REFERENCES
1. Schulz H. Short history and present trends of Fischer-Tropsch synthesis. Appl Catal, A. 1999;186:3-12.
2. Martinelli M, Gnanamani MK, Demirel B, LeViness S, Jacobs G, Shafer WD. An Overview of Fischer Tropsch Process: Catalysts, Reactors and XtL Processes. Appl Catal, A. 2020.
3. Niu CC, Xia M, Chen CB, et al. Effect of process conditions on the product distribution of Fischer-Tropsch synthesis over an industrial cobalt-based catalyst using a fixed-bed reactor. Appl Catal, A. 2020;601:11.
4. Brunner KM, Perez HD, Peguin RPS, et al. Effects of Particle Size and Shape on the Performance of a Trickle Fixed-Bed Recycle Reactor for Fischer-Tropsch Synthesis. Ind Eng Chem Res.2015;54:2902-2909.
5. Mandić M, Todić B, Živanić L, Nikačević N, Bukur DB. Effects of Catalyst Activity, Particle Size and Shape, and Process Conditions on Catalyst Effectiveness and Methane Selectivity for Fischer–Tropsch Reaction: A Modeling Study. Ind Eng Chem Res. 2017;56:2733-2745.
6. Iglesia E, Soled SL, Baumgartner JE, Reyes SC. Synthesis and catalytic properties of eggshell cobalt catalysts for the Fischer-Tropsch Synthesis. J Catal. 1995;153:108-122.
7. Wang YN, Xu YY, Xiang HW, Li YW, Zhang BJ. Modeling of catalyst pellets for Fischer-Tropsch synthesis. Ind Eng Chem Res.2001;40:4324-4335.
8. Hubble R, York APE, Dennis JS. Modelling reaction and diffusion in a wax-filled hollow cylindrical pellet of Fischer Tropsch catalyst. Chem Eng Sci. 2019;207:958-969.
9. Post MFM, Vanthoog AC, Minderhoud JK, Sie ST. Diffusion Limitations in Fischer-Tropsch Catalysts. AIChE J.1989;35:1107-1114.
10. Froment GF, Bischoff KB, DeWilde J. Chemical Reactor Analysis and Design. 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc; 2011.
11. Gardezi SA, Wolan JT, Joseph B. Effect of catalyst preparation conditions on the performance of eggshell cobalt/SiO2 catalysts for Fischer-Tropsch synthesis.Appl Catal, A. 2012;447:151-163.
12. Fratalocchi L, Visconti CG, Lietti L, Tronconi E, Rossini S. Exploiting the effects of mass transfer to boost the performances of Co/γ-Al2O3 eggshell catalysts for the Fischer–Tropsch synthesis. Appl Catal, A. 2016;512:36-42.
13. Visconti CG, Tronconi E, Groppi G, et al. Monolithic catalysts with high thermal conductivity for the Fischer-Tropsch synthesis in tubular reactors. Chem Eng J. 2011;171:1294-1307.
14. Bukur DB, Mandic M, Todic B, Nikacevic N. Pore diffusion effects on catalyst effectiveness and selectivity of cobalt based Fischer-Tropsch catalyst. Catal Today. 2020;343:146-155.
15. Gheorghiu S, Coppens MO. Optimal bimodal pore networks for heterogeneous catalysis. AIChE J. 2004;50:812-820.
16. Dogu T. Diffusion and reaction in catalyst pellets with bidisperse pore size distribution. Ind Eng Chem Res.1998;37:2158-2171.
17. Johannessen E, Wang G, Coppens MO. Optimal distributor networks in porous catalyst pellets. I. Molecular diffusion. Ind Eng Chem Res. 2007;46:4245-4256.
18. Rao SM, Coppens MO. Mitigating Deactivation Effects through Rational Design of Hierarchically Structured Catalysts: Application to Hydrodemetalation. Ind Eng Chem Res. 2010;49:11087-11097.
19. Wang G, Coppens MO. Rational design of hierarchically structured porous catalysts for autothermal reforming of methane.Chem Eng Sci. 2010;65:2344-2351.
20. Wang G, Coppens MO. Calculation of the optimal macropore size in nanoporous catalysts and its application to DeNO(x) catalysis.Ind Eng Chem Res. 2008;47:3847-3855.
21. Wang G, Johannessen E, Kleijn CR, de Leeuwa SW, Coppens MO. Optimizing transport in nanostructured catalysts: A computational study.Chem Eng Sci. 2007;62:5110-5116.
22. Ye GH, Duan XZ, Sui ZJ, Zhu KK, Zhou XG, Yuan WK. Evaluation of approximations for concentration-dependent micropore diffusion in sorbent with bidisperse pore structure. Adsorption.2014;20:843-853.
23. Ye GH, Duan XZ, Zhu KK, Zhou XG, Coppens MO, Yuan WK. Optimizing spatial pore-size and porosity distributions of adsorbents for enhanced adsorption and desorption performance. Chem Eng Sci.2015;132:108-117.
24. Ye GH, Zhou XG, Yuan WK, Ye GH, Coppens MO. Probing pore blocking effects on multiphase reactions within porous catalyst particles using a discrete model. AIChE J. 2016;62:451-460.
25. Liu XL, Wang HL, Ye GH, Zhou XG, Keil FJ. Enhanced performance of catalyst pellets for methane dry reforming by engineering pore network structure. Chem Eng J. 2019;373:1389-1396.
26. Shi Y, Yang CF, Zhao XQ, et al. Engineering the Hierarchical Pore Structures and Geometries of Hydrodemetallization Catalyst Pellets. Ind Eng Chem Res. 2019;58:9829-9837.
27. Shi Y, Ye GH, Yang CF, et al. Pore engineering of hierarchically structured hydrodemetallization catalyst pellets in a fixed bed reactor. Chem Eng Sci. 2019;202:336-346.
28. Chen L, Zhang RY, Kang QJ, Tao WQ. Pore-scale study of pore-ionomer interfacial reactive transport processes in proton exchange membrane fuel cell catalyst layer. Chem Eng J. 2020;391.
29. Su J, Chai G, Wang L, et al. Pore-scale direct numerical simulation of particle transport in porous media. Chem Eng Sci.2019;199:613-627.
30. Liu SP, Cheng ZZ, Li Y, et al. Improved Catalytic Performance in Dimethyl Ether Carbonylation over Hierarchical Mordenite by Enhancing Mass Transfer. Ind Eng Chem Res.2020;59:13861-13869.
31. Li HS, Hou B, Wang JG, et al. Effect of hierarchical meso-macroporous structures on the catalytic performance of silica supported cobalt catalysts for Fischer-Tropsch synthesis. Catal Sci Technol. 2017;7:3812-3822.
32. Li HS, Wang JG, Chen CB, Jia LT, Hou B, Li DB. Effects of macropores on reducing internal diffusion limitations in Fischer-Tropsch synthesis using a hierarchical cobalt catalyst. Rsc Adv.2017;7:9436-9445.
33. Egaña A, Sanz O, Merino D, Moriones X, Montes M. Fischer–Tropsch Synthesis Intensification in Foam Structures. Ind Eng Chem Res. 2018;57:10187-10197.
34. Zhang XH, Su HQ, Yang XZ. Catalytic performance of a three-dimensionally ordered macroporous Co/ZrO2 catalyst in Fischer-Tropsch synthesis. J Mol Catal A: Chem. 2012;360:16-25.
35. Witoon T, Chareonpanich M, Limtrakul J. Effect of hierarchical meso-macroporous silica supports on Fischer-Tropsch synthesis using cobalt catalyst. Fuel Process Technol.2011;92:1498-1505.
36. Liu YF, Luo JJ, Girleanu M, Ersen O, Pham-Huu C, Meny C. Efficient hierarchically structured composites containing cobalt catalyst for clean synthetic fuel production from Fischer-Tropsch synthesis. J Catal. 2014;318:179-192.
37. Merino D, Pérez-Miqueo I, Sanz O, Montes M. On the Way to a More Open Porous Network of a Co–Re/Al2O3 Catalyst for Fischer–Tropsch Synthesis: Pore Size and Particle Size Effects on Its Performance. Top Catal. 2015;59:207-218.
38. Xu BL, Fan YN, Zhang Y, Tsubaki N. Pore diffusion simulation model of bimodal catalyst for Fischer-Tropsch synthesis.AIChE J. 2005;51:2068-2076.
39. Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl Catal, A.1997;161:59-78.
40. Gardezi SA, Joseph B. Performance Characteristics of Eggshell Co/SiO2 Fischer-Tropsch Catalysts: A Modeling Study. Ind Eng Chem Res. 2015;54:8080-8092.
41. Yates IC, Satterfield CN. Intrinsic Kinetics of the Fischer-Tropsch Synthesis on a Cobalt Catalyst. Energy Fuels.1991;5:168-173.
42. Vervloet D, Kapteijn F, Nijenhuis J, van Ommen JR. Fischer-Tropsch reaction-diffusion in a cobalt catalyst particle: aspects of activity and selectivity for a variable chain growth probability. Catal Sci Technol. 2012;2:1221-1233.
43. Pöhlmann F, Kern C, Rößler S, Jess A. Accumulation of liquid hydrocarbons in catalyst pores during cobalt-catalyzed Fischer–Tropsch synthesis. Catal Sci Technol. 2016;6:6593-6604.
44. Rößler S, Kern C, Jess A. Accumulation of liquid hydrocarbons during cobalt-catalyzed Fischer–Tropsch synthesis - influence of activity and chain growth probability. Catal Sci Technol. 2019;9:4047-4054.
45. Sánchez-López JRG, Martínez-Hernández A, Hernández-Ramírez A. Modeling of transport phenomena in fixed-bed reactors for the Fischer-Tropsch reaction: a brief literature review. Rev Chem Eng. 2017;33:109-142.
46. Marano JJ, Holder GD. Characterization of Fischer-Tropsch liquids for vapor-liquid equilibria calculations. Fluid Phase Equilib. 1997;138:1-21.
47. Erkey C, Rodden JB, Akgerman A. Diffusivities of Synthesis Gas and Normal-Alkanes in Fischer-Tropsch Wax. Energy Fuels.1990;4:275-276.
48. Erkey C, Rodden JB, Akgerman A. A Correlation for Predicting Diffusion-Coefficients in Alkanes. Can J Chem Eng.1990;68:661-665.
49. Rößler S, Kern C, Jess A. Sorption and condensation of higher hydrocarbons in a Fischer–Tropsch catalyst. Catal Sci Technol. 2019;9:1902-1910.
50. Pöhlmann F, Jess A. Interplay of reaction and pore diffusion during cobalt-catalyzed Fischer–Tropsch synthesis with CO2-rich syngas. Catal Today. 2016;275:172-182.
51. Wakao N, Smith JM. Diffusion in Catalyst Pellets.Chem Eng Sci. 1962;17:825-834.
52. Poling BE, Prausnitz JM, O’Connell JP. The Properties of Gases and Liquids. Fifth ed. New York: McGRAW-HILL; 2001.
53. Ertl G, Knozinger H, Schuth F, Weitkamp J. Handbook of Heterogeneous Catalysis. 2nd ed. Weinheim: Wiley 2008.
54. Liu ZT, Li YW, Zhou JL, Zhang BJ. Intrinsic Kinetics of Fischer-Tropsch Synthesis over an Fe-Cu-K Catalyst. J Chem Soc Faraday Trans. 1995;91:3255-3261.