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Abstract

Ecological theory recognizes the importance of the variety of species for maintaining the

functioning of ecosystems and their derived services. We assert that when studying the effects

of shifts in biodiversity levels using mathematical models, their dynamics must be sensitive

to the variety of species traits but not to raw species numbers, a property that we call

scale–invariance. We present a testing procedure for verifying scale–invariance of ecological

network models —with or without trait adaptation— expressed as ODEs. Furthermore,

we applied our test to several influential models used for evaluating biodiversity effects on

ecosystem functioning. In most of the surveyed studies the equations failed our test. This

raises doubts about the validity of previous results and calls for revisiting the theory derived

from these studies. Our results foster the creation of artifact–free models, a necessary step

towards building a more robust theory of biodiversity–driven ecosystem functioning.
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INTRODUCTION

Few questions in ecology have received such a great attention over decades and have

been so fertile in promoting research, like the one about the relation between species

diversity and ecosystem stability (McCann, 2000). This is of particular concern in the

context of current biodiversity loss. The importance of this matter encompasses both the

theoretical understanding of ecosystems and the more pragmatic issue of conservation of

ecosystem services, which are vital for human well–being. In the early ’90s, the more

general biodiversity–ecosystem functioning (BEF) paradigm emerged. It extended the

concept of stability beyond that of species populations, towards aggregated ecosystem

properties. Due to the inherent complexity of ecological systems, much of this research

relies on the use of mathematical models.

Concerning biodiversity, BEF relations are driven by more than the raw number of

species (i.e. the quantity of species, irrespective of their variety). For example, at a

fixed species richness, different community composition of key functional traits governs

resource exploitation, and species interactions (Gagic et al., 2015; Aubree et al., 2020).

Therefore, we expect that increasing species richness without modifying functional di-

versity, expressed as variety of functional traits and responses to environmental changes,

should not drive changes in ecosystem functioning (Yachi & Loreau, 1999; Naeem &

Wright, 2003; Loreau & De Mazancourt, 2013). Moreover, functional trait composition

within the community is subject to temporal changes due to ecological and adaptive

dynamics. These changes are known to have a strong influence on ecosystem productiv-

ity (Cadotte & Tucker, 2017), stability (Loreau & De Mazancourt, 2013), and resistance

and tolerance to invasions (Hector et al., 2001). Ecosystems are currently facing envi-

ronmental perturbations, and their communities are constantly experiencing adaptation

due to phenotypic/behavioral plasticity and genetic evolution. However, we have a poor
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understanding of the role of adaptation in BEF. This turns the process of creating models

for eco–evolutionary systems into a challenging endeavor.

Besides capturing key biological features, it has been noted that ecosystem models

should exhibit some fundamental forms of logical consistency (Arditi & Michalski, 1996;

Kuang, 2002). As argued below, proper models for studying BEF should show different

dynamics in response to changes in functional diversity but not to changes in the raw

number of species. In this article, we will say a model is scale–sensitive (as opposed to

scale–invariant) if its dynamics are modified by changes in the raw number of species.

We will formalize these concepts later. A scale–sensitive model would impede identifying

the effect of incorporating new species with their own biological features to an ecosystem,

due to the confounding effect of scale–sensitivity. This point, which is crucial for the

BEF study, has scarcely been considered. Our literature survey, included in this paper,

lists a number of influential published models of ecological networks that exhibit scale–

sensitivity, as well as a few that do not. The fact that such high visibility research is liable

to produce misleading results as a consequence of the mentioned artifacts highlights the

need for a model design procedure that avoids scale–sensitivity pitfalls.

In this article, after presenting the problem of scale–sensitivity, we will state formal

criteria to detect it in ecological network models. Following canonical definitions (e.g.

Newman (2018)) ecological networks are a collection of —one or more— species popu-

lations linked in pairs by ecological interactions. In ecological network models, species

abundances, trait values, interaction intensities and the network topology could vary with

time. If a model is being used for studying BEF relations, especially if it includes adaptive

trait dynamics, it should probably be discarded if it fails our scale–invariance criteria. We

also suggest ways to fix the equations to obtain and use ecological network models that

exhibit scale–invariance. We achieve this by identifying model features that introduce the

scale–sensitivity and are frequently found in the ecological literature.
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THE PROBLEM OF SCALE–SENSITIVITY IN ECOLOGICAL

NETWORK MODELS

The usual theoretical procedure to study the BEF relation in ecological networks is to

conduct an in silico controlled experiment. First, ecological networks with different di-

versity levels are obtained, usually by means of an algorithm generating quasi-empirical

webs such as the cascade (Cohen et al., 2012) or the niche model (Williams & Martinez,

2000). Different diversity levels are most commonly obtained through varying species

richness in the network. Second, a dynamic population model is added to each of the

interacting species, typically by using ordinary differential equations (ODEs). Third, the

model community is run for a given time lapse, after which system functioning is assessed

through appropriate measures, such as stability metrics (Pascual & Dunne, 2006), biomass

or productivity. Finally, the association between species richness and system functioning

is evaluated by using visualization or statistical tools.

Ecological network models used to evaluate the BEF relation must be able to capture

system responses to biodiversity changes. However, they must be insensitive to changes in

raw number of species that preserve functional diversity. For example, consider an initial

population of x(0) individuals belonging to species X. Then, suppose we arbitrarily count

a fraction p of x(0) (with x1(0) = px(0), see Fig. 1) as if it belonged to a species Q. The

remaining fraction 1 − p of x(0) (with x2(0) = (1 − p)x(0)) is counted as if it belonged

to another species R. Then, the sum of individuals belonging to pseudo–species Q and R

should behave exactly the same as the population X. In other words, artificially splitting

speciesX into pseudo–species Q and R should not bring any consequence for the dynamics

of the community, since the behavior of x(t) should be recovered exactly by the behavior of

x1(t)+x2(t). Conversely, the existence of a t at which x1(t)+x2(t) �= x(t) would imply that

a mere nominal split of X into Q and R changed the community dynamics. In this case,
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the model outcomes are altered by a spurious increase in the raw number of species, which

reveals an experimental artifact in the procedure. This artifact has a crucial importance

for understanding the effects of biodiversity changes through modifying the number of

functionally different species. Splitting a species is equivalent to adding a new species

functionally identical to an existing one. In the context of ODE based studies, two species

are considered functionally identical if their equations have the same form, and the values

of corresponding equation parameters are the same. Population level model parameters

(e.g, handling times, intrinsic growth rates) will be the same if both species exhibit the

same values for individual level traits. This hierarchical organization of trait definitions

is shared by Violle et al. (2007) and Cadotte et al. (2011). Theoretical studies, such as

Ceulemans et al. (2019), have adopted this perspective. Note that under our approach,

it is perfectly valid to add functionally distinct species to a model community (e.g. with

different values of their competition coefficients) but the model must be invariant in the

limiting case of addition of identical species (e.g. when their competition coefficients are

set to identical values). This is a necessary condition for any model used for evaluating

the consequences of biodiversity shifts.

To explain the concept of scale–invariance we will present examples based on Kondoh

(2003). We start from a system composed of a prey species of abundance P and a predator

species of abundance A.

Ṗ = P · (ρ− βP − ϕαA)

Ȧ = A · (σ − γA+ �ϕαP )
(1)

where we use Ṗ as a shorthand for dP/dt and so forth. The ecological interaction rep-

resented in Eq. (1) depicts the killing rate of prey by predators ϕαAP , with consumer

preference α = 1/#prey species = 1. Parameter ϕ is the predation rate coefficient, � is

the conversion efficiency of killed prey into consumer abundance, ρ and σ are the intrinsic

growth rate of preys and predators, respectively. Finally, β and γ are self–interference
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terms, due to intraspecific competition. All parameters are positive constants. If we in-

creased the system’s species richness by adding, for example, a new prey species while

preserving the form of the model equations in Kondoh (2003), we would obtain

Ṗ1 = P1 · (ρ1 − β1P1 − ϕ1α1A) (2)

Ṗ2 = P2 · (ρ2 − β2P2 − ϕ2α2A) (3)

Ȧ = A · (σ − γA+ �1ϕ1α1P1 + �2ϕ2α2P2) (4)

with predator preferences α1 + α2 = 1. Species P1 and P2 are functionally identical if

and only if α1 = α2 = 1/2, ρ1 = ρ2, β1 = β2, ϕ1 = ϕ2 and �1 = �2. To test whether

this system is scale–invariant, let us imagine that the original prey species in Eq. (1) was

artificially split into two new species (Eqs. (2) and (3)), which are functionally identical.

It remains to check whether the dynamics of P1 + P2 is identical to the dynamics of P in

Eq. (1). Note that by omitting competition between P1 and P2 we reduced the average

competition effects in the system. To see the consequences of this, we obtain the dynamics

of P = P1 + P2 by adding Eq. (2) and (3).

Ṗ = Ṗ1 + Ṗ2 = P1 · (ρ1 − β1P1 − ϕ1α1A) + P2 · (ρ2 − β2P2 − ϕ2α2A) (5)

In general, we cannot express the right hand side of Eq. (5) and Eq. (4) as functions of

P and A only. We call this feature lack of “species addability,” which we define precisely

in the next section. However, if P1(t) = P2(t) we can combine P1 and P2 into a single

variable P . This equality is true for all t if we choose P1(0) = P2(0) because of the

symmetry between P1 and P2 in Eqs. (2) though (4). Then we obtain the reduced system

Ṗ = P ·
�
ρ− β

P

2
− ϕ

A

2

�

Ȧ = A ·
�
σ − γA+ �ϕ

P

2

� (6)
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where ρ = ρ1 = ρ2, β = β1 = β2, ϕ = ϕ1 = ϕ2 and � = �1 = �2. Since Eq. (6) is not the

same as Eq. (1), we conclude that the dynamics are altered by artificially splitting species

and therefore the model is scale–sensitive. Furthermore, it can be shown that Eq. (6)

presents equilibrium population densities greater than those obtained from Eq. (1).

Scale–sensitivity and BEF

Artificially splitting a species into identical copies can affect the dynamics of the system.

Now we will show that some important measures of ecosystem functioning can also be

affected. Still considering model (1), assume that the predator population is split into D

functionally identical copies with equal abundance. Adding the equations for these copies

we obtain the reduced system

Ṗ = P ·
�
ρ− β

P

D
− ϕ

A

D

�

Ȧ = A ·
�
σ − γA+ �ϕ

P

D

�
.

(7)

Notice that D appears explicitly in the right–hand side of the equations. This imme-

diately implies that the model is scale–sensitive. Moreover, the following quantitative

ecosystem functioning metrics are dependent on D: population equilibria, total commu-

nity biomass at equilibrium, ecosystem production, and community resilience. Qualitative

metrics, such as feasibility (existence of positive equilibria) and asymptotic stability, are

also depend on D. We also analyzed a competitive system based on (7) and we obtained

similar conclusions. A detailed derivation of these results can be found in Appendix S1.

SCALE–INVARIANCE CRITERIA FOR NETWORKS

We will present a test to determine if a given ODE based model is scale–invariant. To make

the presentation more amenable, in this section we will restrict our analysis to systems
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where each population abundance is represented by a single real variable, and the state

of the system is defined only by these variables. This precludes the use of systems with

stage or spatial structure, or with trait adaptation. In a later section, we will extend our

method to include systems with adaptation.

For this study, and given an ecological network characterized by a set of species and

parameters that describe the interactions among them, we will make the following two

assumptions. The first one is that there is an unambiguous procedure to translate the

network into a set of ODEs. The second one is that there is a well defined operation for

adding a species to a network G, yielding a network G�. We are especially interested in

the case where the species being added (call it s�) is identical to another species (call it

s) that is already in G. This is conceptually equivalent to splitting the original species s

in G into two identical pseudo–species s and s� in G�. Duplicating a species should not

alter the dynamics of the system since the combined population of species s and s� in G�

should behave exactly like the population of s in G. For all species i in G, the ODEs will

have the form

ẋi = xi · fi(x) (8)

with initial conditions xi(0). For G
�, the equations will have the form

˙̃xi = x̃i · f̃i(x̃) (9)

and initial conditions should fulfill x̃s(0) + x̃s�(0) = xs(0), and x̃i(0) = xi(0) for all other

species. We demand that for all t > 0

x̃s(t) + x̃s�(t) = xs(t)

x̃i(t) = xi(t) for all other species
(10)
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The last two equations simply mean that the species abundances through time should

behave in exactly the same way in the G network (xi variables) as the G� network (x̃i

variables). For the particular case of species s in G, its abundance should be exactly as

the summed abundances of species s and s� in G�.

Defining species addability

Consider the model:

˙̃xi = x̃i · g̃i(x̃0, x̃1, . . . , x̃n) (11)

where the x̃i’s represent the abundances of n + 1 species and, for convenience, they are

indexed from zero. We will assume the g̃i functions are “well-behaved.” For example, the

g̃i’s being continuously differentiable is enough to guarantee the existence and uniqueness

of solutions (at least locally). It is usually the case in population dynamics models that

both existence and uniqueness of the solution extend globally to the [0,∞) interval. Thus,

Eq. (11) is general enough to capture most popular ODE based models in the ecological

literature.

Suppose that we identify two variables that seem to represent identical species. Since

we can rename variables, without loss of generality we can assume that these two variables

are x̃0 and x̃1. If they represented identical species, and we fixed the values for x̃2, . . . , x̃n,

then ˙̃x0 + ˙̃x1 would depend only on x̃0 + x̃1. Similarly, the values of ˙̃x2, . . . , ˙̃xn would

depend exclusively on x̃0 + x̃1. Thus, if only the sum x̃0 + x̃1 matters, it is natural to

combine these two variables into a new one by simple addition. More formally, we will

say a function g̃i is sum–dependent if and only if it satisfies the following condition for all

x̃i ≥ 0 (i = 0, 1, . . . , n), and for all λ ∈ [0, 1]:

g̃i(x̃0, x̃1, . . . , x̃n) = g̃i (λ · (x̃0 + x̃1), (1− λ)(x̃0 + x̃1), x̃2, x̃3, . . . , x̃n) (12)
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An equivalent way to state the rule described in Eq. (12) is

g̃i(x̃0, x̃1, . . . , x̃n) = g̃i(x̃0 + β, x̃1 − β, x̃2, x̃3, . . . , x̃n) (13)

for all x̃i ≥ 0 (i = 0, 1, . . . , n), and for all β such that 0 ≤ x̃0 + β and 0 ≤ x̃1 − β.

Intuitively, we should be able to transfer an arbitrary amount of “mass” β from species 1

to species 0 without affecting the values of any per capita effect g̃i.

If per capita growth rates of species 0 and 1 are the same, i.e.

g̃0(x̃0, x̃1, . . . , x̃n) = g̃1(x̃0, x̃1, . . . , x̃n) (14)

for all x̃i ≥ 0 (i = 0, 1, . . . , n), and also all g̃i’s are sum–dependent, we can show that x̃0

and x̃1 can be combined into a single variable x1 = x̃0 + x̃1 (see Appendix S2 for details

and for alternative formulations of the test for addability). Therefore, we will say species

0 and 1 are addable if and only if either Eq. (12) or (13), and Eq. (14) are satisfied.

Concisely, if two species are addable, then we can combine them and write a reduced

system. Also note that we can group more than two species by using the same technique

repeatedly. Thus it is enough to define addability for two species only. Addability will

serve as a building block to define the scale–invariance test.

The scale–invariance test

Conceptually, the test consists of applying, for all possible networks of interest and species

of those networks, a sequence of a few steps we summarize in Fig. 2. The set R of

networks of interest depends on the particular study being carried out. Typical choices

include bipartite, acyclic, and unconstrained networks. Consider an arbitrary G ∈ R and

a species s in G. Write the differential equations for all species in G. Then, replace s by

two identical pseudo–species we will call s1 and s2, yielding a new network G�. Write the
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differential equations for G�. Now test for addability of s1 and s2 using any of the formulas

given in section Defining species addability or in Appendix S2. If they are addable, define

s = s1 + s2 and reduce the system. Test if all the equations in the reduced system match

those written for G. A model is scale–invariant if, for all networks G and for all species

s in G, duplicating s and then reducing the system yields the same equations as those

written for G.

Example applications of the test

We will show three applications of the scale–invariance test. The first one is on the classic

Lotka–Volterra system:

ẋi = xi ·
�
ri +

n�

j=1

aijxj

�
for i = 1, 2, . . . , n (15)

Say we wish to duplicate species with index number 1 into two identical species and,

therefore, with identical parameter values. Introducing variables x̃0 and x̃1 to represent

their abundances we obtain

˙̃x0 = x̃0 ·
�
r1 +

n�

j=2

a1jx̃j + a11x̃0 + a11x̃1

�

˙̃x1 = x̃1 ·
�
r1 +

n�

j=2

a1jx̃j + a11x̃0 + a11x̃1

�

˙̃xi = x̃i ·
�
ri +

n�

j=2

aijx̃j + ai1x̃0 + ai1x̃1

�
for i = 2, 3, . . . , n

(16)

with x̃i = xi for i = 2, 3, . . . , n, and assuming we preserve the values of all the aij and

ri coefficients. This ends the splitting part. We can see that Eq. (12) and Eq. (14) are

satisfied by Eq. (16); therefore, species 0 and 1 are addable. Then, by creating a new

variable with value x̃0 + x̃1 and reducing the system, we obtain equations identical to
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Eq. (15). Since this holds for all species, we conclude that Eq. (15) is scale–invariant.

The second application, to show a negative example, is on Eq. (1). Copying the only

plant species gives

˙̃P1 = P̃1 ·
�
ρ− βP̃1 − ϕαÃ

�
(17)

˙̃P2 = P̃2 ·
�
ρ− βP̃2 − ϕαÃ

�
(18)

It is immediate that the equations fulfill neither Eq. (12) because the per capita growth

rates are non sum–dependent, nor Eq. (14) because the per capita growth rates are dif-

ferent. Therefore this model fails our test for scale–invariance, which was expected after

our analysis of Eq. (6).

Finally, we will apply our test to a more complex example. Thébault & Fontaine

(2010) proposed the food web model

Ṗi = Pi ·
�
ri − IiPi −

m�

j=1

cijAjβij

1 + βij

�
k,βkj>0 Pk

�
for i = 1, 2, . . . , n

Ȧj = Aj ·
�
−qj − EjAj +

n�

i=1

cijPiβij

1 + βij

�
k,βkj>0 Pk

�
for j = 1, 2, . . . ,m

(19)

To test for scale–invariance, we apply our procedure, replicating species 1.

˙̃P0 = P̃0 ·
�
r0 − I0P̃0 −

m�

j=1

c0jÃjβ0j

1 + β0j

�
k,βkj>0 P̃k

�

˙̃P1 = P̃1 ·
�
r1 − I1P̃1 −

m�

j=1

c1jÃjβ1j

1 + β1j

�
k,βkj>0 P̃k

�

˙̃Pi = P̃i ·
�
ri − IiP̃i −

m�

j=1

cijÃjβij

1 + βij

�
k,βkj>0 P̃k

�
for i = 2, 3, . . . , n

˙̃Aj = Ãj ·
�
−qj − EjÃj +

n�

i=1

cijP̃iβij

1 + βij

�
k,βkj>0 P̃k

�
for j = 1, 2, . . . ,m

(20)
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No matter what positive values we assign to I0 and I1, the per–capita growth rates of P̃0

and P̃1 are not sum–dependent (Eq. (12)). This is apparent in the limiting case Aj = 0

for all j. Therefore, the model (19) is scale–sensitive.

It is possible to add direct interspecific competition terms to model (19) and make

it scale–invariant. To show the consequences of this model feature that affects scale–

sensitivity, we ran some numerical experiments using the original model in Thébault &

Fontaine (2010) and using the scale–invariant version of it. We summarize the results for

both treatments in the BEF relations shown in Fig. 3. We observe qualitative differences,

i.e. different shapes of BEF curves, in herbivore biomass, plant biomass, herbivore persis-

tence and quantitative differences in plant persistence. Note that Eq. (19) allows indirect

interspecies competition via shared resources, but this is not enough to prevent scale–

sensitivity. For details and additional experiments see Appendix S3. For an extension of

the test to discrete time systems see Appendix S4.

Scale–invariance in models with trait adaptation

Equation (11) is not general enough to capture ecological models with evolutionary or

behavioral adaptation. Typically, trait adaptation is represented by adding extra vari-

ables. A real variable αij may represent the preference of individuals of predator species

i for prey species j. It could be a probability of attack or a fraction of time devoted to

hunting that particular prey. Commonly, the values of α’s are constrained. This will be

important when specifying the test for species addability. If αij represents the fraction

of time individuals of species i spends foraging on a resource j or a fraction of available

energy allocated to a task, then we must have that
�

j αij = 1. This constraint must

be preserved by the differential equations for all time. In this case, we say the system is

normalized. A well known normalized model is the replicator equation. A non–normalized

system is the classic optimal diet model (Stephens & Krebs, 1986). Here, it is only re-
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quired that 0 ≤ αij ≤ 1, as the α’s are probabilities. In this paper, we will handle both

scenarios.

To represent this adaptation process, in addition to the xi variables that model species

abundances, we introduce new variables αij, whose time evolution will be described by

new equations. To simplify the notation, we will express the state variables in vector form.

Let x = [x1, x2, . . . , xn]
T , where n is the number of species in the network. Similarly, let

A = [αij] be an n× n matrix. Consider:

ẋi = xi · gi (x,A)

α̇ij = fij (x,A)
(21)

To generalize the scale–invariance test for Eq. (21), we just have to extend the conditions

for species addability. We will split our analysis into the non–normalized and normalized

cases.

Addability in non–normalized systems

In this case we do not impose any constraints on the values for the α’s. After splitting

species 1 into species 0 and 1 we obtain equations of the form

˙̃xi = x̃i · g̃i
�
x̃, Ã

�

˙̃αij = f̃ij

�
x̃, Ã

� (22)

Note that x̃ has n + 1 elements, while Ã is an (n + 1) × (n + 1) matrix. Also note that

elements in x̃ are indexed from zero. Rows and columns of Ã are also indexed from zero.

For brevity, we can define F̃ = [f̃ij] and write Eq. (22) as

˙̃xi = x̃i · g̃i
�
x̃, Ã

�

˙̃Aij = F̃
�
x̃, Ã

� (23)
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For an arbitrary matrix M we will write M (k) and M(k) to denote the k-th column and

k-th row of M respectively.

If species 0 and 1 are the result of nominally splitting an original species, then their

trait values for interaction with an arbitrary species j, must be the same for all time.

This means that we have the time invariants α̃0j(t) = α̃1j(t) and α̃i0(t) = α̃i1(t). This is

exactly the same as saying Ã(0)(t) = Ã(1)(t) & Ã(0)(t) = Ã(1)(t).

The conditions for addability, i.e. for reducing the system by combining variables x̃0

and x̃1, are:

1. Initial conditions must fulfill:

Ã(0)(0) = Ã(1)(0) & Ã(0)(0) = Ã(1)(0). (24)

Informally, for the two identical species, their trait values for interaction with all

other species must be the same at time zero.

2. Fixing Ã, define γi,Ã (x̃) = g̃i

�
x̃, Ã

�
and ϕi,j,Ã (x̃) = f̃ij

�
x̃, Ã

�
. The second con-

dition is:

∀Ã
�
Ã(0) = Ã(1) & Ã(0) = Ã(1) =⇒ γi,Ã and ϕi,j,Ã are sum–dependent

�
(25)

for all i and j. This is analogous to condition Eq. (12) for systems without adapta-

tion.

3. Finally,

∀x̃ ≥ 0 ∀Ã
�
Ã(0) = Ã(1) & Ã(0) = Ã(1) =⇒ g̃0

�
x̃, Ã

�
= g̃1

�
x̃, Ã

�
& (26)

F̃ (0)
�
x̃, Ã

�
= F̃ (1)

�
x̃, Ã

�
& (27)

F̃(0)

�
x̃, Ã

�
= F̃(1)

�
x̃, Ã

��
. (28)
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Equation. (26) is analogous to Eq. (14). Since the F̃ (0), F̃ (1), F̃(0) and F̃(1) functions

control the rate of change of the first two rows and columns of Ã, we need conditions

Eq. (27) and Eq. (28) to preserve the time invariants.

Appendix S2 shows how, from the addability criteria we just described, it follows that

species 0 and 1 can be combined into a single one.

The case of addability in normalized systems is very similar. For details see Ap-

pendix S2.

LITERATURE SURVEY

We surveyed the literature to find publications studying the BEF relation in ecological

networks by theoretical means. Based on our previous experience in this field (e.g. Val-

dovinos et al., 2010; Vázquez et al., 2015; Miele et al., 2019), we chose prominent models

commonly used in the ecological literature to be analyzed by our methods. We included

models that (1) used differential equations, and (2) their purpose was to study the effects

of species diversity on community dynamics.

We summarize the results in Tables 1 and 2. One out of 10 models without adaptation

and six (all game-theory based) out of 14 models with adaptation were scale–invariant.

Lack of addability caused most of the test failures in models without adaptation, while

equation mismatch did so in models with adaptation. Lack of interspecific competition was

the prevalent source of scale–sensitivity in models without adaptation, but normalization

was the most frequent source in models with adaptation. For details, see Appendix S5.

DISCUSSION

The importance of biodiversity as a determinant of ecosystem functioning and the provi-

sion of services has been asserted before (Hooper et al., 2005, 2012). Ecological tradition
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suggest that both taxonomic diversity, usually measured through the raw number of

species, and functional diversity, i.e. variety of functional features of species, play a role

in shaping ecosystem responses to environmental changes. The raw number of species

within communities is believed to foster ecosystem resilience through increasing ecologi-

cal redundancy. Several functionally similar species would maintain ecosystem functions

through the compensatory responses of species. Also, high redundancy protects ecosys-

tem functioning against loss of species, via enabling alternative pathways of energy and

mass flow (Lawton & Brown, 1994). However, the raw number of species is insufficient

for generating such positive effects on ecosystem functioning. Strictly speaking, the com-

pensatory effect requires response diversity among redundant species (Laliberte et al.,

2010; Naeem & Wright, 2003; Yachi & Loreau, 1999). Following (Laliberte et al., 2010),

we consider response diversity as a component of functional diversity. Besides, in a lim-

iting scenario of a community composed of truly identical species, there should not be

a distinction between eliminating a species versus eliminating fractions of other species,

assuming the total amount of biomass or individuals removed are the same in both cases.

In short, changing the species diversity while preserving functional diversity should not

affect the ecosystem functioning (Cadotte et al., 2011). Ecological redundancy requires

functional variability among species to have an effect on the system dynamics. Therefore,

whenever evaluating the BEF relation through mathematical models, one should be wary

about artifacts that may be introduced when adding species to the network. In particular,

for most BEF studies, we should use scale–invariant models, i.e. those that preserve sys-

tem dynamics when introducing functionally identical species (Arditi & Michalski, 1996;

Kuang, 2002). The key point is that even when no identical species are added, the arti-

facts may be still present. To understand the reason behind this, assume that, using a

scale–sensitive model, we observe alterations in the system dynamics after changing the

number of functionally different species. The problem is that from this result we could

18



not establish a causal relationship between functional diversity and system dynamics, be-

cause the artifactual effect of changing the raw number of species is not controlled for.

Regarding BEF, when a scale–sensitive model is used, it is hard to discriminate between

a significant BEF relation, attributable to biodiversity effects, and a spurious relation

arisen from scale–sensitivity. Thus, a necessary condition for any model used for evalu-

ating the consequences of biodiversity shifts is that its dynamics must not be altered by

the addition of identical species or, equivalently, to artificially split a species.

Hence we present a test to verify scale–invariance of ecological network models. We

provide an operational definition of the test that complements Arditi and Michalski’s

conceptual approach to logical consistency. The usefulness of our test extends to many

fields of ecological research, particularly when modeling networks of varying size. However,

we focused on BEF studies, where the procedure of growing networks is central. As a key

contribution of our study, we also present a generalized version of the test that can be

applied to eco–evolutionary models, i.e., those that include trait adaptation. This feature

tends to increase stability in ecological networks (Valdovinos et al., 2010). To the best

of our knowledge, the issue of scale–invariance in systems with adaptive trait dynamics

has not been addressed before. In our generalization, we considered systems in which

trait values are either normalized or non-normalized. Testing for addability of species is

more complicated in the case of normalized models due to the need for preserving the

normalization of trait values. We described a test that works for the renormalization

rule defined in Eq. (S2.26). This rule is reasonable but somewhat arbitrary. However,

the same procedure we used to derive the differential equations for the trait values, i.e.,

Eq. (S2.34) through Eq. (S2.39) can be used for other rules. Our scale–invariance test

can be extended to similar models, such as Eq. (S4.15), that can include age or spatial

structure. The latter has been partially explored by Kuang (2002). To assess scale–

invariance of an ecological network model, we need unambiguous definitions for the rule
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to translate networks into ODEs, and for the rule to grow a network by splitting a species

into two identical ones. While surveying articles we noted that the form of the equations,

and the rule to write them for a network were clear. Yet, the operation for duplicating

species was difficult to infer. Nonetheless, the test is robust against erroneous detection of

scale–sensitive models, in the following sense. For scale–sensitive models, completing the

proof does not require guessing the entire duplication rule. Very weak assumptions are

sufficient. By contrast, to prove a model is scale–invariant we need a detailed definition of

the duplication rule. Thus, if we want to rule out the possibility of scale induced artifacts

in BEF studies, the model specification should leave no doubts about how to add species

to an existing network. This issue should be dealt with whenever presenting a model for

studies aimed at determining the effects of biodiversity shifts.

Our survey of the literature showed a pervasive ambiguity in the rule to grow net-

works. We then had to rely on reasonable assumptions to apply our test. Under these

assumptions, most surveyed systems are scale–sensitive. This is striking since many of

these systems form the foundation of the current BEF theory. Remarkable exceptions

are in Bastolla et al. (2009), and Drossel et al. (2001) and variants (Drossel et al., 2004;

McKane, 2004; Quince et al., 2005a,b; Powell & McKane, 2008). The preponderance of

scale–sensitive models undermines the development of biodiversity theory. This may ham-

per the much–needed application of this theory to environmental policymaking, ecosystem

management, and conservation efforts. It is worthwhile to note that the venerable Lotka–

Volterra model is scale–invariant, as we showed in section Example applications of the

test. This formulation has been used as a starting point to create more sophisticated

developments for studying biodiversity effects. Unfortunately, many of these extensions

had features that corrupted the scale–invariance.

The most frequent model components that cause scale–sensitivity are the lack of direct

interspecific competition in the presence of intraspecific one, using a Hill exponent other
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than one, and the unsuitable use of normalized trait values in eco–evolutionary models.

Normalization does not immediately implies scale–sensitivity. The way in which the

normalized trait values appear in the differential equations is what causes scale–sensitivity.

Scale–invariant models with normalized trait values do exist, as the one by Drossel et al.

(2001). Although the form of their equations fall outside the scope of this article, the

resulting dynamics can be shown to be scale–invariant.

Our findings suggest the need to revisit a number of classic results in the area. For

example, our simulations based on the original model by Thébault & Fontaine (2010)

and our slightly modified scale–invariant version, displayed qualitative differences in the

relationship between species diversity and both stability and biomass. Our analysis serves

to identify the causes of scale–sensitivity, and it also helps to find solutions for it. Since

there are three main sources of scale–sensitivity in published models, it is usually straight-

forward to produce scale–invariant versions of them. Our approach is useful because it

provides an operational test that can be directly applied to a wide variety of ODE based

models, with or without trait dynamics. However, these do not cover every possible for-

mulation found in the ecological literature. For example, models found in Drossel et al.

(2001) follow a game–theoretical approach that does not use differential equations to

describe the time evolution of trait values. Instead, they adjust the foraging efforts in-

stantaneously, so they achieve an evolutionary stable equilibrium, after fixing the values

of all state variables. This equilibrium has to be computed by solving an algebraic set

of equations. This is conceptually similar to having an infinite rate of adaptation when

using differential equations. For example, we could assign very large values to the adap-

tations rates in the replicator equation. This suggests that our test could be extended to

a game–theoretical adaptation model.

Promising research avenues include extensions of the test in several directions. One of

them is spatial heterogeneity that affects trait and population dynamics. This problem
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can be addressed assuming continuous or discrete space structures, such as the growth

of biofilms or metacommunity dynamics. Another extension useful in the context of

studying the BEF would be the inclusion of age or stage structure. Again, these can

be discrete, continuous, or even a combination of both (Valdovinos et al., 2013, 2016;

Ramos-Jiliberto et al., 2018). For continuous space or age structure, the preferred ap-

proach is to rely on partial differential equations, which would require to develop a more

general scale–invariance test. Another interesting aspect is considering network dynam-

ics (Ramos-Jiliberto et al., 2012). This topic is capturing the attention of ecologists

since recent empirical long-term records of ecological networks indicate a high interaction

turnover (Petanidou et al., 2008; CaraDonna et al., 2017; Chacoff et al., 2018). In models

considering additions/deletions of species and links, this could determine discontinuous

changes on the value of state variables, such as populations abundances or trait values.

In such discrete events, scale–invariance should also be preserved.

A theoretical challenge is finding criteria for developing proper models that include

the interplay among space heterogeneity, age/stage population structure, and network

dynamics. These issues are of paramount importance in epidemiological dynamics in

the framework of biodiversity–driven dilution/amplification effects on disease propaga-

tion (Civitello et al., 2015; Luis et al., 2018). This topic has been studied using es-

sentially the same models and techniques as we described here but without addressing

scale–invariance (Duffy & Collins, 2019). These advances could be an important step

toward a deeper understanding of the role of biodiversity in the stability and functioning

of ecosystems and social-ecological systems. If we intend to achieve robust predictions

about ecosystems and we admit the importance of mathematical modeling to achieve this

goal (Valdovinos, 2019), then ecologists must be especially careful when formulating new

models, and when interpreting model outcomes.
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Table 1. Summary of reviewed models that do not include trait adaptation. It is indicated whether or
not they pass our scale–invariance test and, if they do not, which test criteria failed (species addability
or equation matching, according to Fig. 2), and which component of the model is responsible for that:
direct interspecific competition (ISC), Hill exponent or normalization of preferences (Norm.)

Reference Scale–

invariant

Test crite-

ria failed

Equation component im-

peding scale–invariance

Williams & Martinez (2004) No Addability ISC

Addability Hill exp.

Matching Norm.

Brose et al. (2006) No Addability ISC

Addability Hill exp.

Matching Norm.

Berlow et al. (2009) No Addability ISC

Addability Hill exp.

Matching Norm.

Bascompte et al. (2006) No Addability ISC

Okuyama & Holland (2008) No Addability ISC

Thébault & Fontaine (2010) No Addability ISC

Mougi & Kondoh (2012) No Addability ISC

Matching Norm.

Bastolla et al. (2009) Yes - -

Kondoh (2003) No Addability ISC

Matching Norm.

Uchida et al. (2007) No Addability ISC
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Table 2. Same as Table 1, but for reviewed models that include trait adaptation. † These models do not
conform the equations we address in this study. Thus, we do not conducted our test on them. Authors’
claims about logical consistency indicate that their models are scale–invariant.

Reference Scale–

invariant

Test crite-

ria failed

Equation com-

ponent impeding

scale–invariance

Kondoh et al. (2005) No Addability ISC

Matching Norm.

Garcia-Domingo & Saldana (2007) No Addability ISC

Matching Norm.

Garcia-Domingo & Saldana (2008) No Addability ISC

Matching Norm.

Guill & Drossel (2008) No Matching Norm.

Kondoh (2007) No Addability ISC

Matching Norm.

Uchida & Drossel (2007) No Addability ISC

Matching Norm.

Uchida et al. (2007) No Addability ISC

Matching Norm.

Drossel et al. (2001) Yes† - -

Drossel et al. (2004) Yes† - -

McKane (2004) Yes† - -

Quince et al. (2005a) Yes† - -

Quince et al. (2005b) Yes† - -

Powell & McKane (2008) Yes† - -

Calcagno et al. (2017) No Matching Trait dynamics
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Figure 1 The concept of scale–invariance. (A) The consumers (snails) are represented

by a single population of size x that feeds on a resource (plant) of population size y.

(B) The consumer population is artificially split into two separate variables, x1 and x2.

Bottom plots illustrate example trajectories of the resource and consumer populations.

In the plot of panel (B), the sum of variables x1 and x2 must equal the value of variable

x of panel (A), at every time.

Figure 2 Test for scale–invariance in ecological networks. Sequence of steps for conduct-

ing our scale–invariance test.

Figure 3 Sample simulations based on Eq. (19). (A) Original equations. (B) Eq. (19)

with added direct interspecific competition. Black lines with green/red error areas show

plant/herbivore persistences. Green/red lines with grey error areas show plant/herbivore

biomasses. Mean ± 95% confidence intervals are shown.
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Figure 3
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