Renzaglia K.S.,
Hedrich R., … Merced A. (2021) Stomata: the holey grail of plant
evolution. American Journal of Botany 108 , 366–371.
McAdam S.A.M. & Sussmilch F.C. (2021) The evolving role of abscisic
acid in cell function and plant development over geological time.Seminars in Cell and Developmental Biology 109 , 39–45.
McAusland L., Vialet-Chabrand S., Davey P., Baker N.R., Brendel O. &
Lawson T. (2016) Effects of kinetics of light-induced stomatal responses
on photosynthesis and water-use efficiency. The New phytologist211 , 1209–1220.
Medeiros D.B., da Luz L.M., de Oliveira H.O., Araújo W.L., Daloso D.M.
& Fernie A.R. (2019) Metabolomics for understanding stomatal movements.Theoretical and Experimental Plant Physiology 9 ,
91–102.
Medeiros D.B., Perez Souza L., Antunes W.C., Araújo W.L., Daloso D.M. &
Fernie A.R. (2018) Sucrose breakdown within guard cells provides
substrates for glycolysis and glutamine biosynthesis during
light-induced stomatal opening. Plant Journal 94 ,
583–594.
Mott K.A. (2009) Opinion: Stomatal responses to light and CO2 depend on
the mesophyll. Plant, Cell and Environment 32 ,
1479–1486.
Outlaw W.H.J. (1995) Sucrose and stomata: a full circle. In Carbon
Partitioning and Source–Sink Interactions in Plants . (eds M.A. Madore
& W.J. Lucus), pp. 56–67. American Society of Plant Physiologists,
Rockville, MD, USA.
Pang Z., Chong J., Li S. & Xia J. (2020) Metaboanalystr 3.0: Toward an
optimized workflow for global metabolomics. Metabolites10 .
Papanatsiou M., Petersen J., Henderson L., Wang Y., Christie J.M. &
Blatt M.R. (2019) Optogenetic manipulation of stomatal kinetics improves
carbon assimilation,water use, and growth. Science 363 ,
1456–1459.
Perez de Souza L., Alseekh S., Naake T. & Fernie A. (2019) Mass
Spectrometry-Based Untargeted Plant Metabolomics. Current
protocols in plant biology 4 , e20100.
Perez de Souza L., Alseekh S., Scossa F. & Fernie A.R. (2021)
Ultra-high-performance liquid chromatography high-resolution mass
spectrometry variants for metabolomics research. Nature Methods .
Plackett A.R.G., Emms D.M., Kelly S., Hetherington A.M. & Langdale J.A.
(2021) Conditional stomatal closure in a fern shares molecular features
with flowering plant active stomatal responses. Current Biology ,
1–31.
Proctor M.C.F. & Tuba Z. (2002) Poikilohydry and homoihydry: antithesis
or spectrum of possibilities? New Phytologist 156 ,
327–349.
Qu M., Essemine J., Xu J., Ablat G., Perveen S., Wang H., … Zhu
X. (2020) Alterations in stomatal response to fluctuating light increase
biomass and yield of rice under drought conditions. Plant Journal104 , 1334–1347.
Qu X., Peterson K.M. & Torii K.U. (2017) Stomatal development in time:
the past and the future. Current Opinion in Genetics &
Development 45 , 1–9.
R Core Team (2020) R: A Language and Environment for Statistical
Computing.
Raven J.A. (2014) Speedy small stomata’. Journal of Experimental
Botany 65 , 1415–1424.
Ruszala E.M., Beerling D.J., Franks P.J., Chater C., Casson S.A., Gray
J.E. & Hetherington A.M. (2011) Land plants acquired active stomatal
control early in their evolutionary history. Current Biology21 , 1030–1035.
Salachna P. & Piechocki R. (2020) Salinity Tolerance of Four Hardy
Ferns from the Genus Dryopteris Adans. Grown under Different Light
Conditions. Agronomy 11 , 49.
Sardá-Espinosa A. (2019) Time-series clustering in R Using the dtwclust
package. R Journal 11 , 1–22.
Scholz M., Gatzek S., Sterling A., Fiehn O. & Selbig J. (2004)
Metabolite fingerprinting: Detecting biological features by independent
component analysis. Bioinformatics 20 , 2447–2454.
Shalit-Kaneh A., Kumimoto R.W., Filkov V. & Harmer S.L. (2018) Multiple
feedback loops of the Arabidopsis circadian clock provide rhythmic
robustness across environmental conditions. Proceedings of the
National Academy of Sciences 115 , 7147–7152.
Silveira-Sotelo M., Chauvin A.L., Marsch-Martínez N., Winkler R. & de
Folter S. (2015) Metabolic fingerprinting of Arabidopsis thaliana
accessions. Frontiers in Plant Science 6 , 1–13.
Smith C.A., Want E.J., O’Maille G., Abagyan R. & Siuzdak G. (2006)
XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using
Nonlinear Peak Alignment, Matching, and Identification. Analytical
Chemistry 78 , 779–787.
Sussmilch F.C., Brodribb T.J. & McAdam S.A.M. (2017) What are the
evolutionary origins of stomatal responses to abscisic acid in land
plants? Journal of Integrative Plant Biology 59 ,
240–260.
Sussmilch F.C., Schultz J., Hedrich R. & Roelfsema M.R.G. (2019)
Acquiring Control: The Evolution of Stomatal Signalling Pathways.Trends in Plant Science 24 , 342–351.
Talbott L. & Zeiger E. (1998) The role of sucrose in guard cell
osmoregulation. Journal of Experimental Botany 49 ,
329–337.
Tohge T. & Fernie A.R. (2010) Combining genetic diversity, informatics
and metabolomics to facilitate annotation of plant gene function.Nature Protocols 5 , 1210–1227.
Tohge T., Wendenburg R., Ishihara H., Nakabayashi R., Watanabe M.,
Sulpice R., … Fernie A.R. (2016) Characterization of a recently
evolved flavonol-phenylacyltransferase gene provides signatures of
natural light selection in Brassicaceae. Nature Communications7 .
Tosens T., Nishida K., Gago J., Coopman R.E., Cabrera H.M., Carriquí M.,
… Flexas J. (2016) The photosynthetic capacity in 35 ferns and
fern allies: Mesophyll CO2diffusion as a key trait. New
Phytologist 209 , 1576–1590.
Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., …
Arita M. (2015) MS-DIAL: Data-independent MS/MS deconvolution for
comprehensive metabolome analysis. Nature Methods 12 ,
523–526.
Watkins J., Chapman J.M. & Muday G.K. (2017) Abscisic
acid-induced reactive oxygen species are modulated by flavonols to
control stomata aperture .
Watkins J.M., Hechler P.J. & Muday G.K. (2014) Ethylene-induced
flavonol accumulation in guard cells suppresses reactive oxygen species
and moderates stomatal aperture. Plant Physiology 164 ,
1707–1717.