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Abstract.  Quantifying the spatial  characteristics  of  information stored and disseminated electronically is a complex
computational challenge. Flat vector objects such as symbols, tracks, routes,  etc. are described using the mathematical
apparatus of Bezier curves. Finding the perimeters of such objects, especially in the case of curves of order higher than
the third, is associated with certain difficulties. Reducing the order of curves by dividing or splitting them into sub-curves
of  lower  orders,  accompanied  by  some decrease  in  the  accuracy  of  the  estimate,  is  a  convenient  method  for  fast
calculating the perimeters of plane figures described by Bezier curves. In this work, we propose an iterative algorithm for
determining the arc length of a Bezier curve, which compares different criteria for splitting a curve into sub-curves.
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INTRODUCTION

Big Data Analysis is closely related to the calculation and comparison of various metrics of the objects under
study [1]. Information stored and disseminated in electronic form may often be represented as sets of flat vector
objects (texts, maps, drawings,  etc.). Certain their metrics might be obtained automatically directly from the files
[2]. Calculation of the spatial parameters of such objects is a difficult task both in terms of its formalization and in
terms of the required computing power. Describing vector objects using Bezier curves might help one solve this
problem. However,  when describing the studied objects by curves of the third and higher orders,  computational
difficulties also arise. Attempts to analytically calculate the arc length of a Bezier curve, the order of which is higher
than the second, lead to the irrational integrals, in which, under the radical, there is a polynomial of high even degree
that has no roots. Therefore, it is indecomposable into the prime factors on the field of real numbers. The situation
may become even more complicated in the case of self-intersecting curves.

An obvious solution to this problem is to reduce the dimension of the curves. The perimeter of a complex vector
figure described by curves of the third or higher orders may be represented as the sum of curves of the lower order
conjugate at singular points of constant curvature. We replace each individual segment of the “parent” curve of the
third  order  with the  second-order  Bezier  curves  that  have  the  property  that  their  arc  length  may be generally
calculated through the coordinates of the control points. The higher order case might be similarly reduced to this
one.  The selection criteria  for the singular  points,  as  well  as the algorithm for  approximate calculations of the
lengths of arcs that make up the object under study, are the subject of this work.

BEZIER CURVES, THEIR ARC LENGTH, AND ORDER REDUCTION

A Bezier curve is a special case of the Bernstein polynomials [3, 4]. It is defined by a set of control points P0

through  Pn, where  n is called its order. The first control point  P0  is always the  start point, and the last one  Pn is
always the end of the curve. However, the intermediate control points (if any) generally do not lie on the curve itself.
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For the flat cubic Bezier curve (1), four control points P0(x0, y0), P1(x1, y1), P2(x2, y2), and P3(x3, y3) are used. In them,
P1 and P2 are the managing points (see Fig.1 (above)). 
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The arc length l of a smooth parametrized curve is given by the integral (2) where integration and differentiation
is carried out with respect  to the parameter  t.  The arc length of the second-order Bezier curve might be easily
expressed in terms of the control points coordinates.
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The general form of the second-order Bezier curve on the Cartesian plane is given by expression (3), where

P0(x0 , y0),  P1(x1 , y1),  P2(x2 , y3) are the control points, and P1 is the only managing one. The general form
(3) may be transformed to the polynomial with respect to the powers of  t (4). Considering the notation (5), the
explicit form of the integral (2) takes the form (6). We will not consider the degenerate cases when the integrand (2)
is identically equal to zero.
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Note that the square trinomial under the radical in (6) is certainly indecomposable into the simplest factors.
Moreover,  the discriminant of the resulting square trinomial with respect  to the parameter  t is strictly negative.
Taking into account the introduced designations (7), integral (6) is reduced to the tabular form (8). Thus, we reduce
the third order curves to equations of the second order. 
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SINGULAR POINTS AND THE ITERATIVE ALGORITHM

Bezier curves, the order of which is higher than the second (see Fig.1 (above)), in relation to the curves of the
second order (see Fig.1(b, below)), may have some geometric features. They may intersect, may be self-closed (see
Fig.1(a, right)), and may have a sharp peak point (the "cusp" or "return", see Fig.1(a, left)). The presence of such
features complicates the application of numerical methods to calculate the arc length of a curve.
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On the other hand, according to de Casteljau's algorithm, any “parent” Bezier curve might be split into “child”
fragments with respect to the curve parameter. At the same time, the set of “child” curves of the same order as the
“parent” one is exactly corresponds to the “parent” curve (see Fig.1(below)).

Since the nature of the partition might be set completely arbitrarily within the range of the curve parameter
variation, it seems reasonable to carry out the primary partition by "special" or “singular” points. Points of zero
curvature should be taken as such singular points, because they are not tied to the coordinate system, in contrast to
the  seemingly  obvious  maxima  or  minima.  Points  of  zero  curvature  are  geometrically  defined  as  points  of
intersection of a curve with its own tangent, and, analytically, these are real solutions of the equation (9) within the
range of variation of the curve parameter t.
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In the case of a third-order Bezier curve, equation (9) is reduced to a quadratic equation for the curve parameter.
The number of real roots within the range of variation of the parameter will determine the geometric features of the
curve, namely: there are no roots, which means that the curve has either an arched or self-intersecting form; the
presence of one non-multiple root indicates an S-shaped curve,  i.e.,  the second root is outside the range of the
parameter; two different roots determine the presence of a smooth peak; one multiple root indicates the presence of a
sharp peak (cusp).

After splitting the curve by the roots of equation (9), each “child” curve is considered independent. However,
each of the “child” curves is now devoid of geometric features,  with the possible exception of self-intersection.
Further considerations concern precisely such “child” curves, separately.

(a) (b)

FIGURE 1. (a) Third-order Bezier curves special cases “cusp” (right) and “egg” (left), dotted lines (above) are auxiliary
elements constructed at the Bezier control points; their division on arcs and sub-arcs with corresponding chords (below); (b) S-
shape case of the fourth-order Bezier curve (above) and its division by the singular points on the second-order arcs and sub-arcs

with corresponding chords (below).

Thus, the calculation of the third-order Bezier curve arc length is based on two principles. Firstly, the curve is
splitted into two parts, and, secondly, the arc segment of the third order curve is replaced according to a certain rule
by the second order arc segment. Obviously, to improve the accuracy of calculations, the procedure for splitting the
curve into parts might be repeated. This forms an iterative procedure suitable for determining the arc length of a
curve of any order.

Let us consider how, from the point of view of the problem of finding the arc length, the division of the curve
into two parts might be carried out in an optimal way. The division should be carried out at such a value of the curve
parameter  t, which corresponds to the situation when the tangent to the curve is parallel to the contracting chord.
This is the point where the curve is farthest from the chord (see Fig.1 (b, below), “max distance” points). This is the
point of extreme curvature because it is the maximum with respect to the contracting chord. The curve parameter
corresponding to the condition of parallelism of the tangent to the curve and the contracting chord is determined
from condition (10), which, in order to avoid ambiguity, should be written as (11), whereE=P3−P0.
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Expression (11) leads to a quadratic equation for the parameter of the curve with coefficients at powers of t (12).
It necessarily has only one real root in the range of variation of the curve parameter, since the point of maximum
distance of the arc from the contracting chord, provided that the oriented curvature of the arc does not change sign,
is unique. The found root is used to split the third-order curve into two parts.

t 2: 3(Ex A y−A xE y)

t 1: 2(ExBy−BxEy )

t 0: ExC y−C xEy

. ()

As a computational assessment of the proposed method, we engage data from [5] where the perimeters of the
“egg” and “cusp”, as they are shown in Fig.1(a), have been calculated by the elliptic integrals. We calculate the total
arc lengths of the same objects and compare the results for different number of splits  N (see Table 1). We also
include the chords approximations. As it is seen, from five to seven splits is enough to meet the same results that the
far more complicated method of the elliptic integrals gives. It corresponds to from 32 to 128 split segments on each
curve. We also see that the more straight “cusp” sample is well approximated even by chords when split on 64 sub-
arcs.  At  the  same  time,  the  more  orbed  “egg”  does  not  applicable  to  the  chord  approximation,  at  least  with
satisfactory accuracy. Thus, we may deduce that the proposed iterative algorithm works perfectly. The accuracy of
the method might be tuned depending on the situation and the purposes of the calculations.

Table 1. Perimeter (total arc length) for the model objects, relative units; coincide values are in bold. 

No of
Splits (N)

No. of
segments

“Egg”
 chord approx.

“Egg”
elliptic [5]

“Egg”
parabolic

“Cusp”
chord approx.

“Cusp”
elliptic [5]

“Cusp”
parabolic

1 2 16,7705 18.3557 18,5426 18,2025 18.2843 18,3796
2 4 17,6606 18.3557 18,3669 18,2604 18.2843 18,3066
3 8 18,1540 18.3557 18,3549 18,2776 18.2843 18,2895
4 16 18,3072 18.3557 18,3556 18,2824 18.2843 18,2855
5 32 18,3435 18.3557 18,3557 18,2838 18.2843 18,2846
6 64 18,3526 18.3557 18,3557 18,2842 18.2843 18,2844
7 128 18,3549 18.3557 18,3557 18,2842 18.2843 18,2843

CONCLUSION

The perimeter of an arbitrary flat figure described by Bezier curves of order higher than the second order in some
cases cannot be determined analytically. Therefore, a quantitative assessment of the spatial metrics of a significant
part of information stored in the form of electronic documents is impossible, since, for example, fonts are described
by third-order Bezier curves. Since the analytical and computational methods for quadratic Bezier curves are well
developed, we propose to solve the problem described above by splitting the high-order curves into arcs and sub-
arcs, which are well described by second-order curves, followed by summation. The proposed iterative algorithm
solves almost all possible combinations of curves found in electronic documents. The only possible exception is a
self-intersecting curve. The method allows to increase the accuracy of calculations by increasing the number of
partitions. In the limit, the length of a sub-arc can be approximated by its chord. In particular, it is reasonable to use
this when evaluating objects that are indistinguishable by the human eye (about 100 μm, [6]).
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