References

Agosta, S. J., Morton, D., & Kuhn, K. M. (2003). Feeding ecology of the bat Eptesicus fuscus: “Preferred” prey abundance as one factor influencing prey selection and diet breadth. Journal of Zoology ,260 (2), 169–177. doi:10.1017/S0952836903003601
Alberdi, A., Aizpurua, O., Gilbert, M. T. P., & Bohmann, K. (2018). Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution , 9 (1), 134–147. doi:10.1111/2041-210X.12849
Albrecht, M., & Gotelli, N. J. (2001). Spatial and temporal niche partitioning in grassland ants. Oecologia , 126 (1), 134–141. doi:10.1007/s004420000494
Alonso, D., Etienne, R. S., & McKane, A. J. (2006). The merits of neutral theory. Trends in Ecology and Evolution , 21 (8), 451–457. doi:10.1016/j.tree.2006.03.019
Andreas, M., Reiter, A., & Benda, P. (2012a). Dietary composition, resource partitioning and trophic niche overlap in three forest foliage-gleaning bats in Central Europe. Acta Chiropterologica ,14 (2), 335–345. doi:10.3161/150811012x661657
Andreas, M., Reiter, A., & Benda, P. (2012b). Prey selection and seasonal diet changes in the western barbastelle bat (Barbastella barbastellus). Acta Chiropterologica , 14 (1), 81–92. doi:10.3161/150811012X654295
Arlettaz, Raphael. (1996). Foraging behaviour of the gleaning bat Myotis nattereri (Chiroptera, Vespertilionidae) in the Swiss Alps.Mammalia , 60 , 181–186. doi:10.1515/mamm.1996.60.2.181
Arlettaz, Raphaël. (1999). Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blythii. Journal of Animal Ecology ,68 (3), 460–471.
Arrizabalaga-Escudero, A., Clare, E. L., Salsamendi, E., Alberdi, A., Garin, I., Aihartza, J., & Goiti, U. (2018). Assessing niche partitioning of co-occurring sibling bat species by DNA metabarcoding.Molecular Ecology , 27 (5), 1273–1283. doi:10.1111/mec.14508
Ashrafi, S., Beck, A., Rutishauser, M., Arlettaz, R., & Bontadina, F. (2011). Trophic niche partitioning of cryptic species of long-eared bats in Switzerland: implications for conservation. European Journal of Wildlife Research , 57 (4), 843–849. doi:10.1007/s10344-011-0496-z
Barclay, R. M. R. (1991). Population structure of temperate zone insectivorous bats in relation to foraging behaviour and energy demand.Journal of Animal Ecology , 60 (1), 165–178.
Bocher, P., Robin, F., Kojadinovic, J., Delaporte, P., Rousseau, P., Dupuy, C., & Bustamante, P. (2014). Trophic resource partitioning within a shorebird community feeding on intertidal mudflat habitats.Journal of Sea Research , 92 , 115–124. doi:10.1016/j.seares.2014.02.011
Böhm, S. M., Wells, K., & Kalko, E. K. V. (2011). Top-down control of herbivory by birds and bats in the canopy of temperate broad-leaved oaks (Quercus robur). PLoS ONE , 6 (4). doi:10.1371/journal.pone.0017857
Boye, P., & Dietz, M. (2005). Development of good practice guidelines for woodland management for bats . English Nature Research Reports (Vol. 661). doi:/ISSN 0967-876X
Chase, J. M., & Leibold, M. A. (2003). Ecological Niches . Chicago: University of Chicago Press. doi:10.7208/chicago/9780226101811.001.0001
Chesson, P. (2000). Mechanisms of maintenance of species diversity.Annual Review of Ecology and Systematics , 31 , 343–66. doi:10.1146/annurev.ecolsys.31.1.343
Chesson, P. L., & Warner, R. R. (1981). Environmental variability promotes coexistence in lottery competitive systems. The American Society of Naturalists , 117 (6), 923–943.
Clare, E. L., Chain, F. J. J., Littlefair, J. E., Cristescu, M. E., & Deiner, K. (2016). The effects of parameter choice on defining molecular operational taxonomic units and resulting ecological analyses of metabarcoding data 1. Genome , 59 (11), 981–990. doi:10.1139/gen-2015-0184
Codron, J., Duffy, K. J., Avenant, N. L., Sponheimer, M., Leichliter, J., Paine, O., … Codron, D. (2015). Stable isotope evidence for trophic niche partitioning in a South African savanna rodent community.Current Zoology , 61 (3), 397–411. doi:10.1093/czoolo/61.3.397
Cooper, R., & Whitmore, R. C. (1990). Arthropod sampling methods in ornithology. Studies in Avian Biology , 13 (13), 29–37.
Czech, N. U., Klauer, G., Dehnhardt, G., & Siemers, B. M. (2009). Fringe for foraging? Histology of the bristle-like hairs on the tail membrane of the gleaning bat, Myotis nattereri. Acta Chiropterologica , 10 (2), 303–311. doi:10.3161/150811008x414872
de Jong, J. (1995). Habitat use and species richness of bats in a patchy lanscape. Acta Theriologica , 40 (3), 237–248. doi:10.4098/AT.arch.95-23
Deagle, B. E., Thomas, A. C., McInnes, J. C., Clarke, L. J., Vesterinen, E. J., Clare, E. L., … Eveson, J. P. (2019). Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Molecular Ecology , 28 (2), 391–406. doi:10.1111/mec.14734
Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics , 26 (19), 2460–2461. doi:10.1093/bioinformatics/btq461
Elbrecht, V., Braukmann, T. W. A., Ivanova, N. V., Prosser, S. W. J., Hajibabaei, M., Wright, M., … Steinke, D. (2019). Validation of COI metabarcoding primers for terrestrial arthropods. PeerJ ,7 (10), e7745. doi:10.7717/peerj.7745
Emrich, M. A., Clare, E. L., Symondson, W. O. C., Koenig, S. E., & Fenton, M. B. (2014). Resource partitioning by insectivorous bats in Jamaica. Molecular Ecology , 23 (15), 3648–3656. doi:10.1111/mec.12504
Gabaldón, C., Montero-Pau, J., Serra, M., & Carmona, M. J. (2013). Morphological similarity and ecological overlap in two rotifer species.PLoS ONE , 8 (2), 23–25. doi:10.1371/journal.pone.0057087
Galan, M., Pons, J.-B., Tournayre, O., Pierre, É., Leuchtmann, M., Pontier, D., & Charbonnel, N. (2018). Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. Molecular Ecology Resources ,18 (3), 474–489. doi:10.1111/1755-0998.12749
Garcia-Mudarra, J. L., Ibanez, C., & Juste, J. (2020). A PCR-based identification method of two bat cryptic complexes (Myotis crypticus/M. escalerai and Eptesicus isabellinus/E. serotinus). Journal of Bat Research and Conservation IN PRESS.
Gkenas, C., Magalhães, M. F., Cucherousset, J., Orjuela, R. L., & Ribeiro, F. (2019). Dietary niche divergence between two invasive fish in Mediterranean streams. Knowledge and Management of Aquatic Ecosystems , 2019 (420). doi:10.1051/kmae/2019018
Godsoe, W., Murray, R., & Plank, M. J. (2015). The effect of competition on species’ distributions depends on coexistence, rather than scale alone. Ecography , 38 (11), 1071–1079. doi:10.1111/ecog.01134
Gotelli, N., Hart, E., & Ellison, A. (2015). EcoSimR: Null model analysis for ecological data.
Harmáčková, L., Remešová, E., & Remeš, V. (2019). Specialization and niche overlap across spatial scales: Revealing ecological factors shaping species richness and coexistence in Australian songbirds.Journal of Animal Ecology , 88 (11), 1766–1776. doi:10.1111/1365-2656.13073
Hart, S. P., Usinowicz, J., & Levine, J. M. (2017). The spatial scales of species coexistence. Nature Ecology and Evolution ,1 (8), 1066–1073. doi:10.1038/s41559-017-0230-7
Harvey, J. A., Snaas, H., Malcicka, M., Visser, B., & Bezemer, T. M. (2014). Small-scale spatial resource partitioning in a hyperparasitoid community. Arthropod-Plant Interactions , 8 (5), 393–401. doi:10.1007/s11829-014-9319-y
HilleRisLambers, J., Harsch, M. A., Ettinger, A. K., Ford, K. R., & Theobald, E. J. (2013). How will biotic interactions influence climate change-induced range shifts? Annals of the New York Academy of Sciences , 1297 (1), 112–125. doi:10.1111/nyas.12182
Hope, P. R., Bohmann, K., Gilbert, M. T. P., Zepeda-Mendoza, M. L., Razgour, O., & Jones, G. (2014). Second generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by Myotis nattereri (Chiroptera, Vespertilionidae) in winter.Frontiers in Zoology , 11 (1), 39. doi:10.1186/1742-9994-11-39
Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography . Princeton University Press.
Huey, R. B., Pianka, E. R., Egan, M. E., & Coons, L. W. (1974). Ecological shifts in sympatry: Kalahari fossorial lizards (Typhlosaurus). Ecology , 55 (2), 304–316. doi:10.2307/1935218
Jiang, T., Feng, J., Sun, K., & Wang, J. (2008). Coexistence of two sympatric and morphologically similar bat species Rhinolophus affinis and Rhinolophus pearsoni. Progress in Natural Science ,18 (5), 523–532. doi:10.1016/j.pnsc.2007.12.005
Jones, G. (1990). Prey selection by the greater horseshoe bat (Rhinolophus ferrumequinum): optimal foraging by echolocation?Journal of Animal Ecology , 59 (2), 587–602.
Jusino, M. A., Banik, M. T., Palmer, J. M., Wray, A. K., Xiao, L., Pelton, E., … Lindner, D. L. (2019). An improved method for utilizing high-throughput amplicon sequencing to determine the diets of insectivorous animals. Molecular Ecology Resources , 19 (1), 176–190. doi:10.1111/1755-0998.12951
Juste, J., Ruedi, M., Puechmaille, S. J., Salicini, I., & Ibáñez, C. (2018). Two new cryptic bat species within the Myotis nattereri species complex (Vespertilionidae , Chiroptera) from the Western Palaearctic.Acta Chiropterologica , 20 (2), 285–300. doi:10.3161/15081109ACC2018.20.2.001
Kalka, M. B., Smith, A. R., & Kalko, E. K. V. (2008). Bats limit arthropods and herbivory in a tropical forest. Science ,320 (5872), 71. doi:10.1126/science.1153352
Klawinski, P. D., Vaughan, R. K., Saenz, D., & Godwin, W. (1994). Comparison of dietary overlap between allopatric and sympatric geckos.Journal of Herpetology , 28 (2), 225. doi:10.2307/1564624
Krüger, F., Clare, E. L., Greif, S., Siemers, B. M., Symondson, W. O. C., & Sommer, R. S. (2014). An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species Myotis dasycneme and Myotis daubentonii. Molecular Ecology ,23 (15), 3657–3671. doi:10.1111/mec.12512
Kunz, T. H. (1973). Resource utilization: Temporal and spatial components of bat activity in central Iowa. Journal of Mammalogy ,54 (1), 14–32.
Kunz, T. H. (2009). Ecological and behavioral methods for the study of bats . (T. H. Kunz, Ed.) (Second edition). Johns Hopkins University Press. doi:10.2307/1381698
Lamarre, G. P. A., Hérault, B., Fine, P. V. A., Vedel, V., Lupoli, R., Mesones, I., & Baraloto, C. (2016). Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests. Journal of Animal Ecology , 85 (1), 227–239. doi:10.1111/1365-2656.12445
Lawlor, L. R. . (1980). Overlap, similarity, and competition coefficients. Ecology , 61 (2), 245–251.
Letten, A. D., Ke, P. J., & Fukami, T. (2017). Linking modern coexistence theory and contemporary niche theory. Ecological Monographs , 87 (2), 161–177. doi:10.1002/ecm.1242
Lewis, J. S., Bailey, L. L., Vandewoude, S., & Crooks, K. R. (2015). Interspecific interactions between wild felids vary across scales and levels of urbanization. Ecology and Evolution , 5 (24), 5946–5961. doi:10.1002/ece3.1812
Luiselli, L. (2008). Do lizard communities partition the trophic niche? A worldwide meta-analysis using null models. Oikos ,117 (3), 321–330. doi:10.1111/j.2007.0030-1299.16297.x
Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal , 17 (1), 10. doi:10.14806/ej.17.1.200
McGill, B. J., Maurer, B. A., & Weiser, M. D. (2006). Empirical evaluation of neutral theory. Ecology , 87 (6), 1411–1423. doi:https://doi.org/10.1890/0012-9658(2006)87[1387:NTATEO]2.0.CO;2
Norberg, U. M. (1994). Wing design, flight performance, and habitat use in bats. In P. C. Wainwright & S. M. Reilly (Eds.), Ecological morphology : integrative organismal biology (p. 367). University of Chicago Press.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner, H. (2019). vegan: Community ecology package.
Peixoto, F. P., Braga, P. H. P., & Mendes, P. (2018). A synthesis of ecological and evolutionary determinants of bat diversity across spatial scales. BMC Ecology , 18 (1), 1–14. doi:10.1186/s12898-018-0174-z
R core team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Core Team.
Ratnasingham, S., & Hebert, P. D. N. (2007). BARCODING: bold: The Barcode of Life Data System (http://www.barcodinglife.org).Molecular Ecology Notes , 7 (3), 355–364. doi:10.1111/j.1471-8286.2007.01678.x
Ratnasingham, S., & Hebert, P. D. N. (2013). A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System. PLoS ONE , 8 (7), e66213. doi:10.1371/journal.pone.0066213
Razgour, O., Clare, E. L., Zeale, M. R. K., Hanmer, J., Bærholm Schnell, I., Rasmussen, M., … Jones, G. (2011). High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecology and Evolution , 1 (4), 556–570. doi:10.1002/ece3.49
Razgour, O., Forester, B., Taggart, J., Juste, J., Ibáñez, C., Puechmaille, S., … Alberdi, A. (2019). Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proceedings of the National Academy of Sciences of the United States of America , I (1), 1–6. doi:10.1073/pnas.1820663116
Razgour, O., Salicini, I., Ibáñez, C., Randi, E., & Juste, J. (2015). Unravelling the evolutionary history and future prospects of endemic species restricted to former glacial refugia. Molecular Ecology ,24 (20), 5267–5283. doi:10.1111/mec.13379
Rivers, N. M., Butlin, R. K., & Altringham, J. D. (2005). Genetic population structure of Natterer’s bats explained by mating at swarming sites and philopatry. Molecular Ecology , 14 (14), 4299–4312. doi:10.1111/j.1365-294X.2005.02748.x
Ross, S. T. (1986). Resource partitioning in fish assemblages: Review of field studies. Copeia , 2 , 352–388.
Russo, D., Di Febbraro, M., Rebelo, H., Mucedda, M., Cistrone, L., Agnelli, P., … Luciano, B. (2014). What story does geographic separation of insular bats tell? A case study on Sardinian rhinolophids.PLoS ONE , 9 (10). doi:10.1371/journal.pone.0110894
Rytkönen, S., Vesterinen, E. J., Westerduin, C., Leviäkangas, T., Vatka, E., Mutanen, M., … Orell, M. (2019). From feces to data: A metabarcoding method for analyzing consumed and available prey in a bird-insect food web. Ecology and Evolution , 9 (1), 631–639. doi:10.1002/ece3.4787
Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R., … Wall, D. H. (2000). Global biodiversity scenarios for the year 2100. Science , 287 (5459), 1770–1774. doi:10.1126/science.287.5459.1770
Salinas‐Ramos, V. B., Ancillotto, L., Bosso, L., Sánchez‐Cordero, V., & Russo, D. (2020). Interspecific competition in bats: state of knowledge and research challenges. Mammal Review , 50 (1), 68–81. doi:10.1111/mam.12180
Salsamendi, E., Garin, I., Almenar, D., Goiti, U., Napal, M., & Aihartza, J. (2008). Diet and prey selection in Mehelyi’s horseshoe bat Rhinolophus mehelyi (Chiroptera, Rhinolophidae) in the south-western Iberian Peninsula. Acta Chiropterologica , 10 (2), 279–286. doi:10.3161/150811008X414854
Salsamendi, E., Garin, I., Arostegui, I., Goiti, U., & Aihartza, J. (2012). What mechanism of niche segregation allows the coexistence of sympatric sibling rhinolophid bats? Frontiers in Zoology ,9 (1), 30. doi:10.1186/1742-9994-9-30
Schmitt, R. J., & Coyer, J. A. (1983). Variation in surfperch diets between allopatry and sympatry: circumstantial evidence for competition.Oecologia , 58 , 402–410.
Schoener, T. W. (1974). Resource Partitioning in Ecological Communities.Science , 185 (4145), 27–39. doi:10.1126/science.185.4145.27
Shiel, C. B., McAney, C. M., & Fairley, J. S. (1991). Analysis of the diet of Natterer’s bat Myotis nattereri and the common long-eared bat Plecotus auritus in the West of Ireland. Journal of Zoology ,223 (2), 299–305. doi:10.1111/j.1469-7998.1991.tb04766.x
Snyder, R. E., & Chesson, P. (2004). How the spatial scales of dispersal, competition, and environmental heterogeneity interact to affect coexistence. American Naturalist , 164 (5), 633–650. doi:10.1086/424969
Sousa, L. L., Silva, S. M., & Xavier, R. (2019). DNA metabarcoding in diet studies: Unveiling ecological aspects in aquatic and terrestrial ecosystems. Environmental DNA , 1 (3), 199–214. doi:10.1002/edn3.27
Swift, S. M. (1997). Roosting and foraging behaviour of Natterer’s bats (Myotis nattereri) close to the northern border of their distribution.Journal of Zoology , 242 (74), 375–384. doi:10.1111/j.1469-7998.1997.tb05809.x
Swift, S. M., & Racey, P. A. (2002). Gleaning as a foraging strategy in Natterer’s bat Myotis nattereri. Behavioral Ecology and Sociobiology , 52 (5), 408–416. doi:10.1007/s00265-002-0531-x
Ulyshen, M. D. (2011). Arthropod vertical stratification in temperate deciduous forests: Implications for conservation-oriented management.Forest Ecology and Management , 261 (9), 1479–1489. doi:10.1016/j.foreco.2011.01.033
Valladares, F., Bastias, C. C., Godoy, O., Granda, E., & Escudero, A. (2015). Species coexistence in a changing world. Frontiers in Plant Science , 6 , 1–16. doi:10.3389/fpls.2015.00866
Vaughan, N. (1997). The diets of British bats (Chiroptera). Mammal Review , 27 (2), 77–94. doi:10.1111/j.1365-2907.1997.tb00373.x
Vesterinen, E. J., Ruokolainen, L., Wahlberg, N., Peña, C., Roslin, T., Laine, V. N., … Lilley, T. M. (2016). What you need is what you eat? Prey selection by the bat Myotis daubentonii. Molecular Ecology , 25 (7), 1581–1594. doi:10.1111/mec.13564
Viana, D. S., & Chase, J. M. (2019). Spatial scale modulates the inference of metacommunity assembly processes. Ecology ,100 (2), 1–9. doi:10.1002/ecy.2576
Weiher, E., & Keddy, P. (Eds.). (1999). Ecological assembly rules, perspectives, advances, retreats (2004th ed.). Cambridge: Cambridge University Press. doi:10.1192/bjp.111.479.1009-a
Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C., & Jones, G. (2011). Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular Ecology Resources , 11 (2), 236–244. doi:10.1111/j.1755-0998.2010.02920.x