References
1. Grimes DA, Schulz KF. Bias and causal associations in observational research. Lancet. 2002;359(9302):248-252.
2. Weiskopf NG, Bakken S, Hripcsak G, Weng C. A Data Quality Assessment Guideline for Electronic Health Record Data Reuse. EGEMS (Wash DC). 2017;5(1):14.
3. Makadia R, Ryan PB. Transforming the Premier Perspective Hospital Database into the Observational Medical Outcomes Partnership (OMOP) Common Data Model. EGEMS (Wash DC). 2014;2(1):1110.
4. Maier C, Lang L, Storf H, et al. Towards Implementation of OMOP in a German University Hospital Consortium. Appl Clin Inform.2018;9(1):54-61.
5. Hripcsak G, Duke JD, Shah NH, et al. Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers. Stud Health Technol Inform. 2015;216:574-578.
6. Suchard MA, Schuemie MJ, Krumholz HM, et al. Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis.Lancet. 2019;394(10211):1816-1826.
7. Schneeweiss S. Learning from big health care data. N Engl J Med. 2014;370(23):2161-2163.
8. Leather DA, Jones R, Woodcock A, Vestbo J, Jacques L, Thomas M. Real-World Data and Randomised Controlled Trials: The Salford Lung Study. Adv Ther. 2020;37(3):977-997.
9. International Health Terminology Standards Development Organisation. SNOMED CT and Other Terminologies, Classifications and Code Systems. 2019; https://www.snomed.org/snomed-ct/sct-worldwide. Accessed 8.11.2019.
10. Regenstrief Institute. About LOINC: Logical Observation Identifiers Names and Codes https://www.loinc.org/about Accessed 9.11.2019.
11. National Institute of Health U.S. National Library of Medicine. Unified Medical Language System®: RxNorm Overview https://www.nlm.nih.gov/research/umls/rxnorm/overview.html Accessed 8.11.2019.
12. Hripcsak G, Ryan PB, Duke JD, et al. Characterizing treatment pathways at scale using the OHDSI network. Proc Natl Acad Sci U S A. 2016;113(27):7329-7336.
13. The Sentinel Initiative. The Sentinel Common Data Model https://www.sentinelinitiative.org/sentinel/data/distributed-database-common-data-model. Accessed 18.04.2020, 2020.
14. OHDSI. The Book of OHDSI. https://ohdsi.github.io/TheBookOfOhdsi/CommonDataModel.html. Accessed 14.04.2020, 2020.
15. pCORnet. pCORnET: Common Data Model (CDM) Specification, Version 5.1 https://pcornet.org/wp-content/uploads/2019/09/PCORnet-Common-Data-Model-v51-2019_09_12.pdf. Accessed 19.04.2020, 2020.
16. i2b2 Common Data Model https://www.i2b2.org/software/projects/datarepo/CRC_Design_Doc_13.pdf. Accessed 18.04.2020, 2020.
17. Health Sciences Authority Singapore. Infosearch - Register of Therapeutic Products. . https://www.hsa.gov.sg/e-services/infosearch. Accessed 09.11.2019.
18. Malik AH, Yandrapalli S, Aronow WS, Panza JA, Cooper HA. Meta-Analysis of Direct-Acting Oral Anticoagulants Compared With Warfarin in Patients >75 Years of Age. Am J Cardiol.2019;123(12):2051-2057.
19. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med.2009;361(12):1139-1151.
20. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med.2011;365(10):883-891.
21. Wee XT, Ho LM, Ho HK, et al. Incidence of thromboembolic and bleeding events in patients with newly diagnosed nonvalvular atrial fibrillation: An Asian multicenter retrospective cohort study in Singapore. Clin Cardiol. 2017;40(12):1218-1226.